
Shortest Beer Path Queries Based on Graph
Decomposition
Tesshu Hanaka #

Faculty of Information Science and Electrical Engineering, Kyushu University, Fukuoka, Japan

Hirotaka Ono #

Graduate School of Informatics, Nagoya University, Japan

Kunihiko Sadakane #

Graduate School of Information Science and Technology, The University of Tokyo, Japan

Kosuke Sugiyama #

Graduate School of Informatics, Nagoya University, Japan

Abstract
Given a directed edge-weighted graph G = (V,E) with beer vertices B ⊆ V , a beer path between
two vertices u and v is a path between u and v that visits at least one beer vertex in B, and the beer
distance between two vertices is the shortest length of beer paths. We consider indexing problems on
beer paths, that is, a graph is given a priori, and we construct some data structures (called indexes)
for the graph. Then later, we are given two vertices, and we find the beer distance or beer path
between them using the data structure. For such a scheme, efficient algorithms using indexes for
the beer distance and beer path queries have been proposed for outerplanar graphs and interval
graphs. For example, Bacic et al. (2021) present indexes with size O(n) for outerplanar graphs
and an algorithm using them that answers the beer distance between given two vertices in O(α(n))
time, where α(·) is the inverse Ackermann function; the performance is shown to be optimal. This
paper proposes indexing data structures and algorithms for beer path queries on general graphs
based on two types of graph decomposition: the tree decomposition and the triconnected component
decomposition. We propose indexes with size O(m + nr2) based on the triconnected component
decomposition, where r is the size of the largest triconnected component. For a given query u, v ∈ V ,
our algorithm using the indexes can output the beer distance in query time O(α(m)). In particular,
our indexing data structures and algorithms achieve the optimal performance (the space and the
query time) for series-parallel graphs, which is a wider class of outerplanar graphs.

2012 ACM Subject Classification Theory of computation → Data structures design and analysis

Keywords and phrases graph algorithm, shortest path problem, SPQR tree

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2023.37

Related Version Extended Version: https://arxiv.org/abs/2307.02787

Funding Tesshu Hanaka: JSPS KAKENHI Grant Numbers JP21H05852, JP21K17707, JP22H00513,
and JP23H04388
Hirotaka Ono: JSPS KAKENHI Grant Numbers JP20H00081, JP20H05967, JP21K19765,
JP22H00513
Kunihiko Sadakane: JSPS KAKENHI Grant Number JP20H05967

1 Introduction

Given a directed edge-weighted graph G = (V,E) with beer vertices B ⊆ V , a beer path
between two vertices u and v is a path between u and v that visits at least one beer vertex
in B, and the beer distance between two vertices is the shortest length of beer paths. Here,
a graph with B, the set of beer stores, is called a beer graph. The names “beer path” and
“beer distance” come from the following story: A person will visit a friend but does not want

© Tesshu Hanaka, Hirotaka Ono, Kunihiko Sadakane, and Kosuke Sugiyama;
licensed under Creative Commons License CC-BY 4.0

34th International Symposium on Algorithms and Computation (ISAAC 2023).
Editors: Satoru Iwata and Naonori Kakimura; Article No. 37; pp. 37:1–37:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:hanaka@inf.kyushu-u.ac.jp
https://orcid.org/0000-0001-6943-856X
mailto:ono@nagoya-u.jp
https://orcid.org/0000-0003-0845-3947
mailto:sada@mist.i.u-tokyo.ac.jp
https://orcid.org/0000-0002-8212-3682
mailto:sugiyama.kousuke.k3@s.mail.nagoya-u.ac.jp
https://orcid.org/0009-0004-9419-9176
https://doi.org/10.4230/LIPIcs.ISAAC.2023.37
https://arxiv.org/abs/2307.02787
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

37:2 Shortest Beer Path Queries Based on Graph Decomposition

to show up empty-handed, and they decide to pick up some beer along the way. They would
like to take the fastest way to go from their place to their friend’s place while stopping at a
beer store to buy some drinks.

The notion of the beer path was recently introduced by Bacic et al. [1]. Although the
name is somewhat like a fable, we often encounter similar situations as the above story.
Instead of beer stores, we want to stop at a gas station along the way, for example.

Just computing the beer distance or a beer path with the beer distance is easy. A beer
path with the beer distance always consists of two shortest paths: from the source to one
of the beer stores and from the beer store to the destination. We can therefore compute
them by solving the single source shortest path problem twice from the source and from the
destination, and taking the minimum beer vertex among B.

We consider indexing problems on beer paths, that is, a graph is given a priori, and we
construct some data structures (called indexes) for the graph. Then later, we are given two
vertices, and we find the beer distance or beer path between them using the data structure.
This is more efficient than algorithms without using any indexes if we need to solve queries for
many pairs of vertices. Indeed, car navigation systems might equip such indexing mechanisms;
since a system has map information as a graph in advance, it can make indexed information
by preprocessing, which enables it to quickly output candidates of reasonable routes from
the current position as soon as receiving a goal point. Such a scenario is helpful also for the
beer path setting. Efficient algorithms using indexes for the beer distance and beer path
queries have been proposed for outerplanar graphs [1] and interval graphs [5].

This paper presents indexes with efficient query algorithms using graph decomposition
for more general classes of graphs. Namely, we consider graphs of bounded treewidth [3] and
graphs with bounded triconnected components size [9]. The performance of our indexing
and algorithm generalizes that for outerplanar graphs in [1]; if we apply our indexing and
algorithm for outerplanar graphs, the space for indexes, preprocessing time, and query time
are equivalent to those of [1]. Furthermore, ours can be applied for general graphs, though the
performance worsens for graphs of large treewidth and with a large triconnected component.

1.1 Related Work

For undirected outerplanar beer graphs G of order n, Bacic et al. [1] present indexes with
size O(n), which can be preprocessed in O(n) time. For any two query vertices u and v,
(i) the beer distance between u and v can be reported in O(α(n)) time, where α(n) is the
inverse Ackermann function, and (ii) a beer path with the beer distance between u and v

can be reported in O(L) time, where L is the number of vertices on this path. The query
time is shown to be optimal.

For unweighted interval graphs with beer vertices B, Das et al. [5] provides a representation
using 2n logn+O(n) +O(|B| logn) bits. This data structure answers beer distance queries
in O(logε n) time for any constant ε > 0 and shortest beer path queries in O(logε n + L)
time. They also present a trade-off relation between space and query time. These results are
summarized in Table 1.

Other than the beer path problem, Farzan and Kamali [6] proposed a distance oracle for
graphs with n vertices and treewidth k using asymptotically optimal k(n+o(n)−k/2)+O(n)
bit space which can answer a query in O(k3 log3 k) time. For general graphs, indexes
for shortest paths (i.e., distance queries) and max flow queries based on the triconnected
component decomposition have been proposed [10].

T. Hanaka, H. Ono, K. Sadakane, and K. Sugiyama 37:3

Table 1 Comparison of results.

Graphs Preprocessing Complexity Query time
Space (words) Time

Outerplanar graphs [1]
O(m) (= O(n)) O(α(n))

(undirected, W = R≥0)
Interval graphs [5] O(n+ |B|) O(n+ |B|)∗ O(logε n)

(undirected, unweighted) O(n+ |B| log logn) O(n+ |B| log logn)∗ O(log logn)

Ours

tri. decomp. O(m) O(m+ nr3) O(r2 + α(m))
(undirected, W = Z≥0) O(m+ nr2) O(m+ nr4) O(α(m))

tri. decomp. O(m) O((m+ n log r+)r2
+) O(r2 log r+ + α(m))

(W = R≥0) O(m+ nr2) O((m+ n log r+)r3
+) O(α(m))

tree decomp. O(t3n) O(t8n) O(t7 + α(tn))
(W = R≥0) O(t5n) O(t10n) O(t6 + α(tn))

n: the number of vertices
m: the number of edges
r: the size of maximum triconnected components, r+ = max{1, r}
t: the treewidth
α(·): the inverse Ackermann function
∗: not explicitly mentioned

1.2 Our Contribution

We present indexing data structures and query algorithms for beer distance and beer path
queries for general graphs based on graph decomposition. As graph decomposition, we use
the tree decomposition [3] and the triconnected component decomposition [9]. The obtained
results are summarized in Table 1.

We first present faster query algorithms using properties of the triconnected component
decomposition. In this approach, we use r, the size of the largest triconnected component
in a graph, as the parameter to evaluate the efficiency of algorithms. Note that r is not
the number of edges in the largest triconnected component; it is the number of edges in
a component after contracting every biconnected component into an edge and therefore it
is not so large in practice. The formal definition will be given in Section 2.2. Our data
structure uses O(m+ r · min{m, rn}) space, and the algorithm for undirected graphs with
nonnegative integer edge weights requires O(m + r3 · min{m, rn}) time for preprocessing,
and it answers for each query in O(α(m)) time. For directed graphs with nonnegative edge
weights, the preprocessing time and query time are, respectively O(m+ r3(m+n log r+)) and
O(α(m)). Since the size of indexes and query time have a trade-off relation, a little slower
query time can achieve an indexing data structure with less memory. In such a scenario,
another data structure uses O(m) space, and the algorithm for undirected graphs with
nonnegative integer edge weights requires O(m+ r2 · min{m, rn}) time for preprocessing, and
it answers for each query in O(r2 + α(m)) time. For directed graphs with nonnegative edge
weights, the preprocessing time and query time are, respectively O(m+ r2(m+ n log r+))
and O(r2 log r+ + α(m)).

Because triconnected component decomposition can be regarded as a tree decomposition,
we extend our query algorithms for graphs represented by using the tree decomposition.
Though computing the exact treewidth is NP-hard, whereas triconnected component decom-
position is done in linear time [8], and query time complexities using tree decomposition is

ISAAC 2023

37:4 Shortest Beer Path Queries Based on Graph Decomposition

larger than using triconnected component decomposition, the treewidth is always at most
r and therefore algorithms based on the tree decomposition are faster in some cases. In
view of these, we remake the indexing data structures and algorithms for tree decomposition.
The indexing data structure requires O(t5n) space and O(t10n) time to construct, and the
algorithm can answer a query in O(t6 + α(tn)) time.

Note that for series-parallel graphs r = 0, t = 2, and m = O(n) hold. This implies that
for series-parallel graphs, our indexing data structures use O(n) space, and the algorithms
can answer each query in O(α(n)) time. Since the class of series-parallel graphs is a super
class of outerplanar graphs, our results fairly extend the optimal result for outerplanar graphs
by [1].

The rest of the paper is organized as follows. Section 2 is for preliminaries. Sections 3
and 4 present the main parts that describe the indexing and algorithms under triconnected
decomposition. Section B shows how we remake that to those under tree decomposition.

2 Preliminaries

Let Z≥0 be the set of nonnegative integers and R≥0 be the set of nonnegative real numbers.
For nonnegative integers i, j ∈ Z≥0 (i ≤ j), let [i, j] = {i, i+ 1, . . . , j − 1, j}.

For a graph G, let V (G) and E(G) denote its vertex and edge sets, respectively.
For two graphs G and G′, let G \ G′ = (V (G) \ V (G′), E(G) \ E(G′)) and G ∪ G′ =
(V (G) ∪ V (G′), E(G) ∪ E(G′)). Also, for a graph G and a set of vertex pairs F ⊆
V (G) × V (G), let G \ F = (V (G), E(G) \ F) and G ∪ F = (V (G), E(G) ∪ F). Furthermore,
for a graph G and its vertex subset S ⊆ V (G), let G[S] be the subgraph of G induced by S.

2.1 Shortest Path Problem and Beer Path Problem / Query
Suppose we are given a graph G, an edge weight w : E(G) → W , and a vertex subset
B ⊆ V (G). Note that in this paper, we assume W = Z≥0 or W = R≥0.

For vertices u, v ∈ V (G), a path from u to v in G is called a u-v path in G. Usually, a
u-v path is not unique. The length of a path is defined by the sum of the edge weights on
the path. The shortest length of all u-v paths is called the u-v distance in G, denoted by
d((G,w), u, v). Also, for vertices u, v ∈ V (G), a walk from u to v passing through a vertex
belonging to B at least once is called a u-v beer path in G. The length of a u-v beer path
is similarly defined as the length of a u-v path, u-v beer distance in G is defined by the
shortest length of all u-v beer paths and is denoted by dB((G,w,B), u, v). Note that if w
and B are clear from the context, we omit them and denote d((G,w), u, v) as d(G, u, v) and
dB((G,w,B), u, v) as dB(G, u, v). Then, a vector whose elements are the distance and the
beer distance is denoted by

d⃗(G, u, v) =
(

d(G, u, v)
dB(G, u, v)

)
.

For a given G,w,B and vertices u, v ∈ V (G), the problem of finding d(G, u, v) (or one u-v
path that realizes it) is called Shortest Path and the problem of finding dB(G, u, v) (or
one u-v beer path that realizes it) is called Beer Path. For given u and v, the query asked
to return dB(G, u, v) or one u-v beer path with length dB(G, u, v) is called Beer Path Query
on G,w,B.

Here, we review algorithms for the shortest path problem and their computational
complexity. When W = Z≥0 and G is an undirected graph, the shortest path problem can
be solved in O(m) time by using Thorup’s algorithm [11]. When W = R≥0, the shortest

T. Hanaka, H. Ono, K. Sadakane, and K. Sugiyama 37:5

path problem can be solved in O(m+ n logn) time by Dijkstra’s algorithm using Fibonacci
heap [7]. Hereafter, let ALG (G) denote the computational time to solve Shortest Path
Problem by one of the above algorithms according to the setting; for example, if G is
undirected and W = Z≥0, ALG (G) = O(m), and if W = R≥0, ALG (G) = O(m+ n logm).

2.2 SPQR tree
Let G be a biconnected (multi) undirected graph and {u, v} be its vertex pair. If G[V (G) \
{u, v}] is disconnected or u and v are adjacent in G, {u, v} is called a split pair of G. We
denote the set of split pairs of G by SplG. For {u, v} ∈ SplG, a maximal subgraph H of
G satisfying {u, v} /∈ SplH , and the graph ({u, v}, {e}) consisting of the edge e connecting
u and v, are called a split component of the split pair {u, v} of G. We denote the set of
split components of the split pair {u, v} of G by SplComG(u, v). For {u, v} ∈ SplG and
{s, t} ∈ E(G), we say that {u, v} is maximal with respect to {s, t} if vertices u, v, s, t are in
the same split component for any split pair {u′, v′}.

For example, for the graph G shown in Figure 6, SplG = E(G) ∪
{{1, 6}, {1, 7}, {2, 6}, {4, 6}} and SplComG(1, 6) = {G1, G2, G3}, SplComG(2, 6) =
{H1, H2, H3}. Also, {1, 6} ∈ SplG is maximal with respect to the edge {1, 2}. Further-
more, {1, 6} ∈ SplG is not maximal with respect to the edge {2, 5} because no component in
SplComG(2, 6) containing all vertices 1, 6, 2, and 5.

For an edge e = {u, v} ∈ E(G), we define an SPQR tree T (G, e) of G. Here, e is called a
reference edge of T (G, e) of G. Each node µ of T (G, e) is associated with a graph Skµ. The
root node of T (G, e) is denoted by µe. The T (G, e) is defined recursively as follows.
Trivial Case If SplComG(u, v) = {({u, v}, {e}), ({u, v}, {e′})} (e′ ∈ E(G)), that is, G is a

two vertices multi graph consisting of two edges e, e′, T (G, e) = ({µe}, ∅), Skµe
= G.

Also, µe is said to be a Q node.
Series Case Let SplComG(u, v) = {({u, v}, {e}), H}, where H is formed by a series connec-

tion of k(≥ 2) connected componentsH1, . . . Hk. Then, for vertices u = c0, c1, c2, . . . , ck−1,

ck = v (c1, . . . , ck−1 are cut vertices of G), let ci−1, ci be the only vertices belonging to
Hi (1 ≤ i ≤ k). In this case, if ei = {ci−1, ci} (1 ≤ i ≤ k), then

T (G, e) = ({µe}, ∅) ∪
⋃

1≤i≤k (T (Hi ∪ {ei}, ei) ∪ {{µe, µei
}}) ,

Skµe
= ({c0, . . . , ck}, {e, e1, . . . , ek}).

Also, µe is said to be an S node.
Parallel Case If SplComG(u, v) = {({u, v}, {e}), H1, . . . ,Hk} (k ≥ 2), that is, G is formed

by the parallel connection of 3 or more split components of {u, v}. In this case, if we let
ei denote the edge corresponding to Hi, then Skµe

= ({u, v}, {e, e1, . . . , ek}) and T (G, e)
is defined as same as series case. Also, µe is said to be a P node.

Rigid Case If the above does not apply, that is, SplComG(u, v) = {({u, v}, {e}), H} and H

has no cut vertices, let all maximal split pairs for {u, v} in SplG \ {{u, v}} be {ui, vi}
(1 ≤ i ≤ k, k ≥ 1). Also, for each i, let Hi be the union of the split components for
{ui, vi} that does not contain e. That is, Hi =

⋃
H∈SplComG(ui,vi):e/∈E(H) H. In this case,

if we let ei denote the edge corresponding to Hi (1 ≤ i ≤ k), then

Skµe
=
(

{u, v} ∪
⋃

1≤i≤k{ui, vi}, {e} ∪
⋃

1≤i≤k{ei}
)

and T (G, e) is defined as same as series case. Also, µe is said to be an R node.

ISAAC 2023

37:6 Shortest Beer Path Queries Based on Graph Decomposition

The tree ({ρ, ∅}) ∪ T (G, e) ∪ {{ρ, µe}} obtained by connecting the tree T (G, e) obtained by
the above definition and Q node ρ with the graph Skρ = ({u, v}, {e}) as a root is called
the SPQR tree of G with respect to edge e. Hereafter, we simply call it an SPQR tree and
denote it by T . Also, we denote the only child node µe of the root node ρ by ρ′.

For each node µ ∈ V (T) \ {ρ} of T , each edge of Skµ is a skeleton of a certain graph,
so Skµ is called the skeleton graph of µ. Let nµ = |V (Skµ)| be the number of vertices and
mµ = |E(Skµ)| be the number of edges of the skeleton Skµ. Also, let the reference edge of µ
be Refµ = {xµ, yµ} and let Chµ and Desµ be the sets of child and descendant nodes of µ in
T , respectively. We denote the set consisting of S, P, Q, and R nodes by ST , PT , QT , RT ,
respectively. For each µ ∈ V (T)\{ρ}, let Gµ be the subgraph of G corresponding to the graph
of Skµ without the reference edge. This can be expressed as Gµ = ({xµ, yµ}, {{xµ, yµ}}) if
µ ∈ QT , otherwise Gµ =

⋃
λ∈Chµ

Gλ. An example of a SPQR tree is shown in Figure 1.
The following is known for the SPQR tree T of G.

▶ Lemma 1. Let G be a biconnected undirected graph with n vertices and m edges, and T
be its SPQR tree. For each node µ ∈ V (T) \ {ρ}, {xµ, yµ} ∈ SplG. If µ ∈ RT , Skµ is a
triconnected graph. Also, |QT | = m, |ST ∪ PT ∪ RT | = O(n),

∑
µ∈ST ∪PT ∪RT

mµ = O(m),
and

∑
µ∈V (T) nµ = O(n) hold. Furthermore, T van be computed in O(n+m) time.

Let r = maxµ∈RT {mµ} be the maximum number of edges in the skeleton of the R node
(triconnected graph). Note that if RT = ∅), r = 0. Also, r+ = max{1, r}.

An SPQR tree for a directed graph is defined as a graph whose skeleton is replaced by a
directed graph after computing the SPQR tree by considering the graph as an undirected
graph. In this case, for each µ ∈ V (T)\{ρ}, we consider two reference edges ⟨xµ, yµ⟩, ⟨yµ, xµ⟩
and let Refµ = {⟨xµ, yµ⟩, ⟨yµ, xµ⟩}.

2.3 Query Problems
We present all query problems that will be used in later.
Range Minimum Query For a given array (a) = a[1], a[2], . . . , a[n] of length n, the query

defined by the following pair of inputs and outputs is called Range Minimum Query for
the array (a).
Input Positive integers i, j (1 ≤ i ≤ j ≤ n),
Output Minimum value in the subarray a[i], a[i+ 1], . . . , a[j − 1], a[j] of the array (a).

This query can be answered in O(1) time by preprocessing in O(n) space and O(n) time [2].

Lowest Common Ancestor Query Given a rooted tree T with n vertices. The query defined
by the following pair of input and output is called the lowest common ancestor query for
the rooted tree T .
Input Vertices u, u′ ∈ V (T),
Output The deepest (furthest from the root) common ancestor of u, u′ in T .

This query can be answered in O(1) time by preprocessing in O(n) space and O(n) time
using range minimum queries.

Tree Product Query Given a set S, a semigroup ◦ : S2 → S, a tree T with n vertices, and
a mapping f : V (T) → S. The query defined by the following pair of input and output is
called a Tree Product Query for S, ◦, T, f .
Input Vertices u, u′ ∈ V (T),
Output Let u = v1, v2, . . . , vk−1, vk = u′ be the only path on T that connects u, u′, then
f(v1) ◦ f(v2) ◦ . . . ◦ f(vk).

T. Hanaka, H. Ono, K. Sadakane, and K. Sugiyama 37:7

This query can be answered in O(α(n)) time by preprocessing in O(n) space and O(n)
time [4]. Here, α is the inverse Ackermann function.

For a nonnegative integer i, ℓ, we define Aℓ(i) as follows.

Aℓ(i) =
{

i+ 1 ℓ = 0, i ≥ 0
A

(i+1)
ℓ−1 (i+ 8) ℓ ≥ 1, i ≥ 0.

Note that A(i+1)
ℓ−1 denotes a function that Aℓ−1 iterated i+ 1 times. Using this, the inverse

Ackermann function α is defined as α(n) = min{ℓ ∈ Z≥0 | Aℓ(1) > n}.

3 Triconnected component decomposition-based indexing

This section describes indices based on triconnected component decomposition
for biconnected graphs. First, for each µ, λ ∈ T , we define Kµ,λ =(
{xµ, yµ} ∪ {xλ, yλ}, ({xµ, yµ} ∪ {xλ, yλ})2) to be a complete graph with self loops, and

let Kw⃗
µ,λ denote the graph Kµ,λ with the weight

w⃗ : V (Kµ,λ)2 → W 2 (w⃗(u, v) =
(
w(u, v)
wB(u, v)

)
).

Also, let K =
{
Kw⃗
µ,λ | µ, λ ∈ V (T), w⃗ : V (Kµ,λ)2 → W 2

}
∪ {⊥} be the union of the set of

those weighted graphs and {⊥}.
Next, for convenience, we define the maps Fi : dom(Fi) → K that provide data of distance

and beer distance (i = 1, 2, 3, 4, specific domains are described later). The algorithms for
beer path queries precompute some of these as data structures.

For each X ∈ dom(Fi), let Fi(X) ∈ K be a complete graph with at most 4 vertices
and f⃗i(X) be its weight. Also, we will denote the weight f⃗i(X)(u, v) of each vertex pair
⟨u, v⟩ ∈ V (Fi(X))2 by

f⃗i(X , u, v) =
(
fi(X , u, v)
fB
i (X , u, v)

)
omitting some brackets. These maps are defined so that fi(X , u, v) represents the normal
distance and fB

i (X , u, v) represents the beer distance.

3.1 Definition of the mapping F1 and its computation
▶ Definition 2. We define the mapping F1 : V (T) \ {ρ} → K as follows: For each node
µ ∈ V (T) \ {ρ}, let F1(µ) = K

f⃗1(µ)
µ,µ (a complete graph consists of 2 vertices xµ, yµ). The

weight of each vertex pair ⟨u, v⟩ ∈ {xµ, yµ}2 is f⃗1(µ, u, v) = d⃗(Gµ, u, v).

The F1(µ) intuitively represents the distance data when using the part of the T shown in
Figure 2.We can compute F1 from the leaves of T to the root as described below.

If µ ∈ QT \ {ρ}, Gµ is a graph that consists of only edges ⟨xµ, yµ⟩, ⟨yµ, xµ⟩, so we can
calculate the weights as in

f1(µ, u, v) = w(u, v), fB
1 (µ, u, v) =

{
∞ B ∩ {xµ, yµ} = ∅

minp∈B∩{xµ,yµ}{w(u, p) + w(p, v)} B ∩ {xµ, yµ} ̸= ∅.

From now on, we assume that µ is an inner node and that F1(λ) is computed for each of
its child nodes λ ∈ Chµ. Also, let Hµ be the weighted graph with each edge ⟨xλ, yλ⟩, ⟨yλ, xλ⟩
(λ ∈ Chµ) of Skµ \ Refµ given a weight f1(µ, xµ, yµ) , f1(µ, yµ, xµ) respectively. Then, from

ISAAC 2023

37:8 Shortest Beer Path Queries Based on Graph Decomposition

the definition of Hµ, if we consider the path from u to v in Gµ through the subgraph Gλ
(⟨u, v⟩ ∈ {xλ, yλ}2). The distance f1(µ, u, v) can be obtained by referring to the weight of the
edge ⟨u, v⟩ ∈ E(Hµ) (the beer distance fB

1 (µ, u, v) is obtained by referring to fB
1 (λ, u, v) =

dB(Gλ, u, v) directly). Therefore, F1(µ) can be calculated by using Hµ instead of Gµ.
If µ ∈ ST , let Chµ = {µ1, . . . , µk} and let xµ = xµ1 , yµi

= xµi+1 (1 ≤ i ≤ k− 1), yµk
= yµ

in Skµ (see Figure 7 of Appendix). Here, we define the following six symbols for each µ ∈ ST :

σxy
µ [i, j] :=

{∑
i≤p≤j f1

(
µp, xµp

, yµp

)
1 ≤ i ≤ j ≤ k,

0 otherwise,
which is the distance from xµi

to yµj
in
⋃
i≤p≤j Gµp

.

σyx
µ [i, j] :=

{∑
i≤p≤j f1

(
µp, yµp

, xµp

)
1 ≤ i ≤ j ≤ k,

0 otherwise,
βxx
µ [i] := σxy

µ [1, i− 1] + fB
1 (µi, xµi

, xµi
) + σyx

µ [1, i− 1] (1 ≤ i ≤ k,
which is the distance of the shortest walk that reaches from xµ = xµ1 to yµi−1 = xµi

in⋃
1≤j≤i−1 Gµj

, back to xµi
via a beer vertex in Gµi

and again to xµ.
βxy
µ [i] := fB

1 (µi, xµi
, yµi

) − f1(µi, xµi
, yµi

) (1 ≤ i ≤ k),
which is the difference between the beer distance and the (mere) distance in moving from
xµi

to yµi
in Gµi

.
βyx
µ [i] := fB

1
(
µj , yµj , xµj

)
− f1

(
µj , yµj , xµj

)
(1 ≤ i ≤ k),

βyy
µ [i] := σyx

µ [i+ 1, k] + fB
1 (µi, yµi

, yµi
) + σxy

µ [i+ 1, k] (1 ≤ i ≤ k).
Note that we only preprocess σxy

µ [1, i], σxy
µ [i, k], σyx

µ [1, i], σyx
µ [i, k] (1 ≤ i ≤ k) among σxy

µ [i, j],
σyx
µ [i, j]. The other σxy

µ [i, j] and σyx
µ [i, j] are obtained and used in O(1) time each time.

We also preprocess βxx
µ [·], βxy

µ [·], βyx
µ [·], βyy

µ [·] for Range Minimum Query. All of the above
preprocessing can be computed in O(k) space and O(k) time. By using these, we can calculate
the weights as in

f⃗1(µ, xµ, xµ) =
(

0
min1≤i≤k

{
βxx
µ [i]

}) , f⃗1(µ, xµ, yµ) =
(

σxy
µ [1, k]

σxy
µ [1, k] + min1≤i≤k

{
βxy
µ [i]

}) .
If µ ∈ PT , we define the following for each ⟨u, v⟩ ∈ {xµ, yµ}2 to simplify:

ℓu,v = min
λ∈Chµ

{f1(λ, u, v)} , ℓB
u,v = min

λ∈Chµ

{
fB

1 (λ, u, v)
}
.

By using these, we can calculate the weights as in

f⃗1(µ, xµ, xµ) =
(

0
min

{
ℓB
xµ,xµ

, ℓxµ,yµ + ℓB
yµ,yµ

+ ℓyµ,xµ , ℓ
B
xµ,yµ

+ ℓyµ,xµ , ℓxµ,yµ + ℓB
yµ,xµ

}) ,
f⃗1(µ, xµ, yµ) =

(
ℓxµ,yµ

min
{
ℓB
xµ,xµ

+ ℓxµ,yµ , ℓxµ,yµ + ℓB
yµ,yµ

, ℓB
xµ,yµ

, 2ℓxµ,yµ + ℓB
yµ,xµ

}) .
If µ ∈ RT , each weight f⃗1(µ, u, v) can be calculated on Hµ as follows.

f⃗1(µ, u, v) =
(

d(Hµ, u, v)
minλ∈Chµ

{minp,q∈{xλ,yλ}{d(Hµ, u, p) + fB
1 (λ, p, q) + d(Hµ, q, v)}}

)
.

Note that each d(Hµ, a, b) in the above equation is calculated by a shortest path algorithm
for Hµ. An example of calculating F1 is shown in Figure 1.

3.2 Definition of the mapping F2 and its computation
▶ Definition 3. We define the mapping F2 : V (T) \ {ρ} → K as follows: For each node
µ ∈ V (T) \ {ρ}, let F2(µ) = K

f⃗2(µ)
µ (a complete graph consists of 2 vertices xµ, yµ). The

weight of each vertex pair ⟨u, v⟩ ∈ {xµ, yµ}2 is f⃗2(µ, u, v) = d⃗(G \ E(Gµ), u, v).

T. Hanaka, H. Ono, K. Sadakane, and K. Sugiyama 37:9

𝜽

𝜽′

𝐹2 𝜇

5

4

7 8

9
7 8

4

7

4

8

8

5

9

7

9

8

1

6

2

4

5

6
1

2

2

1 1
3

2

3

1

2

3

7 5

5

4

6

17 89 3

2
3 1

𝐺,𝑤,𝐵 = 3,9

3
1

3 4

2 6

5 8

6
6

4

3

5

4

6

1

2

4

80 4

3 19

180 9

7 58

106 8

7 55

∞∞ ∞

7 87

86 7

7 86

3228 30

7 42

∞∞ ∞

7 412

206 13

4 520

3024 27

4 57

1010 13

4 86

∞∞ ∞

4 88

810 9

5 81

∞∞ ∞

5 812

816 12

7 93

06 3

7 910

020 10

9 84

80 4

9 89

180 9

4 26

∞∞ ∞

4 221

1210 27

2 13

812 10

2 124

3222 30

1 68

∞∞ ∞

1 619

168 25

5 63

∞∞ ∞

5 624

2410 31

2 13

∞∞ ∞

2 110

812 10

2 110

812 10

2 13

2822 25

2 36

012 6

2 37

014 7

𝝆

𝝆′ 𝑥𝜇 𝑦𝜇
Ref𝜇

Notation of each node 𝜇 ≠ 𝜌

Sk𝜇

𝜇

𝑓2
𝐵 𝜇, 𝑥𝜇 , 𝑥𝜇

𝑓2
𝐵 𝜇, 𝑥𝜇 ,𝑦𝜇 𝑓2

𝐵 𝜇,𝑦𝜇 ,𝑦𝜇

𝑓2 𝜇, 𝑥𝜇, 𝑦𝜇𝑥𝜇 𝑦𝜇

𝐹1 𝜇

𝑓1
𝐵 𝜇, 𝑥𝜇 , 𝑥𝜇

𝑓1
𝐵 𝜇, 𝑥𝜇 ,𝑦𝜇 𝑓1

𝐵 𝜇,𝑦𝜇 ,𝑦𝜇

𝑓1 𝜇, 𝑥𝜇, 𝑦𝜇𝑥𝜇 𝑦𝜇

𝒯

𝑠 = 1
𝑡 = 8

Figure 1 An weighted beer graph (G,w,B) (lower left) and its SPQR tree with F1, F2.

The F2(µ) intuitively represents the distance data when using the part of the T shown in
Figure 3. We can compute F2 from the root of T to the leaves. To describe how to compute
F2(µ), let λ be the parent node of µ in T .

If λ = ρ (root node), the edges of G \ E(Gµ) are only ⟨xλ, yλ⟩, ⟨yλ, xλ⟩, so each weight
f⃗2(µ, u, v) can be calculated by replacing µ to λ in the formula for f⃗1(µ, u, v).

From here, we assume that λ ̸= ρ. Then, F2(µ) can be calculated by using Hλ\Refµ∪Refλ
instead of G \ E(Gµ). We set the weights of the edges ⟨xλ, yλ⟩ and ⟨yλ, xλ⟩ of this graph to
f2(λ, xλ, yλ) and f2(λ, yλ, xλ), respectively.

For λ ∈ ST , let Chλ = {λ1, . . . , λk}, µ = λi, xλ = xλ1 , yλj = xλj+1 (1 ≤ j ≤ k− 1), yλk
=

yλ in Skλ. Each weights can be calculated in the same way as f⃗1 for S nodes, for example,

f2(µ, xλi
, yλi

) = σyx
λ [1, i− 1] + f2(λ, xλ, yλ) + σyx

λ [i+ 1, k],

fB
2 (µ, xλi

, yλi
) = f2(µ, xλi

, yλi
) + min

{
min

1≤j≤k,j ̸=i
{βyx

λ [j]}

fB
2 (λ, xλ, yλ) − f2(λ, xλ, yλ)

}
.

The weights F2 for the P and R nodes can be calculated as well as F1.
An example of calculating F2 is shown in Figure 1.

3.3 Definition of the mapping F3 and its computation
▶ Definition 4. We define the mapping F3 : E(T) \ {{ρ, ρ′}} → K as follows: For each
edge E = {µ, λ} ∈ E(T) \ {{ρ, ρ′}} (λ ∈ Chµ), F3(E) = K

f⃗3(E)
µ,λ (a complete graph consists

of at most 4 vertices). The weight of each vertex pair ⟨u, v⟩ ∈ ({xµ, yµ} ∪ {xλ, yλ})2 is
f⃗3(E , u, v) = d⃗(Gµ \ E(Gλ), u, v).

ISAAC 2023

37:10 Shortest Beer Path Queries Based on Graph Decomposition

The F3(E) intuitively represents the distance data when using the part of the T shown in
Figure 4. In the actual F3(E) calculation, we can consider Hµ \ Refλ instead of Gµ \ E(Gλ).
F4 can be calculated by the same idea as the previous mappings. An example of calculating
a part of F3 is shown in Figure 8.

3.4 Definition of the mapping F4 and its computation

▶ Definition 5. We define the mapping F4 :
⋃
µ∈V (T)\QT

(Chµ

2
)

→ K as follows: For each

node µ ∈ V (T) \ QT and each node pair ψ = {λ, λ′} ∈
(Chµ

2
)

of µ, F4(ψ) = K
f⃗4(ψ)
λ,λ′ (a

complete graph consists of at most 4 vertices). The weight of each vertex pair ⟨u, v⟩ ∈
({xλ, yλ} ∪ {xλ′ , yλ′})2 is f⃗4(ψ, u, v) = d⃗(G \ E(Gλ) \ E(Gλ′), u, v).

The F4(ψ) intuitively represents the distance data when using the part of the T shown in
Figure 5. In the actual F4(ψ) calculation, we can consider Hµ \ Refλ \ Refλ′ ∪ Refµ instead
of G \ E(Gλ) \ E(Gλ′). We set the weights of the edges ⟨xµ, yµ⟩, ⟨yµ, xµ⟩ of this graph to
f2(µ, xµ, yµ) , f2(µ, yµ, xµ) respectively. F4 can be calculated by the same idea as the previous
mappings.

If µ ∈ ST ∪ PT , F4(ψ) can be computed in O(1) time by using Range Minimum Query.
Also, the beer distance is obtained from a graph that is a combination of the images of
F1, F2, F3, F4, but the image of F4 appears in at most one element of the combination (see
subsection 4.2 for details). Therefore, it is enough to compute F4 only for the child node
pairs of the R node in the preprocessing. From this it is convenient to consider a mapping
restricting the domain of F4 and we define F4R :

⋃
µ∈RT

(Chµ

2
)

→ K (F4R(ψ) = F4(ψ),
ψ ∈

⋃
µ∈RT

(Chµ

2
)
).

Because of space limitation, we show analyses on computational complexities in Sec-
tion A.3.

4 Algorithm based on triconnected component decomposition

4.1 Definition of binary operations

We define the binary operation ⊕ : K2 → K as follows.

▶ Definition 6. For each H1, H2 ∈ K, H1 ⊕ H2 is defined as follows. If H1 =⊥ or
H2 =⊥, H1 ⊕ H2 =⊥. If H1 ̸=⊥ and H2 ≠⊥, let Hi = Kw⃗i

µi,λi
(i = 1, 2). Also, let

A = ({µ1} ∪ {λ1}) ∩ ({µ2} ∪ {λ2}) be the set of nodes in K that give vertices appearing in
H1, H2 in common. If |A| ̸= 1, H1 ⊕ H2 =⊥. If |A| = 1, let A = {θ}, H1 ⊕ H2 = Kw⃗

θ1,θ2
.

Here, we define θ1, θ2 as follows.

θ1 =


µ1(= λ1) µ1 = θ = λ1

µ1 µ1 ̸= θ = λ1
λ1 µ1 = θ ̸= λ1

, θ2 =


µ2(= λ2) µ2 = θ = λ2

µ2 µ2 ̸= θ = λ2
λ2 µ2 = θ ̸= λ2

.

Also, let H1∪̃H2 be a weighted multi graph with vertex set V (H1) ∪ V (H2), given distinct
edges in H1 and edges in H2, and let z⃗ be the weights defined by

z⃗(e) =
(
z(e)
zB(e)

)
= w⃗i(p, q) (e = ⟨p, q⟩ ∈ E(Hi), i = 1, 2).

T. Hanaka, H. Ono, K. Sadakane, and K. Sugiyama 37:11

𝑥𝜇 𝑦𝜇

𝑥𝜇 𝑦𝜇

𝝁

Figure 2 The subtree considered in F1(µ).

𝝁
𝑥𝜇 𝑦𝜇

𝑥𝜆 𝑦𝜆

𝜆
𝑥𝜇 𝑦𝜇

Figure 3 The subtree considered in F2(µ).

𝜇
𝑥𝜇 𝑦𝜇

𝜆

𝑥𝜆 𝑦𝜆

𝑥𝜆 𝑦𝜆

𝓔

Figure 4 The subtree considered in F3(E).

𝜇
𝑥𝜇 𝑦𝜇

𝜆 𝜆′

𝑥𝜆 𝑦𝜆

𝑥𝜆 𝑦𝜆

𝑥𝜆′ 𝑦𝜆′

𝑥𝜆′
𝑦𝜆′

𝝍

Figure 5 The subtree considered in F4(ψ).

Then, For each ⟨u, v⟩ ∈ ({xθ1 , yθ1} ∪ {xθ2 , yθ2})2, we define w⃗(u, v) as follows.

w(u, v) = d((H1∪̃H2, z), u, v) ,
wB(u, v) = min

e=⟨p,q⟩∈E(H1∪̃H2)
{d((H1∪̃H2, z), u, p) + zB(e) + d((H1∪̃H2, z), q, v)}.

For a concrete example of this operation, see the computation of H ⊕ H ′ in Figure 8.
Furthermore, we define a subset K̂ of K by K̂ = {Kw⃗

µ,λ ∈ K \ {⊥} | λ ∈ Desµ} ∪ {⊥} and
define the binary operation ⊕̂ : K̂2 → K̂ as follows.

▶ Definition 7. For each H1, H2 ∈ K̂, if H1 =⊥ or H2 =⊥, then H1⊕̂H2 =⊥, otherwise, let
Hi = Kw⃗i

µi,λi
, λi ∈ Desµi

(i = 1, 2) then

H1⊕̂H2 =
{

⊥ λ1 ̸= µ2
H1 ⊕H2 λ1 = µ2.

▶ Lemma 8. ⊕̂ is a semigroup.

The proof is given in Section A.1.

4.2 Representation of distance and beer distance using mapping and
algorithms for Beer Path Query

By using F1, F2, F3, F4, F4R and tree product query data structures, we can compute beer
path between given vertices. Recall that r is the maximum edge number of the skeleton of R
nodes in the SPQR tree of G and W is the range of the edge weight function.

ISAAC 2023

37:12 Shortest Beer Path Queries Based on Graph Decomposition

▶ Theorem 9. If we precompute F1, F2 as a data structure, the space required to store the
data structure is O(m). The preprocessing time and query time are
1. O(m+r ·min{m, rn}) and O(n+r ·min{m, rn}+α(m)) if W = Z≥0 and G is undirected.
2. O(m+ r(m+ n log r+)) and O(n+ r(m+ n log r+) + α(m)) if W = R≥0.

▶ Theorem 10. If we precompute F1, F2, F3 as a data structure, the space required to store
the data structure is O(m). The preprocessing time and query time are
1. O(m+ r2 · min{m, rn}) and O(r2 + α(m)) if W = Z≥0 and G is undirected.
2. O(m+ r2(m+ n log r+)) and O(r2 log r+ + α(m)) if W = R≥0.

▶ Theorem 11. If we precompute F1, F2, F3, F4R as a data structure, the space required to
store the data structure is O(m+ r · min{m, rn}). The preprocessing time and query time are
1. O(m+ r3 · min{m, rn}) and O(α(m)) if W = Z≥0 and G is undirected.
2. O(m+ r3(m+ n log r+)) and O(α(m)) if W = R≥0.
Proofs are given in Section A.4

References
1 Joyce Bacic, Saeed Mehrabi, and Michiel Smid. Shortest beer path queries in outerplanar

graphs. Algorithmica, 85(6):1679–1705, 2023.
2 Omer Berkman and Uzi Vishkin. Recursive star-tree parallel data structure. SIAM Journal

on Computing, 22(2):221–242, 1993.
3 Hans L Bodlaender. Treewidth: Algorithmic techniques and results. In Mathematical Founda-

tions of Computer Science 1997: 22nd International Symposium, MFCS’97 Bratislava, Slovakia,
August 25–29, 1997 Proceedings 22, pages 19–36. Springer, 1997.

4 Bernard Chazelle. Computing on a free tree via complexity-preserving mappings. Algorithmica,
2(1-4):337–361, 1987.

5 Rathish Das, Meng He, Eitan Kondratovsky, J. Ian Munro, Anurag Murty Naredla, and Kaiyu
Wu. Shortest Beer Path Queries in Interval Graphs. In Sang Won Bae and Heejin Park,
editors, 33rd International Symposium on Algorithms and Computation (ISAAC 2022), volume
248 of Leibniz International Proceedings in Informatics (LIPIcs), pages 59:1–59:17, Dagstuhl,
Germany, 2022. Schloss Dagstuhl – Leibniz-Zentrum für Informatik.

6 Arash Farzan and Shahin Kamali. Compact navigation and distance oracles for graphs with
small treewidth. Algorithmica, 69(1):92–116, 2014.

7 Michael L Fredman and Robert Endre Tarjan. Fibonacci heaps and their uses in improved
network optimization algorithms. Journal of the ACM (JACM), 34(3):596–615, 1987.

8 Carsten Gutwenger and Petra Mutzel. A linear time implementation of SPQR-trees. In
Joe Marks, editor, Graph Drawing, pages 77–90, Berlin, Heidelberg, 2001. Springer Berlin
Heidelberg.

9 J. E. Hopcroft and R. E. Tarjan. Dividing a graph into triconnected components. SIAM
Journal on Computing, 2(3):135–158, 1973.

10 Manas Jyoti Kashyop, Tsunehiko Nagayama, and Kunihiko Sadakane. Faster algorithms for
shortest path and network flow based on graph decomposition. J. Graph Algorithms Appl.,
23(5):781–813, 2019.

11 Mikkel Thorup. Undirected single-source shortest paths with positive integer weights in linear
time. Journal of the ACM (JACM), 46(3):362–394, 1999.

A Missing Proofs

A.1 Proof of Lemma 8
Proof. We arbitrarily take H1, H2, H3 ∈ K̂, and confirm that H(12)3 := (H1⊕̂H2)⊕̂H3
and H1(23) := H1⊕̂(H2⊕̂H3) are equal. First, if H1 =⊥ or H2 =⊥ or H3 =⊥, clearly
H(12)3 = H1(23) =⊥. In the following, let Hi ≠⊥ and Hi = Kw⃗i

µi,λi
(λi ∈ Desµi

) for each i.

T. Hanaka, H. Ono, K. Sadakane, and K. Sugiyama 37:13

If λ1 ̸= µ2 or λ2 ̸= µ3, then we can easily obtain H(12)3 = H1(23) =⊥. If λ1 = µ2, λ2 = µ3,
let H(12)3 = K

w⃗(12)3
µ1,λ3

, H1(23) = K
w⃗1(23)
µ1,λ3

. Then, we show briefly that w⃗(12)3(u, v) = w⃗1(23)(u, v)
for each u, v ∈ {xµ1 , yµ1} ∪ {xλ3 , yλ3}.

If let H1⊕̂H2 = H12 = Kw⃗12
µ1,µ3

, then from Figure 9 the following holds for each u′ ∈
{xµ1 , yµ1} and v′ ∈ {xµ3 , yµ3}.

w12(u′, v′) = d(H12, u
′, v′) = min

p∈{xµ2 ,yµ2 }
{d(H1, u

′, p) + d(H2, p, v
′)}.

By using this, the following holds for each u ∈ {xµ1 , yµ1} and v ∈ {xλ3 , yλ3}.

w(12)3(u, v) = d
(
H(12)3, u, v

)
= min
q∈{xµ3 ,yµ3 }

{d(H12, u, q) + d(H3, q, v)}

= min
q∈{xµ3 ,yµ3 }

{
min

p∈{xµ2 ,yµ2 }
{d(H1, u, p) + d(H2, p, q)} + d(H3, q, v)

}
= min
p∈{xµ2 ,yµ2 },q∈{xµ3 ,yµ3 }

{d(H1, u, p) + d(H2, p, q) + d(H3, q, v)}.

By the same idea, exactly the same result is obtained for w1(23)(u, v). We can show
w(12)3(u, v) = w1(23)(u, v) and wB

(12)3(u, v) = wB
1(23)(u, v) for the other weights in the same

way. ◀

A.2 Preprocessing algorithms

A.2.1 Algorithm for preprocessing F1, F2

We consider an algorithm that preprocesses F1, F2. For this algorithm, the preprocessing
space is Cspace

1 + Cspace
2 = O(m) and the preprocessing time is

Ctime
1 + Ctime

2 =
{
O(m+ r · min{m, rn}) W = Z≥0
O(m+ r(m+ n log r+)) W = R≥0.

Beer Path Query can be solved by computing O(n) images of F3 and one image of F4 on Π
and combine them using Tree Product Query. Thus, query time is

O
(∑

µ∈ST ∪PT
1 +

∑
µ∈RT

mµALG (Hµ) +mπALG (Hπ) + α(m)
)

=
{
O(n+ r · min{m, rn} + α(m)) W = Z≥0
O(n+ r(m+ n log r+) + α(m)) W = R≥0.

A.2.2 Algorithm for preprocessing F1, F2, F3

We consider an algorithm that preprocesses F1, F2, F3. For this algorithm, the preprocessing
space is Cspace

1 + Cspace
2 + Cspace

3 = O(m) and the preprocessing time is

Ctime
1 + Ctime

2 + Ctime
3 =

{
O(m+ r2 · min{m, rn}) W = Z≥0
O(m+ r2(m+ n log r+)) W = R≥0.

Beer Path Query can be solved by computing one image of F4 and combine images of F3 on
Π and F4 using Tree Product Query. Thus, query time is

O(mπALG (Hπ) + α(m)) =
{

O(r2 + α(m)) W = Z≥0
O(r2 log r+ + α(m)) W = R≥0.

ISAAC 2023

37:14 Shortest Beer Path Queries Based on Graph Decomposition

A.2.3 Algorithm for preprocessing F1, F2, F3, F4R

We consider an algorithm that preprocesses F1, F2, F3, F4R. For this algorithm, the pre-
processing space is Cspace

1 + Cspace
2 + Cspace

3 + Cspace
4R = O(m + r · min{m, rn}) and the

preprocessing time is

Ctime
1 + Ctime

2 + Ctime
3 + Ctime

4R =
{
O(m+ r3 · min{m, rn}) W = Z≥0
O(m+ r3(m+ n log r+)) W = R≥0.

Beer Path Query can be solved by combining images of F3 and F4 on Π using Tree Product
Query. Thus, query time is O(α(m)).

A.3 Computational complexity for each mapping
In this subsection, we analyze the computational complexity for each mapping. Let Ctime

i

and Cspace
i be the time required to compute each Fi and the space to store, respectively.

A.3.1 Computational complexity for F1

First, we consider Cspace
1 . For each µ ∈ V (T) \ {ρ}, F1(µ) is a graph of constant size. Also,

each µ ∈ ST ∪ PT uses O(mµ) space in the preprocessing for Range Minimum Query and so
on. Thus, Cspace

1 = O
(∑

µ∈QT ∪RT
1 +

∑
µ∈ST ∪PT

mµ

)
= O(m). Next, we consider Ctime

1 .
If µ ∈ QT \ {ρ}, F1(µ) can be computed in O(1) time. If µ ∈ ST ∪ PT , preprocessing and
F1(µ) calculation can be done in O(mµ) time. Also, if µ ∈ RT , F1(µ) can be obtained by
running the shortest path algorithm for Hµ for O(mµ) times, so it can be computed in
O (mµALG (Hµ)) time. Thus, noting the definition of r, Ctime

1 is as follows:

Ctime
1 = O

(∑
µ∈QT

1 +
∑
µ∈ST ∪PT

mµ +
∑
µ∈RT

mµALG (Hµ)
)

= O
(
m+m+ r

∑
µ∈RT

ALG (Hµ)
)

=
{
O(m+ r · min{m, rn}) W = Z≥0
O(m+ r(m+ n log r+)) W = R≥0

.

A.3.2 Computational complexity for F2

First, Cspace
2 can be similarly considered to Cspace

1 , Cspace
2 =

∑
µ∈V (T)\{ρ} O(1) = O(m).

Next, we consider Ctime
2 . Let λ be the parent node of µ in T . If λ ∈ {ρ} ∪ ST ∪ PT , F2(µ)

can be computed in O(1) time by using Range Minimum Query. Also, if λ ∈ RT , F2(µ) can
be obtained by running the shortest path algorithm for Hλ \ Refµ ∪ Refλ for O(mλ) times,
so it can be computed in O (mλALG (Hλ)) time. Thus, Ctime

2 can be evaluated as follows:

Ctime
2 = O

(∑
λ∈{ρ}∪ST ∪PT

1 +
∑
λ∈RT

mλALG (Hλ)
)

= O
(
n+ r

∑
λ∈RT

ALG (Hλ)
)

=
{
O(n+ r · min{m, rn}) W = Z≥0,

O(n+ r(m+ n log r+)) W = R≥0.

A.3.3 Computational complexity for F3

First, we consider Cspace
3 . In F3, a graph of a constant size is prepared for each edge

of E(T) \ {{ρ, ρ′}}, so Cspace
3 = O(|E(T)|) = O(m). Next, we consider Ctime

3 . For each
E = {µ, λ} ∈ E(T) \ {{ρ, ρ′}} (λ ∈ Chµ), if µ ∈ ST ∪ PT then F3(E) can be computed
in O(1) time by using Range Minimum Query. If µ ∈ RT then F3(E) can be obtained by
running the shortest path algorithm for Hµ \ Refλ for O(mλ) times, so it can be computed
in O (mλALG (Hλ)) time. Thus, Ctime

3 can be evaluated as follows.

T. Hanaka, H. Ono, K. Sadakane, and K. Sugiyama 37:15

Ctime
3 = O

(∑
µ∈ST ∪PT

∑
λ∈Chµ

1 +
∑
µ∈RT

∑
λ∈Chµ

mµALG (Hµ)
)

= O
(
m+ r2∑

µ∈RT
ALG (Hµ)

)
=
{
O(m+ r2 · min{m, rn}) W = Z≥0,

O(m+ r2(m+ n log r+)) W = R≥0.

A.3.4 Computational complexity for F4

If F4 is realized as a data structure, it is not efficient because it requires computation and
space even for images that can be computed in O(1) time, as described in Subsection 3.4.
Therefore, we consider the computational complexity of realizing F4R as a data structure
instead of F4 itself.

First, the space for F4R is Cspace
4R =

∑
µ∈RT

O
(
m2
µ

)
= O(r · min{m, rn}). Next, we

consider the preprocessing time of F4R, Cspace
4R . For each µ ∈ RT and each node pair

ψ = {λ, λ′} ∈
(Chµ

2
)
, F4R(ψ) = F4(ψ) can be obtained by running the shortest path algorithm

for Hµ \ Refλ \ Refλ′ ∪ Refµ for O(mµ) times, so it can be computed in O (mµALG (Hµ))
time. Thus, Ctime

4R is as follows:

Ctime
4R = O

(∑
µ∈RT

∑
ψ∈(Chµ

2)mµALG (Hµ)
)

= O
(∑

µ∈RT
m3
µALG (Hµ)

)
= O

(
r3∑

µ∈RT
ALG (Hµ)

)
=
{
O(r3 · min{m, rn}) W = Z≥0,

O(r3(m+ n log r+)) W = R≥0.

A.4 Proofs for the algorithms
In the following, we describe an outline of the algorithm corresponding to each of the above
theorems.

First, we describe the representation of distances and beer distances using each mapping
Fi and binary operations. We also show several algorithms for Beer Path Query based on
them. We consider computing the distance or beer distance from s to t in a biconnected
connected graph G. First, let θ ∈ QT \ {ρ} be a Q node whose skeleton contains vertex s,
and let {xθ, yθ} = {s, s′}. Similarly, take a node θ′ ∈ QT \ {ρ} whose skeleton contains a
vertex t and let {xθ′ , yθ′} = {t, t′}.

If θ = θ′, then we combine F1(θ) which contains data on the distance and the beer distance
in Gθ, and F2(θ) which contains data in G \ E(Gθ). The combined result is represented by
F1(θ) ⊕ F2(θ), and the distance and beer distance are obtained by referring to the weights of
the vertex pair ⟨s, t⟩ in F1(θ) ⊕ F2(θ).

If θ ̸= θ′, let π be the lowest common ancestor of θ and θ′ in T and denote the θ-θ′

path in T by the vertex sequence Π: θ = µk, µk−1, . . . , µ2, µ1, π, λ1, λ2, . . . , λℓ−1, λℓ = θ′.
F1(θ) = F1(µk) contains the data of the distance and the beer distance of each pair of {s, s′} =
{xµk

, yµk
} in Gµk

. Also, F3({µk−1, µk}) contains the data of each pair of {xµk−1 , yµk−1} ∪
{xµk

, yµk
} in Gµk−1 \ E(Gµk

). Therefore, by combining F1(µk) and F3({µk−1, µk}), we can
obtain the data of each pair of {xµk−1 , yµk−1} ∪ {s, s′} in Gµk−1 . And the combined result
can be expressed as F1(µk) ⊕ F3({µk−1, µk}).

By applying this idea repeatedly, we can obtain the data of each pair of {xµ1 , yµ1}∪{s, s′}
in Gµ1 by computing

F1(µk) ⊕ (F3({µ1, µ2}) ⊕ · · · ⊕ F3({µk−1, µk})) = F1(µk) ⊕
(
⊕k−1
i=1 F3({µi, µi+1})

)
.

ISAAC 2023

37:16 Shortest Beer Path Queries Based on Graph Decomposition

Similarly, by computing

(F3({λ1, λ2}) ⊕ · · · ⊕ F3({λℓ−1, λℓ})) ⊕ F1(λℓ) =
(
⊕ℓ−1
j=1F3({λj , λj+1})

)
⊕ F1(λℓ),

we can obtain the data of each pair of {xλ1 , yλ1} ∪ {t, t′} in Gλ1 .
Furthermore, F4({µ1, λ1}) contains the data of each pair of {xµ1 , yµ1} ∪ {xλ1 , yλ1} in

G\E(Gµ1)\E(Gλ1). Therefore, by combining this and the results of the above two operations,
we can obtain the data of each pair of {s, s′} ∪ {t, t′} in G. And the combined result can be
expressed as

K
w⃗s,t

θ,θ′ = F1(µk) ⊕
(
⊕k−1
i=1 F3({µi, µi+1})

)
⊕F4({µ1, λ1}) ⊕

(
⊕ℓ−1
j=1F3({λj , λj+1})

)
⊕F1(λℓ).

Then, we obtain the distance and the beer distance by d(G, s, t) = ws,t(s, t),dB(G, s, t) =
wB
s,t(s, t).

Here, the computation of Kw⃗s,t

θ,θ′ can be written

K
w⃗s,t

θ,θ′ = F1(µk) ⊕
(

⊕̂k−1
i=1 F3({µi, µi+1})

)
⊕F4({µ1, λ1}) ⊕

(
⊕̂ℓ−1
j=1F3({λj , λj+1})

)
⊕F1(λℓ)

by using the semigroup ⊕̂. Therefore, if we preprocess T for Tree Product Query regarding
⊕̂, we can compute Kw⃗s,t

θ,θ′ for the ⊕, ⊕̂ operation in O(α(|V (T)|)) = O(α(m)) time.

B Algorithm based on tree decomposition

In this section, we describe algorithms based on tree decomposition. For a graph G with
n vertices and m edges, denote its treewidth by t := tw(G). Also, let T be a rooted tree
decomposition of G with width t and O(tn) nodes. Then, the following theorem holds.

▶ Theorem 12.
1. When we construct a data structure in O(t3n) space with preprocessing using O(t8n) time,

we can answer a query in O(t8n+ α(tn)) time.
2. When we construct a data structure in O(t3n) space with preprocessing using O(t8n) time,

we can answer a query in O(t7 + α(tn)) time.
3. When we construct a data structure in O(t5n) space with preprocessing using O(t10n)

time, we can answer a query in O(t6 + α(tn)) time.

In the following, we describe an outline of the proof of the above theorems. For each
node µ in T , let Xµ be the vertex subset of G that µ has, and let Sµ = Xµ ∪

⋃
λ∈Desµ

Xλ.
Furthermore, let Aµ be a vertex in Xµ if µ is a root node, and if µ is not the root node,
Aµ = Xµ ∩ Xλ where µ ∈ Chλ (Aµ corresponds to the endpoint set of Refµ in the SPQR
tree). Then, we define the following symbols as well as the mapping to the SPQR tree:

f⃗1(µ, u, v) := d⃗(G[Sµ], u, v) (µ ∈ V (T), u, v ∈ Aµ),

f⃗2(µ, u, v) := d⃗(G \ E(G[Sµ]), u, v) (µ ∈ V (T), u, v ∈ Aµ),

f⃗3({µ, λ}, u, v) := d⃗(G[Sµ] \ E(G[Sλ]), u, v) ((µ, λ) ∈ E(T), λ ∈ Chµ, u, v ∈ Aµ ∪Aλ),

f⃗4({λ, λ′}, u, v) := d⃗(G \ E(G[Sλ]) \ E(G[Sλ′]), u, v)
({λ, λ′} ∈

(Chµ

2
)
, µ ∈ V (T), u, v ∈ Aλ ∪A′

λ).

We can calculate f⃗1 as follows: If µ is a leaf of T , then f1(µ, u, v) = d(G[Xµ], u, v) and

fB
1 (µ, u, v) =

{
minp∈B∩Xµ{d(G[Xµ], u, p) + d(G[Xµ], p, v)} B ∩Xµ ̸= ∅

∞ B ∩Xµ = ∅.

T. Hanaka, H. Ono, K. Sadakane, and K. Sugiyama 37:17

If µ is not leaves, then

f1(µ, u, v) = min
{

d(G[Xµ], u, v)
minλ∈Chµ

p,q∈Aλ

{d(G[Xµ], u, p) + f1(λ, p, q) + d(G[Xµ], q, v)}

}
,

fB
1 (µ, u, v) =

{
min

{
ℓu,v,minp∈B∩Xµ

{d(G[Xµ], u, p) + d(G[Xµ], p, v)}
}

B ∩Xµ ̸= ∅
ℓu,v B ∩Xµ = ∅,

where ℓu,v = minλ∈Chµ,p,q∈Aλ
{d(G[Xµ], u, p) + fB

1 (λ, p, q) + d(G[Xµ], q, v)}. f⃗2, f⃗3, f⃗4 can be
calculated using the same idea.

For each µ ∈ V (T), |Xµ| = O(t), |E(G[Xµ])| = O(t2), so ALG (G[Xµ]) = O(t2) is
obtained regardless of how we take the range W of the weights. Noting this, the space Cspace

i

and computation time Ctime
i required for each f⃗i can be evaluated as follows:

Cspace
1 , Cspace

2 =
∑

µ∈V (T)

O
(
|Aµ|2

)
= O(t2|V (T)|) = O(t3n),

Cspace
3 =

∑
E∈E(T)

O(t2) = O(t2|E(T)|) = O(t3n),

Cspace
4 =

∑
µ∈V (T)

∑
ψ∈(Chµ

2)
O(t2) = O(t4|V (T)|) = O(t5n),

Ctime
1 , Ctime

2 =
∑

µ∈V (T)

∑
u,v∈Aµ

∑
λ∈Chµ

∑
p,q∈Aλ

O (ALG (G[Xµ])) = O(t7|V (T)|) = O(t8n),

Ctime
3 =

∑
(µ,λ)∈E(T)

∑
u,v∈Aµ∪Aλ

∑
θ∈Chµ\{λ}

∑
p,q∈Aθ

O(t2) = O(t7|E(T)|) = O(t8n),

Ctime
4 =

∑
µ∈V (T)

∑
{λ,λ′}∈(Chµ

2)

∑
u,v∈Aλ∪Aλ′

∑
θ∈Chλ,λ′ \{λ}

∑
p,q∈Aθ

O(t2) = O(t9|V (T)|) = O(t10n).

Then, we consider the computational complexity of queries when these are precomputed.
First, if f⃗1, f⃗2 are precomputed, the query can be solved in O(t7|V (T)| + α(|V (T)|) + t6) =
O(t8n + α(tn)) time. Next, if f⃗1, f⃗2, f⃗3 are precomputed, the query can be solved in
O(t7 + α(|V (T)|) + t6) = O(t7 + α(tn)) time. Finally, if f⃗1, f⃗2, f⃗3, f⃗4 are precomputed, the
query can be solved in O(α(tn) + t6) time.

Here, the t6 term appearing in each computational time is the time required to perform
O(1) times operation (⊕) to integrate the data structure without using Tree Product Query
(for ⊕̂). Of course, the t6 term could be replaced by α(tn) if a better semigroup could be
defined.

These computation complexity shows that the degree of t in each result is larger than that
of r in the case of triconnected component decomposition (SPQR tree). The dominant factor
of this is that u, v in each f⃗i(·, u, v) can be taken in O(t2) ways in the tree decomposition,
whereas O(1) ways in triconnected component decomposition.

C Algorithm for connected graphs

In this section, we consider the algorithm for solving Beer Path Query for connected graphs.
For a given connected graph G = (V,E) with n vertices and m edges, let C ⊆ V be the set
of cut vertices, R be the size of the largest the size of the largest triconnected component
among all biconnected connected components, and R+ = max{1, R}. The following theorem
holds.

ISAAC 2023

37:18 Shortest Beer Path Queries Based on Graph Decomposition

▶ Theorem 13. When we construct a data structure in O(m + nR2
+ + |C|2) space with

preprocessing using O((m+ n logR+)R3
+ + (n+ |C|2)|C|α(m)) time, we can answer a query

in O(α(|C|)) time.

In the following, we describe an outline of the proof of the above theorems. First, we
compute the set C and the set of biconnected components H by using biconnected component
decomposition in O(n+m) time. Then, we arbitrarily take ρ ∈ H, define T by V (T) = H
and {H,H ′} ∈ E(T) ⇐⇒ V (H) ∩ V (H ′) ̸= ∅, and make a tree T with ρ as the root. Let
GH be the subgraph of G induced by the vertices that appear in the subtree of T with H as
a root. Also, let cρ be a specific vertex in V (ρ), and for each H ∈ H, let cH be the only cut
vertex that H and its parent in T have in common.

Next, we define the following symbols as well as the mapping to the SPQR tree:

f1(H) := dB(GH , cH , cH) (H ∈ H),
f2(H, c, c′) := dB(G, c, c′) (H ∈ H, c, c′ ∈ C ∩ V (H)),
f3(H, v) := dB(GH , v, cH) (H ∈ H, v ∈ V (H)),
f4(H, v) := dB(GH , cH , v) (H ∈ H, v ∈ V (H)).

We can calculate f1 from the leaves to the root by the following formula:

f1(H) = min
{

dB(H, cH , cH)
minI∈ChH

{d(H, cH , cI) + f1(I) + d(H, cI , cH)}

}
.

Note that when H is a leaf, we do not consider the second line on the right side of this
equation. Similarly, for equations appearing below, we do not consider any undefined part of
the equation if it occurs. Also, let J be the parent of H if it exists, we can calculate f2 from
the root to the leaves by the following formula:

f2(H, c, c′) = min


dB(H, c, c′)

minI∈ChH
{d(H, c, cI) + f1(I) + d(H, cI , c′)}

d(H, c, cH) + f2(J, cH , cH) + d(H, cH , c′)

 .

Furthermore, we can calculate f3 by the following formula:

f3(H, v) = min
{

dB(H, v, cH)
minI∈ChH

{d(H, v, cI) + f2(H, cI , cH)}

}
.

f4 can be computed as well as f3.
Using the above symbols, we represent the distance between two given vertices s,t and

the beer distance. First, we choose a biconnected component that contains the vertices s
and t, respectively, and denote it by Hs and Ht.

If Hs = Ht = H, the distance and the beer distance can be computed as follow:

d(G, s, t) = d(H, s, t) , dB(G, s, t) = min


dB(H, s, t)

minI∈ChH
{d(H, s, cI) + f1(I) + d(H, cI , t)}

d(H, s, cH) + f2(H, cH , cH) + d(H, cH , t)

 .

If Hs ≠ Ht, let Ha be the lowest common ancestor of Hs and Ht in T and denote the
Hs-Ht path in T by the sequence Hs = I1, I2, . . . , Ik−1, Ik, Ha, J1, J2, . . . , Jℓ−1, Jℓ = Ht.

T. Hanaka, H. Ono, K. Sadakane, and K. Sugiyama 37:19

Then, the distance and the beer distance can be computed as follow:

d(G, s, t) = d(I1, s, cI1) +
∑

2≤p≤k d
(
Ip, cIp−1 , cIp

)
+ d(Ha, cIk

, cJ1) +
∑

1≤q≤ℓ−1 d
(
Jq, cJq

, cJq+1

)
+ d(Jℓ, cJℓ

, t) ,

dB(G, s, t) = d(G, u, v) + min


f3(H, s) − d(I1, s, cI1)

min2≤p≤k
{
f2(Ip, cIp−1 , cIp) − d

(
Ip, cIp−1 , cIp

)}
f2(Ha, cIk−1 , cJ2) − d

(
Ha, cIk−1 , cJ2

)
min1≤q≤ℓ−1

{
f2(Jq, cJq , cJq+1) − d

(
Jq, cJq , cJq+1

)}
f4(H, t) − d(Jℓ, cJℓ

, t)

 .

From here, we analyze the computation complexity. Note that we assume that each biconnec-
ted graph H ∈ H has been preprocessed in O(m+nR2) space and O((m+n logR+)R3

+) time
so that any distance and any beer distance can be computed in O(α(|E(H)|)) = O(α(m))
time. Also, let degT (H) be the degree of H in T , the space Cspace

i to store fi and the time
Ctime
i required to compute fi can be evaluated as follows:

Cspace
1 = O(|C|), Cspace

2 =
∑
H∈H

O(degT (H)2) = O(|C|2),

Cspace
3 , Cspace

4 =
∑
H∈H

O

 ∑
v∈V (H)\C

1 +
∑

v∈V (H)∩C

1

 = O((n− |C|) + 2|C|) = O(n),

Ctime
1 =

∑
H∈H

O(α(m)|ChH |) = O

(
α(m)

∑
H∈H

degT (H)

)
= O(α(m)|C|),

Ctime
2 =

∑
H∈H

∑
c,c′∈C∩V (H)

O(α(m)|ChH |) = O

(
α(m)

∑
H∈H

degT (H)3

)
= O(α(m)|C|3),

Ctime
3 , Ctime

4 =
∑
H∈H

∑
v∈V (H)

O(α(m)|ChH |) =
∑
v∈V

O

(
α(m)

∑
H∈H

|ChH |

)
= O(α(m)|C|n).

Therefore, we can perform all preprocessing in O((m+ n logR+)R3
+ + (n+ |C|2)|C|α(m))

time and store it in O(m+ nR2
+ + |C|2) space. Furthermore, By using Tree Product Query

and Lange Minimum Query, the query can be solved in O(α(|V (T)|)) = O(α(|C|)) time.

D Figures

1

5

2 43

6 7

1

5

2

6

1

3

6

1

4

6 7 5

2

6

2

6

1

2 43

6 7

𝐺

𝐻1 𝐻2

𝐻3𝐺1 𝐺2 𝐺3

SplCom𝐺 2,6SplCom𝐺 1,6

Figure 6 An graph G and its two sets of split components.

ISAAC 2023

37:20 Shortest Beer Path Queries Based on Graph Decomposition

𝑥𝜇 = 𝑥𝜇1
𝑦𝜇1 = 𝑥𝜇2

𝑦𝜇𝑗

𝑦𝜇𝑗−1 = 𝑥𝜇𝑗

𝑦𝜇𝑘−1 = 𝑥𝜇𝑘
𝑦𝜇𝑘 = 𝑦𝜇

𝐹1 𝜇1 𝐹1 𝜇𝑖 𝐹1 𝜇𝑘

Ref𝜇

𝐹1 𝜇𝑗

𝑥𝜇𝑖
𝑦𝜇𝑖 = 𝑥𝜇𝑖+1

𝜎𝜇
xy
𝑖, 𝑗

𝜎𝜇
yx
𝑖, 𝑗

𝜇 ∈ 𝑆𝒯

𝜇1 𝜇2 𝜇𝑘

Ch𝜇

⋯

Sk𝜇

Figure 7 Notation for skeleton of S node.

𝝁𝟒 = 𝜽

𝝅 = 𝝆′

𝑥𝜇 𝑦𝜇

𝜇

8

5

3

1
3 14

80 4

5 81

∞∞ ∞

Notation of each node 𝜇 ∉ 𝑄𝒯

Sk𝜇Π

𝑥𝜆 𝑦𝜆

𝐹2 𝜇

●

●

●●

𝐹1 𝜆 𝜆 ∈ Ch𝜇

● ●●
●

4

7

∞

∞
5

∞

∞
∞

6

∞

5

8
6

∞
∞

∞

1

7 8
7

2∞
∞

∞

30

24

2720

5

4

6

1

2

7

3
8

6
3

10

∞ ∞ ∞

∞ ∞ ∞

∞
∞
∞

10

13
8

12
10

1

2

∞
∞
∞

3 102430

32

22

30

8

12

1

3

2

4
3

6

28

25

22

8
4

0

6
12

0
1

3

2

6

∞

0

6

12

12
∞∞

3

∞

𝐹3 𝜇3,𝜇4

𝐹3 𝜇2,𝜇3

∞

11

𝐹3 𝜇1,𝜇2

12

54
∞∞

∞

∞∞6

8

5

4

127

8

16

13

10

12

9
6

𝐻′ ≔ 𝐹4 𝜆1,𝜇1𝝁𝟏

𝝁𝟐

𝝁𝟑

𝝀𝟏 = 𝜽′

18

11

9
9

𝐻

1
3

5
4 4024

0

32

29
12 20

21 209
20

12

18

11
9

9

1

3
5

4

0

29

12

20

21
20

912

8

127

8

16

13

10

12

9
6

16

12

27
11

𝐻⊕𝐻′

51

83 80

18

18

129
1519

1819
18

9

10

10

19
11

𝐾
𝜃,𝜃′
𝑤𝑠,𝑡

51

83 80

8

16

14
1815

1215
16

4

𝐹1 𝜃′

𝐹1 𝜃

𝑠 = 1
𝑡 = 8

Figure 8 F3, F4 on Π and calculation of the beer distance between s = 1 and t = 8.

𝑥𝜇1 𝑦𝜇1

𝑥𝜇2 𝑦𝜇2

𝑥𝜇3 𝑦𝜇3

𝑥𝜆3 𝑦𝜆3

𝐻1

𝐻2

𝐻3

𝑥𝜇1 𝑦𝜇1

𝑥𝜇3 𝑦𝜇3

𝑥𝜆3 𝑦𝜆3

𝐻12

𝐻3

𝑥𝜇1 𝑦𝜇1

𝑥𝜆3 𝑦𝜆3

𝐻 12 3

𝜇1

𝜆1 = 𝜇2

𝜆2 = 𝜇3

𝜆3

Figure 9 Calculation of H(12)3 in the case of λ1 = µ2 and λ2 = µ3.

	1 Introduction
	1.1 Related Work
	1.2 Our Contribution

	2 Preliminaries
	2.1 Shortest Path Problem and Beer Path Problem / Query
	2.2 SPQR tree
	2.3 Query Problems

	3 Triconnected component decomposition-based indexing
	3.1 Definition of the mapping F_1 and its computation
	3.2 Definition of the mapping F_2 and its computation
	3.3 Definition of the mapping F_3 and its computation
	3.4 Definition of the mapping F_4 and its computation

	4 Algorithm based on triconnected component decomposition
	4.1 Definition of binary operations
	4.2 Representation of distance and beer distance using mapping and algorithms for Beer Path Query

	A Missing Proofs
	A.1 Proof of Lemma 8
	A.2 Preprocessing algorithms
	A.2.1 Algorithm for preprocessing F_1,F_2
	A.2.2 Algorithm for preprocessing F_1,F_2,F_3
	A.2.3 Algorithm for preprocessing F_1,F_2,F_3,F_{4R}

	A.3 Computational complexity for each mapping
	A.3.1 Computational complexity for F_1
	A.3.2 Computational complexity for F_2
	A.3.3 Computational complexity for F_3
	A.3.4 Computational complexity for F_4

	A.4 Proofs for the algorithms

	B Algorithm based on tree decomposition
	C Algorithm for connected graphs
	D Figures

