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Abstract
Several classical combinatorial problems have been considered and analysed on temporal graphs.
Recently, a variant of Vertex Cover on temporal graphs, called MinTimelineCover, has been
introduced to summarize timeline activities in social networks. The problem asks to cover every
temporal edge while minimizing the total span of the vertices (where the span of a vertex is the
length of the timestamp interval it must remain active in). While the problem has been shown to be
NP-hard even in very restricted cases, its parameterized complexity has not been fully understood.
The problem is known to be in FPT under the span parameter only for graphs with two timestamps,
but the parameterized complexity for the general case is open. We settle this open problem by giving
an FPT algorithm that is based on a combination of iterative compression and a reduction to the
Digraph Pair Cut problem, a powerful problem that has received significant attention recently.
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1 Introduction

Temporal graphs are emerging as one of the main models to describe the dynamics of complex
networks. They describe how relations (edges) change in a discrete time domain [12, 11],
while the vertex set is not changing. The development of algorithms on temporal graphs has
mostly focused on finding paths or walks and on analyzing graph connectivity [12, 20, 21, 7,
22, 8, 3, 17, 1, 5]. However, several classical problems in computer science have been recently
extended to temporal graphs and one of the most relevant problems in graph theory and
theoretical computer science, Vertex Cover, has been considered in this context [2, 10, 19].

In particular, here we study a variant of Vertex Cover, called Network Untangling,
introduced in [19]. Network Untangling has applications in discovering event timelines
and summarizing temporal networks. It considers a sequence of temporal interactions between
entities (e.g. discussions between users in a social network) and aims to explain the observed
interactions with few (and short) activity intervals of entities, such that each interaction is
covered by at least one of the two entities involved (i.e. at least one of the two entities is
active when an interaction between them is observed).

Network Untangling can be seen as a variant of Vertex Cover, where we search
for a minimum cover of the interactions, called temporal edges. The size of this temporal
vertex cover is based on the definition of span of a vertex, that is the length of vertex activity.
In particular, the span of a vertex is defined as the difference between the maximum and
minimum timestamp where the vertex is active. Hence, if a vertex is active in exactly one
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12:2 An FPT Algorithm for Temporal Graph Untangling

timestamp, it has a span equal to 0. This models the idea that each vertex is present in the
network because we know that they interacted at least once, but that sustained periods of
interaction are relatively rare.

Four combinatorial formulations of Network Untangling have been defined in [19],
varying the definition of vertex activity (a single interval or h ≥ 2 intervals) and the objective
function (minimization of the sum of vertex spans or minimization of the maximum vertex
span). Here we consider the formulation, denoted by MinTimelineCover, where vertex
activity is defined as a single interval and the objective function is the minimization of the
sum of vertex spans. Hence, given a temporal graph, MinTimelineCover asks for a cover
of the temporal edges that has minimum span and such that each vertex is active in one
time interval.

We focus on this specific problem, since it is not known to be FPT or not, while the variant
of the problem where vertex activity is defined as two intervals is known to be NP-hard
when the span is equal to 0 [9]. Hence it is unlikely that this problem variant admits an
FPT algorithm for parameter the span. The MinTimelineCover problem is known to be
NP-hard also in very restricted cases, when each timestamp contains at most one temporal
edge [4], when each vertex has at most two incident temporal edges in each timestamp and the
temporal graph is defined over three timestamps [4], and when the temporal graph is defined
over two timestamps [9]. MinTimelineCover is also known to be approximable within
factor O(T log n), where n is the number of vertices and T is the number of timestamps of the
temporal graph [6]. Note that, since the span of a vertex activity in exactly one timestamp
is equal to 0, MinTimelineCover is trivially in P when the temporal graph is defined on a
single timestamp, since in this case any solution of the problem has span 0. Furthermore,
deciding whether there exists a solution of MinTimelineCover that has span equal to 0
can be decided in polynomial time via a reduction to 2-SAT [19].

MinTimelineCover has been considered also in the parameterized complexity framework.
The definition of span leads to a problem where the algorithmic approaches applied to Vertex
Cover cannot be easily extended for the parameter span of the solution. Indeed, in Vertex
Cover for each edge we are sure that at least one of the endpoints must be included in
the solution, thus at least one of the vertices contributes to the cost of the solution. This
leads to the textbook FPT algorithm of branching over the endpoints of any edge. For
MinTimelineCover, a vertex with span 0 may cover a temporal edge, as the vertex can
be active only in the timestamp where the temporal edge is defined. This makes it more
challenging to design FPT algorithms when the parameter is the span of the solution. In this
case, MinTimelineCover is known to admit a parameterized algorithm only when the input
temporal graph is defined over two timestamps [9], with a parameterized reduction to the
Almost 2-SAT problem. However, the parameterized complexity of MinTimelineCover
for the span parameter on general instances has been left open [9, 4]. The authors of [9]
have also analyzed the parameterized complexity of the variants of Network Untangling
proposed in [19], considering other parameters in addition to the span of the solution: the
number of vertices of the temporal graph, the length of the time domain, and the number of
intervals of vertex activity.

Our contributions. We solve the open question on the parameterized complexity of Min-
TimelineCover by showing that the problem is FPT in parameter k, the span of a solution,
even if the number of timestamps is unbounded. Our algorithm takes time O∗(25k log k),
where the O∗ notation hides polynomial factors. Our algorithm is divided into two phases,
each using a different technique. First, given a temporal graph G, we use a variant of
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iterative compression, where we start from a solution S of span at most k on a subgraph of G

induced by a subset of vertices (taken across all timestamps), and then try to maintain such
a solution after adding a new vertex of G to the graph under consideration. This requires
us to reorganize which vertices involved in S should be in the solution or not, and in which
timestamps. One challenge is that since the number of such timestamps is unbounded, there
are too many ways to choose how to include or not include the vertices that are involved
in S. We introduce the notion of a feasible assignment, which allows us to compute how
the vertices in S can be reorganized (see Def. 8 for the formal definition). There are only
2O(k log k) ways of reorganizing the vertices in S. We try each such feasible assignments X,
and we must then find a temporal cover of the whole graph G that “agrees” with X.

This leads to the second phase of the algorithm, which decides if such an agreement cover
exists through a reduction to a variant of a problem called Digraph Pair Cut. In this
problem, we receive a directed graph and forbidden pairs of vertices, and we must delete at
most k arcs so that a specified source vertex does not reach both vertices from a forbidden
pair. It is known that the problem can be solved in time O∗(2k). In this work, we need
a version where the input specifies a set of deletable and undeletable arcs, which we call
Constrained Digraph Pair Cut. The Digraph Pair Cut problem and its variants
have played an important role in devising randomized kernels using matroids [16] and, more
recently, in establishing a dichotomy in the complexity landscape of constraint satisfaction
problems [13, 15]. Here, the problem is useful since it can model the implications of including
a vertex in the solution or not and, in a more challenging way, allows implementing the
notion of cost using our definition of span. We hope that the techniques developed for this
reduction can be useful for other variants of temporal graph cover.

Overview of the algorithm. Our approach is loosely inspired by some ideas from the FPT
algorithm for two timestamps, which is a reduction to Almost 2-SAT [9]. In the latter, one
is given a set of clauses with at most two variables each and must delete a minimum number
of clauses so that those remaining are satisfiable. We do not use Almost 2-SAT directly,
but its usage for two timestamps may help understand the origins of our techniques and the
relevance of our reduction to Digraph Pair Cut.

The reduction from MinTimelineCover on two timestamps to Almost 2-SAT asso-
ciates each vertex vi with a variable x(vi), which is true when one should include vi in a
temporal cover and false otherwise; each edge uivi is associated with a clause x(ui) ∨ x(vi)
(here, vi represents the occurrence of vertex v at timestamp i ∈ {1, 2}). This corresponds to
enforcing the inclusion of ui or vi in our vertex cover, and we can include enough copies of
this clause to make it undeletable. Since our goal is to minimize the number of base vertices
v with both v1 and v2 in the cover, we also add a clause ¬x(v1) ∨ ¬x(v2). Then there is a
temporal cover of G of span at most k if and only if one can delete at most k clauses of the
latter form to make all remaining clauses satisfiable.

For T ≥ 3 timestamps, the clauses of the form x(ui) ∨ x(vi) can still be used to model
the vertex cover requirements, but there seems to be no obvious way to model the span of a
cover. One would need to devise a set of clauses of size two such that choosing an interval of
t vertices in a cover corresponds to deleting t − 1 negative clauses. Our idea is to extend
current FPT algorithms for Almost 2-SAT to accommodate our cost function. In [18],
the authors propose an iterative compression FPT algorithm that starts from a solution
that deletes k + 1 clauses, and modifies it into a solution with k clauses, if possible. The
algorithm relies on several clever, but complicated properties of the dependency graph of the
clauses (in which vertices are literals and arcs are implications implied by the clauses). This
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12:4 An FPT Algorithm for Temporal Graph Untangling

algorithm seems difficult to adapt to our problem. To our knowledge, the only other FPT
algorithm for Almost 2-SAT is that of [16]. The algorithm of [16] employs a parameterized
reduction to Digraph Pair Cut. At a high level, the idea is to start from an initial guess of
assignment for a well-chosen subset of variables, then to construct the dependency graph of
the clauses. A certain chain of implications is enforced by our initial guess, the vertex pairs
to separate correspond to contradictory literals, and deleting arcs corresponds to deleting
clauses. It turns out that, with some work, we can skip the Almost 2-SAT formulation and
reduce MinTimelineCover to (a variant of) Directed Pair Cut directly by borrowing
some ideas from this reduction. This is not immediate though. The first challenge is that
the aforementioned “well-chosen initial guess” idea cannot be used in our context, and we
must develop new tools to enumerate a bounded number of initial guesses from a partial
solution (which we call feasible assignment). The second challenge is that our reduction to
our variant of Directed Pair Cut needs a specific gadget to enforce our cost scheme, while
remaining consistent with the idea of modeling the dependency graph of the SAT instance
corresponding to the vertex cover problem at hand.

Some of the proofs are omitted due to page limit.

2 Preliminaries

For an integer n, we denote [n] = {1, . . . , n} and for two integers i, j, we denote [i, j] =
{i, i + 1, . . . , j − 1, j} (which is the empty st if i > j). Temporal graphs are defined over a
discrete time domain T , which is a sequence 1, 2 . . . , T of timestamps. A temporal graph is
also defined over a set of vertices, called base vertices, that do not change in the time domain
and are defined in all timestamps, and are associated with vertices, which are base vertices
defined in specific timestamps. We use subscripts to denote the timestamp to which a vertex
belongs to, so, for a base vertex v and t ∈ [T ], we use vt to denote the occurrence of v in
timestamp t. A temporal edge connects two vertices, associated with distinct base vertices,
that belong to the same timestamp.

▶ Definition 1. A temporal graph G = (VB , E, T ) consists of
1. A time domain T = {1, 2 . . . , T};
2. A set VB of base vertices; VB has a corresponding set V (G) of vertices, which consists

of base vertices in specific timestamps, defined as follows:

V (G) = {vt : v ∈ VB ∧ t ∈ [T ]}.

3. A set E = E(G) of temporal edges, which satisfies:

E ⊆ {utvt : u, v ∈ VB , t ∈ [T ] ∧ u ̸= v}.

For a directed (static) graph H, we denote by (u, v) an arc from vertex u to vertex v (we
consider only directed static graphs, not directed temporal graphs).

Given a temporal graph G = (VB , E, T ) and a set of base vertices B ⊆ VB , we define the
set τ(B) of all vertices of B across all times:

τ(B) = {vt : v ∈ B ∧ t ∈ [T ]}.

If B = {v}, we may write τ(v) instead of τ({v}).
For a subset WB ⊆ VB of base vertices, we denote by G[WB] the subgraph induced by

τ(WB), that is, the graph whose vertex set is τ(WB) and whose edge set is {utvt ∈ E :
ut, vt ∈ τ(WB)}. We also use the notation G − WB = G[VB \ WB ]. Observe that G[WB ] and
G − WB are temporal graphs over the same time domain as G.

In order to define the problem we are interested in, we need to define the assignment of a
set of base vertices.
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▶ Definition 2. Consider a temporal graph G = (VB , E, T ) and a set WB ⊆ VB of base
vertices. An assignment of WB is a subset X ⊆ τ(WB) such that if up ∈ X and uq ∈ X,
with p, q ∈ [T ], then ut ∈ X, for each t ∈ [p, q]. For a base vertex u ∈ WB such that there
exists t ∈ [T ] with ut ∈ X, we denote by δ(u, X), ∆(u, X), respectively, the minimum and
maximum timestamp, respectively, such that uδ(u,X), u∆(u,X) ∈ X. If ut does not exist, then
δ(u, X) = ∆(u, X) = 0.

If WB is clear from the context or not relevant, then we may say that X is an assignment,
without specifying WB . Note that, given an assignment X and a set τ(v), for some v ∈ VB ,
then X ∩ τ(v) = {vt : vt ∈ X ∧ vt ∈ τ(v)} contains vertices for v that belong to a contiguous
interval of timestamps. Consider a set I ⊆ [T ] of timestamps. An assignment X intersects I

if there exists vt ∈ X such that t ∈ I.
Now, we give the definition of temporal cover.

▶ Definition 3. Given a temporal graph G = (VB , E, T ) a temporal cover of G is an
assignment X of VB such that the following properties hold:
1. For each v ∈ VB there exists at least one vt ∈ X, for some t ∈ T .
2. For each utvt ∈ E, with t ∈ [T ], at least one of ut, vt is in X.

For a temporal cover X of G, the span of v in X is defined as: sp(v, X) = ∆(v, X)−δ(v, X).
Note that if a temporal cover X contains, for a base vertex v ∈ VB , a single vertex vt, then
sp(v, X) = 0. The span of X, denoted by sp(X), is then defined as:

sp(X) =
∑

v∈VB

sp(v, X).

The definition of temporal cover requires that for each base vertex at least one of its
associated vertices belongs to the cover. This is not strictly necessary, since it might be
possible to cover every temporal edge without this condition. However, this condition
simplifies some of the definitions and proofs below. Note that if an assignment of a base
vertex is not needed to cover temporal edges, we can assign the vertex to some timestamp
without increasing the span.

Now, we are able to define MinTimelineCover (an example is presented in Fig. 1).

▶ Problem 4. (MinTimelineCover)
Input: A temporal graph G = (VB , T , E), an integer k.
Question: Does there exist a temporal cover of G of span at most k?

A temporal cover S ⊆ V (G) of span at most k will sometimes be called a solution. Our
goal is to determine whether MinTimelineCover is FPT in parameter k.

3 An FPT Algorithm

In this section we present our FPT algorithm, which consists of two parts:
1. The iterative compression technique.
2. A reduction to the Constrained Digraph Pair Cut problem.

Before presenting the main steps of our algorithm, we present the main idea and some
definitions. Recall that our parameter, that is the span of a solution of MinTimelineCover,
is denoted by k.

Consider a temporal graph G and assume we have a temporal cover S of span at most
k of the subgraph G − {w}, for some base vertex w ∈ VB. The idea of the iterative
compression step is, starting from S, to show how to decide in FPT time whether there
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Figure 1 An example of MinTimelineCover on a temporal graph G consisting of four base
vertices and six timestamps. For each timestamp, we draw the temporal edges of G, for example
for t = 2, the temporal edges are v2u2, v2w2, u2w2, z2w2. Also note that in t = 1 and t = 6 no
temporal edge is defined. A temporal cover X = {v5, u2, u3, u4, z3, z4, w2} is represented with grey
rectangles. Note that δ(v, X) = ∆(v, X) = 5, δ(u, X) = 2, ∆(u, X) = 4, δ(z, X) = 3, ∆(z, X) = 4,
δ(w, X) = ∆(w, X) = 2. It follows that sp(X) = 3.

exists a solution of MinTimelineCover for G. This is done by solving a subproblem, called
Restricted Timeline Cover, where we must modify S to consider w. A solution to this
subproblem is computed by branching on the assignments of base vertices having a positive
span in S and on w, and then reducing the problem to Constrained Digraph Pair Cut.
Restricted Timeline Cover is defined as follows.

▶ Problem 5. (Restricted Timeline Cover)
Input: A temporal graph G = (VB , E, T ), a vertex w ∈ VB, an integer k, a temporal cover S

of G − {w} of span at most k.
Output: Does there exist a temporal cover of G of span at most k?

For technical reasons that will become apparent later, we will assume that the temporal
graph contains no edge at timestamps 1 and T , i.e. for every utvt ∈ E, we have t ∈ [2, T − 1]
(as in Fig. 1). In particular, this avoids us to consider different gadget definitions in the
reduction to Constrained Digraph Pair Cut, as the cases where a base vertex is assigned
the first or the last of its associated vertex behaves somehow differently. It is easy to see
that if this is not already the case, we can add two such “dummy” timestamps, where G

does not contain any temporal edge. Indeed, since there are no temporal edges in these two
timestamps, then G has a temporal cover of span at most k if and only if the same graph
with dummy timestamps has a temporal cover of span at most k.

Informally, if we are able to solve Restricted Timeline Cover in FPT time, then we
can obtain an FPT algorithm for MinTimelineCover as well. Indeed, we can first compute
a temporal cover on a small subset of base vertices (for example a single vertex), and then we
can add, one at a time, the other vertices of the graph. This requires at most |VB | iterations,
and each time a vertex is added, we compute a solution of Restricted Timeline Cover
to check whether it is possible to find a temporal cover of span at most k after the addition
of a vertex.
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Iterative Compression
We now present our approach based on iterative compression to solve the Restricted
Timeline Cover problem. Given a solution S for G − {w}, we focus on the vertices of VB

that have a positive span in S and vertex w. An example of our approach, that illustrates
the sets of base vertices and vertices used by the algorithm, is presented in Fig. 2.

Consider the input of Restricted Timeline Cover that consists of a temporal graph
G = (VB , E, T ), a vertex w ∈ VB, and a temporal cover S of G − {w} of span at most k.
Define the following sets associated with S:

VS = {v ∈ VB : ∃p, q ∈ [T ], p < q, such that vp, vq ∈ S } ∪ {w}
V ′

S = {vt : vt ∈ S, v ∈ VS \ {w}} ∪ {wt : t ∈ [T ]}.

The set VS is defined as the set of base vertices having span greater than 0 in S, plus
the vertex w. V ′

S contains the vertices in V (G) associated with VS , in particular: (1) the
vertices corresponding to the base vertices in VS \ {w} that are included in S and (2) vertices
corresponding to the base vertex w in every timestamp.

Define the following set IS of timestamps associated with VS \ {w}:

IS = {t ∈ [T ] : ut ∈ V ′
S for some u ∈ VS \ {w} }.

Essentially, IS contains those timestamps where the base vertices of VS \ {w}, that is of
span greater than zero, have associated vertices in S. These timestamps are essential for
computing a solution of Restricted Timeline Cover, that is to compute whether there
exists a temporal cover of G of span at most k starting from S. We define now the sets of
base vertices and vertices associated with S having a span equal to 0:

ZS = VB \ VS Z ′
S = S \ V ′

S .

First, we show two easy properties of S and IS on the temporal graph G − {w}.

▶ Lemma 6. Let S be a solution of MinTimelineCover on instance G − {w} and let IS

be the associated set of timestamps. Then |IS | ≤ 2k.

▶ Lemma 7. Let S be a solution of MinTimelineCover on instance G − {w}. Then,
sp(Z ′

S) = 0. Moreover, Z ′
S covers each temporal edge of G − {w} not covered by V ′

S \ τ(w).

Now, we introduce the concept of feasible assignment, which is used to “guess” how S is
rearranged in a solution of Restricted Timeline Cover. Recall that an assignment X

intersects a set IS of timestamps if there exists vt ∈ X such that t ∈ IS .

▶ Definition 8 (Feasible assignment). Consider an instance of Restricted Timeline Cover
that consists of a temporal graph G = (VB , T , E), a vertex w ∈ VB, a temporal cover S

of G − {w} of span at most k, and sets VS , V ′
S and IS associated with S. We say that an

assignment X ⊆ τ(VS) of VS is a feasible assignment (with respect to G, S, and IS) if all of
the following conditions hold:
1. the span of X is at most k;
2. every edge of G[VS ] is covered by X;
3. X ∩ τ(w) is a non-empty assignment of {w};
4. for every v ∈ VS \ {w}, at least one of the following holds: (1) X ∩ τ(v) is empty; (2)

X ∩ τ(v) is an assignment of {v} that intersects with IS; or (3) X ∩ τ(v) contains a
vertex vt such that vtwt ∈ E and wt /∈ X ∩ τ(w).

IPEC 2023



12:8 An FPT Algorithm for Temporal Graph Untangling

Given a feasible assignment X, we denote

MS(X) = {v ∈ VS : X ∩ τ(v) ̸= ∅} NS(X) = {v ∈ VS : X ∩ τ(v) = ∅}

Informally, point 4 considers the possible cases for a feasible assignment of the vertices of
a base vertex v ∈ VS \ {w} : none of the associated vertices in IS belongs to the computed
solution (case 4.(1)); some of its associated vertices in IS belongs to the solution (case 4.(2));
or some of the vt vertices are forced, since they belong to an edge vtwt with t ∈ IS , that we
know is not covered by wt (case 4.(3)). Note that these cases are not necessarily mutually
exclusive.

Note that MS(X) and NS(X) form a partition of VS . Also note that G, S, and IS are
fixed in the remainder, so we assume that all feasible assignments are with respect to G, S,
and IS without explicit mention. We now relate feasible assignments to temporal covers.

▶ Definition 9. Let X∗ be a temporal cover of G and let X be a feasible assignment. We
say that X∗ agrees with X if:

for each v ∈ MS(X), X∗ ∩ τ(v) = X ∩ τ(v);
for each v ∈ NS(X) and each t ∈ IS, X∗ contains every neighbor ut of vt such that
ut ∈ τ(ZS).

The intuition of X∗ agreeing with X is as follows. For v ∈ MS(X), X “knows” which
vertices of τ(v) should be in the solution, and we require X∗ to contain exactly those. For
v ∈ NS(X), we interpret that X does not want any vertex vt with t ∈ IS . Thus, to cover
the edges incident to vt that go outside of VS , we require X∗ to contain the other endpoint.
Note an important subtlety: we act “as if” X∗ should not contain vt or other vertices of
NS(X) with timestamp in IS , but the definition does not forbid it. Hence, X∗ can contain a
vertex of NS(X) in some timestamps of IS , as long as X∗ contains also its neighbors (in IS)
outside VS .

The main purpose of feasible assignments and agreement is as follows.

▶ Lemma 10. Let X∗ be a temporal cover of G of span at most k. Then there exists a
feasible assignment X such that X∗ agrees with X.

Proof. Construct X ⊆ X∗ as follows: add X∗ ∩ τ(w) to X, and for v ∈ VS \ {w}, add
X∗ ∩ τ(v) to X if and only if X∗ ∩ τ(v) intersects with the set IS , or if it contains a vertex vt

incident to an edge vtwt ∈ E such that wt /∈ X∗ ∩ τ(w). Note that since X∗ is an assignment
of VB , X is an assignment of VS .

We first focus on arguing that X satisfies each condition of a feasible assignment (Defin-
ition 8). For Condition 1, since X∗ has span at most k and X ⊆ X∗, it is clear that X

also has span at most k. For Condition 3, X∗ ∩ τ(w) is non-empty by the definition of
a temporal cover, and we added X∗ ∩ τ(w) to X. For Condition 4, we explicitly require
in our construction of X that for each v ∈ VS \ {w}, if X ∩ τ(v) is non-empty, then it
is equal to X∗ ∩ τ(v) and it either intersects with IS or covers an edge not covered by
X ∩ τ(w) = X∗ ∩ τ(w).

Let us focus on Condition 2. Let utvt ∈ E(G[VS ]). If u = w, then if we did not add wt

to X, X∗ must contain vt and we added X∗ ∩ τ(v) to X, thereby covering the edge. The
same holds if v = w. Assume u ̸= w, v ̸= w, and suppose without loss of generality that X∗

contains ut to cover the edge. Suppose for contradiction that X does not cover utvt. Then
we did not add X∗ ∩ τ(u) to X, which implies that X∗ ∩ τ(u) does not intersect with IS . In
particular, t /∈ IS . Recall that S, the temporal cover of G − {w}, only intersects with τ(u)
and τ(v) in timestamps contained in IS . Hence, S cannot cover utvt, a contradiction. We
deduce that X covers every edge. Therefore, X is a feasible assignment.
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Figure 2 An example of application of iterative compression (timestamps 1 and 6 are not shown
as they are edgeless, also vertex w is not shown, its assignment is defined as in Fig. 1). In the left
part, we represent solution S = {v2, v3, u3, u4, z4}, where the vertices in S are highlighted with grey
rectangles. Note that IS = {2, 3, 4}, VS = {v, u}, V ′

S = {v2, v3, u3, u4}, ZS = {z}, Z′
S = {z4}. In the

right part, we represent in grey a feasible assignment X associated with S, containing vertices u2,
u3, u4; in light grey we highlight N ′

S = {v2}. The sets associated with S and X are: MS = {u},
NS = {v}, N ′

S = {v2}, N ′′
S = {v2, v3, v4}. The reduction to Constrained Digraph Pair Cut

eventually leads to the solution of MinTimelineCover represented in Fig. 1.

It remains to show that X∗ agrees with X. For v ∈ MS(X), X∗ ∩ τ(v) = X ∩ τ(v) by
the construction of X. For v ∈ NS(X), there is no vt ∈ X∗ with t ∈ IS , as otherwise we
would have added X∗ ∩ τ(v) to X. For every such vt, X∗ must contain all of its neighbors in
τ(ZS) to cover the edges, as required by the definition of agreement. ◀

It remains to show that the number of feasible assignments has bounded size and can be
enumerated efficiently. We first show the latter can be achieved through the following steps.
Start with X as an empty set and then apply the following steps (checking that the overall
span is at most k):
(1) Branch into every non-empty assignment Xw of {w} of span at most k. In each branch,

add the chosen subset Xw to X;
(2) For every edge vtwt ∈ E(G[VS ]) such that wt /∈ Xw, add vt to X;
(3) For every v ∈ VS \ {w}, such that X ∩ τ(v) = ∅ at this moment, branch into |IS | + 1

options: either add no vertex of τ(v) to X, or choose a vertex vt and add it to X, where
t ∈ IS ;

(4) For every v ∈ VS \ {w} such that X ∩ τ(v) ̸= ∅ at this moment, branch into every
assignment Xv of {v} of span at most k that contains every vertex of X ∩ τ(v) (if no
such assignment exists, abort the current branch). For each such branch, add every
vertex of Xv \ X to X.

▶ Theorem 11. The above steps enumerate every feasible assignment in time O(24k log kT 2kn),
where n = |VB |.

Reducing to Constrained Digraph Pair Cut
Our objective is now to list every feasible assignment and, for each of them, to verify whether
there is a temporal cover that agrees with it. More specifically, consider a feasible assignment
X ⊆ τ(VS). Our goal is to decide whether there is a temporal cover X∗ of span at most
k that agrees with X. Since we branch over every possible feasible assignment X, if there
is a temporal cover X∗ of G of span at most k, then by Theorem 11 our enumeration will
eventually consider an X that X∗ agrees with, and hence we will be able to decide of the
existence of X∗.
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We show that finding X∗ reduces to the Constrained Digraph Pair Cut problem,
as we define it below. For a directed graph H, we denote its set of arcs by A(H) (to avoid
confusion with E(G), which is used for the edges of an undirected graph G). For F ⊆ A(H),
we write H − F for the directed graph with vertex set V (H) and arc set A(H) \ F .

▶ Problem 12. (Constrained Digraph Pair Cut)
Input: A directed graph H = (V (H), A(H)), a source vertex s ∈ V (H), a set of vertex pairs

P ⊆
(

V (H)
2

)
called forbidden pairs, a subset of arcs D ⊆ A(H) called deletable arcs, and

an integer k′.
Output: Does there exist a set of arcs F ⊆ D of H such that |F | ≤ k′ and such that, for

each {u, v} ∈ P , at least one of u, v is not reachable from s in H − F?

It is known that Constrained Digraph Pair Cut can be solved in time O∗(2k′) [16],
but a few remarks are needed before proceeding. In [16], the authors only provide an algorithm
for the vertex-deletion variant, and do not consider deletable/undeletable arcs. It is easy to
make an arc undeletable by adding enough parallel paths between the two endpoints, and we
show at the end of the section that our formulation of Constrained Digraph Pair Cut
reduces to the simple vertex-deletion variant. The vertex-deletion variant also admits a
randomized polynomial kernel, and other FPT results are known for weighted arc-deletion
variants [14].

So let us fix a feasible assignment X for the remainder of the section. We will denote
MS = MS(X) and NS = NS(X). We also consider the following set of vertices associated
with NS :

N ′
S = {v2 : v ∈ NS} N ′′

S = {vt ∈ τ(NS) : t ∈ IS}.

For each base vertex v ∈ NS , we need N ′
S to contain any vertex of τ(v) that belongs to the

time interval [2, T − 1], so we choose v2 arbitrarily. Then, N ′′
S contains those vertices vt,

with t ∈ IS , not chosen by the feasible assignment X. Note that according to our definition
of agreement, a solution X∗ should contain all the neighbors of N ′′

S vertices that are in ZS .
Recall that we have defined ZS = VB \ VS and Z ′

S = S \ V ′
S . By Lemma 7 we know that

Z ′
S covers each temporal edge of G[VB \ {w}] not covered by S ∩ V ′

S , and that sp(Z ′
S) = 0.

We may assume that for each v ∈ ZS , there is exactly one t ∈ [T ] such that vt ∈ Z ′
S (there

cannot be more than one since Z ′
S has span 0, and if there is no such t, we can add any vt

without affecting the span). Furthermore, we will assume that for each v ∈ ZS , the vertex
vt in Z ′

S is not v1 nor vT . Indeed, since we assume that the first and last timestamps of G

have no edges, if vt = v1 or vt = vT , then vt covers no edge and we may safely change vp to
another vertex of τ(v).

The following observation will be useful for our reduction to Constrained Digraph
Pair Cut.

▶ Observation 13. Let utvt ∈ E(G) such that u ∈ NS and v /∈ MS. Then v ∈ ZS and, if
ut /∈ N ′′

S , we have vt ∈ Z ′
S.

Now, given a feasible assignment X ⊆ τ(V ′
S), sets MS , NS , N ′

S , N ′′
S , ZS , and Z ′

S , we
present our reduction to the Constrained Digraph Pair Cut problem. We construct an
instance of this problem that consists of the directed graph H = (V (H), A(H)), the set of
forbidden (unordered) pairs P ⊆

(
V (H)

2
)
, and the deletable arcs D ⊆ A(H) by applying the

following steps. The second step in the construction is the most important and is shown in
Figure 3. The intuition of these steps is provided afterwards.
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1. add to H the source vertex s;

2. for each v ∈ ZS ∪ NS , let vi be the vertex of Z ′
S ∪ N ′

S , where i ∈ [2, T − 1]. Add to H

the vertices v+
1 , . . . , v+

i−1, v−
i , v+

i+1, . . . , v+
T , the vertices bv,j , cv,j , dv,j , for j ∈ [T ] \ {i}, and

the set of arcs shown in Figure 3, that is there are arcs (v+
j , bv,j), (v+

j , cv,j), (cv,j , dv,j),
(dv,j , v−

j ), for each j ∈ [T ] \ {i} and four directed paths: (1) from bv,i−1 to bv,1, (2) from
cv,1 to cv,i−1, (3) from bv,i+1 to bv,T and (4) from cv,T to cv,i+1.
Add to D the set of deletable arcs (cv,j , dv,j), for j ∈ [T ] \ {i}.
Then add the following pairs to P :
a. {dv,h, bv,j}, with 1 ≤ h < j ≤ i − 1;
b. {dv,h, bv,j}, with i + 1 ≤ j < h ≤ T ;
c. {cv,h, dv,j}, with 1 ≤ h ≤ i − 1 ≤ i + 1 ≤ j ≤ T ;
d. {cv,h, dv,j}, with 1 ≤ j ≤ i − 1 ≤ i + 1 ≤ h ≤ T .
Note that we have created T + 3(T − 1) = 4T − 3 vertices in H in this step. The subgraph
of H induced by these vertices will be called the gadget corresponding to v.

3. for each temporal edge utvt ∈ E(G) such that ut, vt ∈ τ(ZS) ∪ (τ(NS) \ N ′′
S ), there are

three cases. First note that at least one of ut or vt is in Z ′
S . Indeed, if u, v ∈ ZS , this is

because an element of Z ′
S must cover the temporal edge, and if u ∈ NS , then vt ∈ Z ′

S by
Observation 13 (or if v ∈ NS , ut ∈ Z ′

S). The subcases are then:
a. if ut, vt ∈ Z ′

S ∪ N ′
S , add the pair {u−

t , v−
t } to P ;

b. if ut ∈ Z ′
S ∪ N ′

S , vt /∈ Z ′
S ∪ N ′

S , add the arc (u−
t , v+

t ) to H;
c. if vt ∈ Z ′

S ∪ N ′
S , ut /∈ Z ′

S ∪ N ′
S , add the arc (v−

t , u+
t ) to H;

4. for each temporal edge utvt ∈ E(G) such that ut ∈ (τ(MS) \ X) ∪ N ′′
S and vt ∈ τ(ZS),

there are two cases:
a. if vt /∈ Z ′

S , add the arc (s, v+
t ) to H;

b. if vt ∈ Z ′
S , add the pair {s, v−

t } to P .

Define k′ = k − sp(X). This concludes the construction. We will refer to the elements
1, 2, 3, 4 of the above enumeration as the Steps of the construction. Note that the only
deletable arcs in D are the arcs (cv,j , dv,j) introduced in Step 2.

From here, the interpretation of H is that if we delete arc set F , then
(p1) For vt /∈ Z ′

S ∪ N ′
S we should include vt in X∗ if and only if s reaches v+

t in H − F ;
(p2) For vt ∈ Z ′

S ∪ N ′
S we should include vt in X∗ if and only if s does not reach v−

t in
H − F .

The idea behind the steps of the construction is then as follows (and is somewhat easier
to describe in the reverse order of steps). Step 4 describes an initial set of vertices that s is
forced to reach, which correspond to vertices that are forced in X∗. A vertex vt in τ(ZS) is
forced in X∗ if there is in an edge utvt and ut ∈ τ(MS) but ut /∈ X. By our definition of
agreement, vt is also forced if ut ∈ N ′′

S . Step 4 handles both situations: if vt /∈ Z ′
S , we force

s to reach v+
t with the arc (s, v+

t ), which is not deletable. If vt ∈ Z ′
S , then v−

t ∈ V (H), and
s is forced to not reach v−

t by adding {s, v−
t } to P . By (p1) and (p2), both cases correspond

to including vt in X∗. Then, Step 3 ensures that each temporal edge is “covered”: for a
temporal edge utvt, a pair of the form {u−

t , v−
t } in P requires that s does not reach one of

the two, i.e. that we include one in X∗, and an undeletable arc of the form (u−
t , v+

t ) enforces
that if s reaches u−

t (i.e. ut /∈ X∗), then s reaches v+
t (i.e. vt ∈ X∗). The reason why Z ′

S is
needed in our construction is that each edge has at least one negative corresponding vertex,
so that no other case needs to be considered in Step 3.
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v+1 v+2 v+i−1 v−i v+i+1 v+T−1 v+T

s

bv,1 bv,2 bv,i−1 bv,i+1 bv,T−1 bv,T

cv,1 cv,2 cv,i−1 cv,i+1 cv,T−1 cv,T

dv,1 dv,2 dv,i−1 dv,i+1 dv,T−1 dv,T

Figure 3 Gadget for vi ∈ Z′
S ∪ N ′

S , where i ∈ [2, T − 1]. We assume that there exist temporal
edges utvt ∈ E(G), where t ∈ {i − 1, i + 1}, such that ut ∈ (τ(MS) \ X) ∪ N ′′

S , vt ∈ τ(ZS) and
vt /∈ Z′

S , thus arcs from s to v+
t are added.The dashed arcs represent deletable arcs.

Finally, Step 2 enforces the number of deleted arcs to correspond to the span of a solution.
That is, it ensures that if we want to add to X∗ a set of h vertices of base vertex v ∈ ZS

to our solution of Restricted Timeline Cover (so with a span equal to h − 1), then
we have to delete h − 1 deletable arcs of the corresponding gadget of H in order to obtain
a solution to Constrained Digraph Pair Cut (and vice-versa). Indeed, consider the
gadget in Fig. 3. If vi is not included in X∗, then in the gadget s reaches h positive vertices
v+

l , . . . , v+
r (and v−

i ). It follows that vertices bv,l, . . . , bv,r, cv,l, . . . , cv,r and dv,l, . . . , dv,r are
all reachable from s. The pairs {dv,x, bv,y} defined at Step 2, where either l ≤ x ≤ y ≤ r − 1
if r < i, or l + 1 ≤ x ≤ y ≤ r if l > i, ensures that arcs (cv,j , dv,j), with j ∈ [l, r − 1] in the
former case or with j ∈ [l + 1, r] in the latter case, are deleted.

If vi is included in X∗, then in the gadget s reaches h − 1 positive vertices v+
l , . . . , v+

r ,
with i ∈ [l, r], and must not reach negative vertex v−

i . It follows that vertices bv,l, . . . , bv,r,
cv,l, . . . , cv,r and dv,l, . . . , dv,r are all reachable from s. Then h − 1 arcs (cv,j , dv,j), with
j ∈ [l, r] \ {i}, must be deleted, due to the pairs {dv,x, bv,y}, {cv,x, dv,y} defined at Step 2.

Note that Step 2 is the reason we added dummy timestamps 1 and T . If v1 or vT were
allowed to be in Z ′

S ∪ N ′
S , we would need a different gadget for these cases.

▶ Lemma 14. There exists a solution of Restricted Timeline Cover that agrees with X

if and only if there is F ⊆ D with |F | ≤ k′ such that s does not reach a forbidden pair in
H − F . Moreover, given such a set F , a solution of Restricted Timeline Cover can be
computed in polynomial time.

Sketch of the proof. (⇒) Suppose that there exists a solution X∗ of Restricted Timeline
Cover that agrees with X. By definition of Restricted Timeline Cover, X∗ has span
at most k. Note that for v ∈ MS , the agreement requires that X∗ ∩ τ(v) = X ∩ τ(v), and so
the span of v in X∗ is the same as the span of v in X. Thus∑

v∈ZS∪NS

sp(v, X∗) ≤ k − sp(X) = k′.
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We may assume that for every v ∈ VB, at least one of v2, . . . , vT −1 is in X∗, as otherwise
we add one arbitrarily without affecting the span (if only v1 or vT is in X∗, remove it first).
For each v ∈ ZS ∪ NS , consider the gadget corresponding to v in H and delete some of its
dashed arcs as follows (we recommend referring to Figure 3).

First, if only one of τ(v) is in X∗, no action is required on the gadget. So assume
that X∗ ∩ τ(v) has at least two vertices; in the following we denote vl = vδ(v,X∗) and
vr = v∆(v,X∗) the vertices associated with v having minimum and maximum timestamp,
respectively, contained in X∗. We assume that l, r ∈ [2, T − 1] and l < r. Note that
X∗ ∩ τ(v) = {vl, vl+1, . . . , vr}.

Let vi ∈ Z ′
S ∪ N ′

S , where i ∈ [2, T − 1]. Then
suppose that l, r ∈ [2, i − 1], then: delete every arc (cv,q, dv,q), with l ≤ q ≤ r − 1
suppose that with l, r ∈ [i + 1, T − 1], then: delete every arc (cv,q, dv,q), with l + 1 ≤ q ≤ r

suppose that l ∈ [2, i] and r ∈ [i, T −1], then: delete every arc (cv,q, dv,q), with l ≤ q ≤ i−1,
and delete every arc (cv,q, dv,q), with i + 1 ≤ q ≤ r.

We see that by construction for all v ∈ ZS ∪ NS , the number of arcs deleted in the gadget
corresponding to v is equal to the number of vertices in X∗ ∩ τ(v) minus one, that is the
span of v in X∗. Since these vertices have span at most k′, it follows that we deleted at most
k′ arcs from H. Denote by H ′ the graph obtained after deleting the aforementioned arcs.
We argue that in H ′, s does not reach a forbidden pair. To this end, we claim the following.

▷ Claim 15. For v ∈ ZS ∪ NS and t ∈ [T ], if s reaches v+
t in H ′, then vt ∈ X∗, and if s

reaches v−
t in H ′, then vt /∈ X∗.

Now, armed with the above claim, we can prove that in H ′, s does not reach both vertices
of a forbidden pair q ∈ P , thus concluding this direction of the proof.

(⇐) Suppose that there is a set F ⊆ D with at most k′ arcs such that s does not reach a
forbidden pair in H − F . Denote H ′ = H − F . We construct X∗ from F , which will also
show that it can be reconstructed from F in polynomial time. Define X∗ ⊆ V (G) as follows:

for each v ∈ MS , add every element of X ∩ τ(MS) to X∗;
for each vt ∈ V (G) \ τ(MS), we add vt to X∗ if and only if one of the following holds: (1)
v+

t ∈ V (H) and s reaches v+
t in H ′; or (2) v−

t ∈ V (H), and s does not reach v−
t in H ′;

for each vj , vh ∈ X∗ with j < h, add vt to X∗ for each t ∈ [j + 1, h − 1].

Note that X∗ agrees with X. Indeed, for v ∈ MS , there is no gadget corresponding to v

in the construction and thus we only add X ∩ τ(v) to X∗. For u ∈ NS , consider ut ∈ N ′′
S

and a neighbor vt of ut in τ(ZS). If vt /∈ Z ′
S , Step 4 adds an undeletable arc from s to v+

t ,
hence s reaches that vertex and we put vt in X∗. If vt ∈ Z ′

S , Step 4 adds {s, v−
t } to P , and

thus s does not reach v−
t in H ′, and again we add vt to X∗. Therefore, we add all the τ(ZS)

neighbors of ut to X∗, and so it agrees with X. We can prove that X∗ covers every temporal
edge of G and that sp(X∗) ≤ k. ◀

Wrapping up
Before concluding, we must show that we are able to use the results of [16] to get an
FPT algorithm for Constrained Digraph Pair Cut, as we have presented it. As we
mentioned, the FPT algorithm in [16] studied the vertex-deletion variant and does not
consider undeletable elements, but this is mostly a technicality. Roughly speaking, in our
variant, it suffices to replace each vertex with enough copies of the same vertex, and replace
each deletable arc (u, v) with a new vertex, adding arcs from the u copies to that vertex,
and arcs from that vertex to the v copies. Deleting (u, v) corresponds to deleting that new
vertex. For undeletable arcs, we apply the same process but repeat it k′ + 1 times.
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▶ Lemma 16. The Constrained Digraph Pair Cut problem can be solved in time
O∗(2k), where k is the number of arcs to delete.

We are able now to prove the main result of our contribution.

▶ Theorem 17. MinTimelineCover on a temporal graph G = (VB , E, T ) can be solved in
time O∗(25k log k).

Proof. First, we discuss the correctness of the algorithm we presented. Assume that we
have an ordering on the base vertices of G and that v is the first vertex of this ordering. A
solution S of MinTimelineCover on G[{v}] is equal to S = ∅.

Then for i, with i ∈ [2, |VB |], let Gi be the temporal graph induced by the first i vertices
and let w be the i + 1-th vertex. Given a solution S of MinTimelineCover on instance Gi

of span at most k, we can decide whether there exists a solution of MinTimelineCover
on instance Gi+1 by computing whether there exists a solution X∗ of the Restricted
Timeline Cover problem on instance Gi, w, S. By Lemma 10 and by Theorem 11 if there
exists such an X∗, then there exists a feasible assignment X such that X∗ agrees with X.
By Lemma 14 we can compute, via the reduction to Constrained Digraph Pair Cut,
whether there exists a solution of Restricted Timeline Cover on instance on instance
Gi, w, S, and if so obtain such a solution (if no such solution X∗ exists, then Lemma 14
also says that we will never return a solution, since every feasible assignment X that we
enumerate will lead to a negative instance of Constrained Digraph Pair Cut). Thus
the Restricted Timeline Cover subproblem is solved correctly, and once it is solved on
G|VB |, we have a solution to MinTimelineCover.

Now, we discuss the complexity of the algorithm. We must solve Restricted Timeline
Cover |VB | times. For each iteration, by Theorem 11 we can enumerate the feasible assign-
ments in O(24k log kT 3n) time. For each such assignment, the reduction from Restricted
Timeline Cover to Constrained Digraph Pair Cut requires polynomial time, and
each generated instance can be solved in time O∗(2k). The time dependency on k is thus
O∗(24k log k · 2k), which we simplify to O∗(25k log k). ◀

4 Conclusion

We have presented an FPT algorithm for the MinTimelineCover problem, a variant of
Vertex Cover on temporal graphs recently considered for timeline activities summarizations.
We point out some relevant future directions on this topic: (1) to improve, if possible, the
time complexity of MinTimelineCover by obtaining a single exponential time algorithm (of
the form O∗(ck)); (2) to establish whether MinTimelineCover admits a polynomial kernel,
possibly randomized (which it might, since Constrained Digraph Pair Cut famously
admits a randomized polynomial kernel).
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