
Breaking RSA Generically Is Equivalent to
Factoring, with Preprocessing
Dana Dachman-Soled #

University of Maryland, College Park, MD, USA

Julian Loss #

CISPA Helmholtz Center for Information Security, Saarbrücken, Germany

Adam O’Neill #

Manning College of Information & Computer Sciences, UMass Amherst, MA, USA

Abstract

We investigate the relationship between the classical RSA and factoring problems when preprocessing
is considered. In such a model, adversaries can use an unbounded amount of precomputation to
produce an “advice” string to then use during the online phase, when a problem instance becomes
known. Previous work (e.g., [Bernstein, Lange ASIACRYPT ’13]) has shown that preprocessing
attacks significantly improve the runtime of the best-known factoring algorithms. Due to these
improvements, we ask whether the relationship between factoring and RSA fundamentally changes
when preprocessing is allowed. Specifically, we investigate whether there is a superpolynomial
gap between the runtime of the best attack on RSA with preprocessing and on factoring with
preprocessing.

Our main result rules this out with respect to algorithms that perform generic computation
on the RSA instance xe mod N yet arbitrary computation on the modulus N , namely a careful
adaptation of the well-known generic ring model of Aggarwal and Maurer (Eurocrypt 2009) to the
preprocessing setting. In particular, in this setting we show the existence of a factoring algorithm
with polynomially related parameters, for any setting of RSA parameters.

Our main technical contribution is a set of new information-theoretic techniques that allow us
to handle or eliminate cases in which the Aggarwal and Maurer result does not yield a factoring
algorithm in the standard model with parameters that are polynomially related to those of the
RSA algorithm. These techniques include two novel compression arguments, and a variant of the
Fiat-Naor/Hellman tables construction that is tailored to the factoring setting.

2012 ACM Subject Classification Security and privacy → Public key (asymmetric) techniques;
Security and privacy → Information-theoretic techniques

Keywords and phrases RSA, factoring, generic ring model, preprocessing

Digital Object Identifier 10.4230/LIPIcs.ITC.2024.8

Related Version Full Version: https://eprint.iacr.org/2022/1261

Funding Dana Dachman-Soled: Supported in part by NSF grants #CNS-1933033, #CNS-1453045
(CAREER), and by financial assistance awards 70NANB15H328 and 70NANB19H126 from the U.S.
Department of Commerce, National Institute of Standards and Technology.
Julian Loss: Supported by the European Union, ERC-2023-STG, Project ID: 101116713. Views and
opinions expressed are however those of the author(s) only and do not necessarily reflect those of the
European Union. Neither the European Union nor the granting authority can be held responsible
for them.

Acknowledgements We thank Nikki Sigurdson for collaboration in the early stages of this work.

© Dana Dachman-Soled, Julian Loss, and Adam O’Neill;
licensed under Creative Commons License CC-BY 4.0

5th Conference on Information-Theoretic Cryptography (ITC 2024).
Editor: Divesh Aggarwal; Article No. 8; pp. 8:1–8:24

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:danadach@umd.edu
mailto:loss@cispa.de
https://orcid.org/0000-0002-7979-3810
mailto:adamo@cs.umass.edu
https://orcid.org/0009-0006-0233-6466
https://doi.org/10.4230/LIPIcs.ITC.2024.8
https://eprint.iacr.org/2022/1261
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

8:2 Breaking RSA Generically Is Equivalent to Factoring, with Preprocessing

1 Introduction

1.1 Motivation and Main Results
Background. Use of the RSA function [26] fN,e(x) = xe mod N where N = pq is ubiquitous
in practice, and attacks against it have been the subject of intensive study, see e.g. [4]. A
key question about its security is its relationship to factoring N . While it is trivial to see
that factoring N allows one to invert RSA, the converse is a major open problem. To make
progress on this question, researchers have studied it in restricted (aka. idealized) models of
computation. To our knowledge, this approach was initiated by Boneh and Venkatesan [5],
who showed that a reduction from factoring to low-exponent RSA that is a straight-line
program (SLP) gives rise to an efficient factoring algorithm. An SLP is simply an arithmetic
program (performing only ring operations) that does not branch. A complementary approach,
which we pursue in this work, is to consider RSA adversaries that are restricted. The best
known result of this nature is due to Aggarwal and Maurer (which we abbreviate as AM) [1],
who showed that breaking RSA and factoring are equivalent wrt. so-called “generic-ring
algorithms” (GRAs), namely ones that treat the ring ZN like a black-box, only performing
ring operations and equality checks that allow branching. Put another way, GRAs work in
any efficient ring isomorphic to ZN . Note that SLPs are a special case of GRAs.

In the context of any cryptographic problem or protocol it is valuable to consider
preprocessing attacks, because an adversary may be willing to perform highly intensive
computation to break many instances of the problem, if that computation only has to be
performed once. To model this, one considers an unbounded algorithm that produces a short
“advice” string that can be used to efficiently solve a problem instance once it becomes known
(much more efficiently than without the advice string). Note that above-mentioned attacks on
RSA from [4] do not take advantage of preprocessing. However, in the preprocessing setting,
Bernstein and Lange [3] describe a Number Field Sieve (NFS) with preprocessing, based
on work by Coppersmith [7], which significantly reduces the exponent in the running-time
compared to the standard NFS factoring algorithm, and they use this to get an improved
attack on RSA. Thus, a natural question is:

Does the relationship between RSA and factoring fundamentally change in the pre-
processing setting?

The Need for a New Model. To answer this question, we need to formalize a model of
computation for this setting. The generic ring model (GRM) of AM considers an algorithm
(called a generic ring algorithm or GRA) models generic computation on ZN via a directed
acyclic graph where nodes are labelled with constants (or the input indeterminate) in ZN
and operations (+, ×, ÷); execution corresponds to a walk in the graph according to suitable
rules. Now, it is instructive to see why this model, extended to the preprocessing setting
in the obvious way, is not suitable. In such an extension, at the end of the preprocessing
stage, the adversary outputs a GRA to run in the online stage. But then observe that
the best the adversary against RSA with preprocessing is the one that simply outputs, in
the preprocessing stage, a GRA of size at most some T that obtains optimal advantage,
where the advantage is computed with respect to the random choice of N with bitlength
at most security parameter κ and random choice of y = xe (mod N). The description of
this optimal GRA would then be passed to the online stage. This model, however, does not
capture our intuition for the best-possible preprocessing attack against RSA in the GRM. For
example, the following simple adversary is better but not captured: During preprocessing,

D. Dachman-Soled, J. Loss, and A. O’Neill 8:3

it picks many instance-solution pairs ((N1, e1, x
e1
1 mod N1), x1), . . . , ((Ni, ei, xei

i mod Ni), xi)
and inserts them into a hash table, then outputs this hash table as well as the aforementioned
optimal GRA. Then, in the online stage, it performs a hash table lookup on the input RSA
instance (N∗, e∗, y∗) to obtain a list of possible preimages x∗1 . . . , x∗j (these all being stored
in the same location in the hash table). It returns x∗k such that (x∗k)e∗ mod N∗ = y∗ if it
exists, and runs the optimal GRA otherwise. This attack is not captured because the hash
table lookup uses the bit-representation of the RSA instance, while a GRA is agnostic of the
particular representation of the ring. However, the attack is still “generic” because it works
for any bit-representation of the ring (not just the canonical encoding of ZN). While this is
a simple example, it captures techniques originating from Hellman tables [19], a common
strategy for preprocessing algorithms in practice. In other words, such strategies crucially
use the bit-representation of the problem instance.

Our New “GRM-with-Preprocessing” Model. To capture these types of representation-
specific strategies, we will associate integers y of bitlength at most κ with random labels.
We note that Damgard and Koprowski [12] and later Dodis et al. [15] previously considered
random labels to model the multiplicative group Z∗N (with N known to the adversary); it
has not been done for the full ring ZN . (See below for a detailed comparison with these
works.) That is, in our model, we consider an injective mapping π that encodes every element
in {0, 1}κ as a unique random string in {0, 1}m, where m > κ. We let the unbounded
preprocessing algorithm read the entire description π and perform arbitrary computation. It
produces a short advice string state that is passed to the online phase. The online algorithm
is split into two parts, an intermediate algorithm, and a GRA. The intermediate algorithm
is non-generic and gets the RSA instance (N∗, e∗, π((x∗)e∗ mod N∗)), where N∗ = pq has
bit-length κ, but does not get access to π. This intermediate algorithm is what allows
computation that depends on the bit-representation of the RSA instance, so that the next
online stage can leverage the result in addition to the advice from the preprocessing stage.
The intermediate algorithm outputs an oracle-aided GRA that computes relative to π, which
we then run on the RSA instance. By “relative to π,” we mean an addition step of the
oracle-aided GRA takes as input two strings y1, y2 ∈ {0, 1}m and outputs π(π−1(y1)+π−1(y2)
(mod N)). (Multiplication and division proceed analogously.). We call S = |state| the space
of the adversary and its running-time is specified by the pair (T1, T2), where T1 is the
runtime of the intermediate algorithm, and T2 is the run-time of the GRA output by the
intermediate algorithm. (Note that we require that T2 ≤ T1.) We refer to this model as the
“GRM-with-preprocessing” for simplicity. It is instructive to see that the simple adversary
related to Hellman tables above is captured by it. This is because the intermediate algorithm
can perform a hash table lookup on the input RSA instance (N∗, e∗, y∗ = π((x∗)e∗ mod N∗))
to get a list π(x∗1), . . . , π(x∗j) of possible preimages, returning the GRA that on input y∗
returns π(x∗k) such that y∗ = π(x∗k)e∗ mod N∗ if it exists (note finding this value uses access
to π, i.e., the ring operations) and runs the aforementioned optimal GRA otherwise. We
view the GRM-with-preprocessing model as a main conceptual contribution of our work and
contend that it faithfully captures our intuition for preprocessing attacks in the GRM.

We note that the study of upper and lower bounds on preprocessing in idealized models
was pioneered by Corrigan-Gibbs and Kogan (CK) [10], who treated discrete-log-related
problems in the case of groups. (See a more detailed comparison below.) Our modeling
above follows their approach, but a key difference is that in their setting the group is
fixed throughout the offline and online phase, whereas in our setting the group is fixed
together with the RSA instance only in the online phase. Moreover, while the proofs of

ITC 2024

8:4 Breaking RSA Generically Is Equivalent to Factoring, with Preprocessing

our results (described in Section 2) like those of CK use compression, the details differ
substantially. For example, we do not use the random self-reducibility of RSA, whereas
CK rely on self-reducibility of discrete log. This makes our results potentially applicable to
broader settings.

A Result in the Random Injective Function Model. We present two main results below,
which both emanate from a more basic result in random injective function model (RIM). In
the RIM, the adversary has access to a random injective function with suitable parameters.
We show that in the GRM-with-preprocessing model, any RSA algorithm with preprocessing
implies the existence of a factoring algorithm with preprocessing in the RIM, with polynomially
related parameters. This gets us a long way in answering our question for RSA algorithms
in the GRM-with-preprocessing model and shows that the relationship of RSA and factoring
does not fundamentally change in this setting, as long as we permit the factoring algorithm
to operate in the RIM.

▶ Theorem 1 (Informal). Suppose there is an RSA adversary in the GRM-with-preprocessing
model with space Sr and running-time (T1,r, T2,r) that succeeds with probability ϵr. Then
there is a factoring adversary in the random injective function model (RIM) with space
Sf = Sr +O(1) and running-time Tf = poly(κ, T1,r, T2,r, 1/ϵr) that succeeds with probability
ϵf = poly(ϵr).

See Theorem 7 for the formal statement. We will explain the bounds (which are identical) in
the context of our random oracle model result below. Since our model allows an inefficient
preprocessing phase, the RI function cannot easily be removed from our final factoring
algorithm while maintaining the desired polynomially related space complexity and runtime
from Theorem 1. The reason is that in the preprocessing phase of the factoring algorithm,
the entire RI function could be queried and global information about it could be stored in the
preprocessing advice. In this case, it is no longer possible for the online part of the factoring
algorithm to simulate the RI “on the fly” since the responses generated by the simulator
need to be consistent with the global information learned in the preprocessing phase. One
approach to removing the RI would be to show that the global information about the random
injective function (which has length Sf) can be simulated by fixing the input/output of some
set of some q queries to the random injective function, and showing that any remaining
queries not in this set can still be chosen “on the fly.” This “bit-fixing” technique has
been studied in a number of works, e.g. [9, 14]. However, this line of work proved a lower
bound that q must be larger than SfTf/(ϵf)2 for simulation by the plain-model adversary
to be ϵf -indistinguishable to an RIM adversary making Tf queries (note that we require
≈ ϵf -indistinguishability to guarantee that the factoring algorithm in the plain model still
succeeds with probability poly(ϵf) = poly(ϵr)). For us, this would lead to trivial parameter
settings. We show how to remove the RI function using an alternative argument below.

In particular, we extend the RIM result in two ways.

A result in the random oracle model. We first note that the RIM is much less natural
to study factoring-with-preprocessing in than its counterpart the random oracle model
(ROM) [2], hence we would like a result in the latter. The classical result of Luby and Rackoff
shows that a 4-round Feistel network with random oracles in place of round functions is
indistinguishable from a random permutation with forwards and backwards access. However,
the distinguishing probability of an (unbounded) adversary is Ω(q2

2κ/2), where κ/2 is the
input/output length of the random oracle, and q is the number of queries made by the
adversary, and this bound is known to be tight. In the preprocessing setting, the adversary

D. Dachman-Soled, J. Loss, and A. O’Neill 8:5

can query the entire random oracle q = 2κ/2, and so the distinguishing probability becomes
vacuous. We present a technique to lift the Luby-Rackoff result to the case of unbounded
preprocessing by using a slight modification of a 4-round Feistel network to implement a
random injective function, instead of a random permutation. This 4-round Feistel will use
round functions with input/output length m/2 to implement an injective function with
domain size of 2κ ≪ 2m/2 and will thus circumvent the issue discussed above. We thus
obtain the following result (see Theorem 11 for the formal statement), with the same concrete
bounds as the RIM result.

▶ Theorem 2 (Informal). Suppose there is an RSA adverary in the GRM with preprocessing
model with space Sr and running-time (T1,r, T2,r) that succeeds with probability ϵr. Then
there is a factoring adversary in the random oracle model (ROM) with space Sf = Sr +O(1)
and running-time Tf = poly(κ, T1,r, T2,r, 1/ϵr) that succeeds with probability ϵf = poly(ϵr).

Note that the space complexity of our factoring algorithm is essentially the same as
that of the RSA algorithm, namely S + O(1). In terms of time complexity and success
probability, our bounds are similar to those achieved by AM, which is to be expected. We
differ from AM in that the success probability of our factoring algorithm ϵf depends only on
ϵr, and not on T1,r, T2,r. We discuss additional differences between the time complexity and
success probability of our ROM factoring algorithm and that of AM in Section 4. We believe
using the ROM for the above result is reasonable since prior work on space/time tradeoffs
(such as the seminal results of Hellman [19] and Fiat-Naor [17]) either required a random
oracle or achieved simplified algorithms/improved parameters in the random oracle model.
Nevertheless, it begs the question of whether the situation could change in the plain model.

A result in the plain model. Above we explained why it is difficult to remove the RI function
while maintaining the desired parameters. Nevertheless, by developing new techniques for
our setting we are finally able to show the following theorem statement, which is in the plain
model.

▶ Theorem 3 (Informal). Suppose there is an RSA adverary in the GRM with preprocessing
model with space Sr and running-time (T1,r, T2,r) that succeeds with probability ϵr. Then
there is a factoring adversary in the plain model with space Sf = O(Sr) and running-time
Tf = poly(κ, T1,r, T2,r, 1/ϵr) that succeeds with probability ϵf = poly(ϵr).

The parameters are thus worse than what we obtain in the ROM, which is why we include
the ROM result above. The main insight used for the plain-model result is to note that
the online stage of the RI factoring algorithm we obtain has a particular form in which
only a single uniformly random query is made to the forward direction of π, and a set of
non-adaptive queries is made to the backward direction of π−1. Combining a compression
argument with a new argument based on a lemma of Drucker [16] (which to the best of our
knowledge has not been previously used in a generic model setting) we are able to show that
the online portion of the RIM factoring algorithm can be efficiently simulated in the plain
model. Note, however, that we still include the ROM result above as it is obtained en route
to our plain model result, illustrating many of our main techniques, and it enjoys a tighter
reduction.

On Interpretation of our Results. To understand the significance of our results, it is helpful
to recall the motivation for the GRM in the first place. AM explain that the GRM is an
important computational model to consider for problems like RSA, where the adversary
must output a function of its input that results in a ring element. As also mentioned below,

ITC 2024

8:6 Breaking RSA Generically Is Equivalent to Factoring, with Preprocessing

there exist decisional problems (e.g., Jacobi symbol computation) that are hard in the GRM
but easy in ZN . Nevertheless, this does not seem to affect the question of the hardness
of RSA. Indeed, an interesting question for future work would be to extend our results to
hold relative to a Jacobi symbol oracle. Now, moving onto our GRM-with-preprocessing
model, we stress that the intermediate stage, being non-generic, can run standard factoring
algorithms on N such as NFS. Of course, if it simply factors N to break RSA, there is nothing
to show. However, our results demonstrate that such non-generic computation cannot be
fruitfully combined with generic computation on the RSA instance to obtain a significantly
faster-than-factoring attack on RSA. In other words, essentially the entire computation by
an RSA adversary needs to be non-generic for such a speed-up to be possible.

Finally, both our model and main theorem are very general in the sense that they show
existence of a factoring algorithm with polynomially related parameters for any setting of
RSA parameters T1,r, T2,r, Sr, ϵr and for a general class of algorithms. That is, our result
does not restrict the relationship between (T1,r, T2,r, Sr) (other than the requirement that
T1,r ≥ T2,r, which is implied by the model) and we show that generic RSA with preprocessing
implies factoring with preprocessing, even for unconventional parameter settings (such as
setting Sr to be larger than the time complexity of the best online factoring algorithm). We
believe it is important to cover all parameter regimes, as this ensures that our result actually
suggests a mathematical connection between the factoring and RSA problems themselves,
rather than just showing that for the typical parameter settings used in practice the best
factoring and RSA algorithms happen to have the same complexity.

On Using Bit-Fixing Instead of Compression. Another question is whether it is possible
to rely on bit-fixing as alternative to our use of the compression technique (cf. [8]). That
is, one would first show that an RSA algorithm of the form (A0, A1, A2) with advice of size
Sr, making at most Tr number of queries, and achieving success probability ϵr, implies the
existence of an RSA algorithm of the form (A′1, A′2) making at most T ′r number of queries,
and achieving success probability ϵ′r in the bit fixing model, which fixes the labelling function
π in q locations. It is possible that the AM reduction could then be applied more directly to
(A′1, A′2) to obtain a factoring algorithm without going through a compression argument.

Unfortunately, similarly to the discussion above, this approach requires the number of
fixed locations q to be at least SrTr/(ϵr)2. Since A′1 cannot itself make oracle queries, for
it to be able to choose A′2 adaptively in the bit-fixing model, the information about the q
fixed locations would need to be given to A′1 as non-uniform advice. This would mean that
the space of the RSA algorithm, and hence the resulting factoring algorithm, be at least
SrTr/(ϵr)2, leading to trivial parameter settings.

On our use of information-theoretic techniques. We leverage information-theoretic tech-
niques in three points in our proofs. First, in Section 4, we use a compression argument along
with a theorem of De, Trevisan, Tulsiani [13] to show that the output of a successful RSA
algorithm in the GRM with preprocessing model will satisfy a certain condition with high
probability (see technical overview for more details). The condition being satisfied with high
probability will then imply that the Aggarwal-Maurer factoring algorithm can be efficiently
instantiated in the ideal cipher or random oracle model.

In Section 4.2, we use a different compression argument along with a theorem of
Drucker [16] to show that our factoring algorithm (which invokes the Aggarwal-Maurer
algorithm) in the ideal-cipher model can be efficiently simulated in the standard model by
augmenting the preprocessing advice with a small table consisting of oracle query/response

D. Dachman-Soled, J. Loss, and A. O’Neill 8:7

pairs. Note that this argument is not straightforward, since the online part of the factoring
algorithm must respond to queries consistently with the pre-processing information, and it is
not clear that this can be done efficiently (e.g. sampling the responses of the ideal cipher
“on-the-fly” can lead to inconsistencies with the pre-processing information which may depend
on global properties of the oracle).

Finally, in the full version [11], we use a variant of the Fiat-Naor/Hellman tables [19, 17]
to obtain a factoring algorithm with the required space, time complexity for a range of
parameters that is not covered by our factoring algorithm (which invokes the Aggarwal-Maurer
algorithm) from above.

1.2 Related Work
There is an extensive body of literature on the hardness of the RSA problem and is relationship
to factoring. Boneh and Venkatesan [5] gave the first among these results. Their result shows
that reducing low-exponent RSA from factoring using a straight-line reduction is as hard as
factoring itself. A similar result by Joux et al. [20] shows that when given access to an oracle
computing eth roots modulo N of integers x+ c (where c is fixed and x varies), computing
eth roots modulo N of arbitrary numbers becomes easier than factoring.

A more closely related line of work initiated by Brown [6] shows that for generic adversaries,
computing RSA (or variants thereof), is as hard as factoring the modulus N . Brown’s initial
work considered only the case of SLPs without division and was subsequently extended by
Leander and Rupp [22] to the case of GRAs without division.The work of Aggarwal and
Maurer [1] finally showed that the problems are equivalent even for GRAs with division. A
subsequent result of Jager and Schwenk showed that computing Jacobi symbols is equivalent
to factoring for GRAs. Their result puts into question the soundness of the generic ring
model (GRM), as it shows that there are problems which are hard in the GRM, but easy
in the plain model. On the other hand, this result has no immediate implication for other
computational problems like the RSA problems, which may still be meaningful to consider
in the GRM. A recent work by Rotem and Segev also showed how the GRM can been used
to analyze the security of verifiable delay functions [29].

The Generic Group Model (with Preprocessing). Starting with Nechaev [25], a long
line of work has studied the complexity of group algorithm in the generic group model
(GGM) [30, 24]. Algorithms in this model of Maurer [24] are restricted to accessing the group
using handles and cannot compute on group elements directly. This makes it possible to
prove information theoretic lower bounds on the running times and success probabilities of
generic group algorithms for classic problems in cyclic groups (e.g., DLP, CDH, DDH). To the
best of our knowledge, only two works have considered the RSA problem in idealized group
models. The first of these work is due to Damgard and Koprowski [12] who ported Shoup’s
generic group model [30] to the setting of groups with unknown order and showed the generic
hardness of computing eth roots in this model. The second work is that of Dodis et al. [15]
who considered the instantiability of the hash function in FDH-RSA. On the one hand, unlike
the GRA model that we use for online adversary, they only model the multiplicative group
Z∗N as generic. In other words, they do not allow the adversary to take advantage of the
full ring structure of ZN . On the other, their model allows the online adversary to perform
arbitrary side computations. Recall that we do not allow such computations in our model,
as the online adversary is a GRA. We face many additional technical issues due to this point
as well as preprocessing. More recently, the work of Corrigan-Gibbs and Kogan [10] initiated
the study of preprocessing algorithms in the GGM. They considered generic upper and

ITC 2024

8:8 Breaking RSA Generically Is Equivalent to Factoring, with Preprocessing

lower bounds for the discrete logarithm problem and associated problems. Their modelling
approach is very similar to our own, in that the algorithm in the offline phase has access
to the labelling oracle π and can pass an advice string of bounded size to the online phase
of the algorithm. In addition to modeling differences mentioned above, they also consider
adversaries who, in the online phase, may perform arbitrary side computations. Finally, the
distinction between Maurer’s and Shoup’s GGM (i.e., whether or not a labeling function is
used) was studied in detail by Zhandry [32]; to our knowledge, the analogous issue has not
been studied for GRAs.

The Algebraic Group Model. More recently, a series of works has explored the algebraic
group model [18] as a means to abstract the properties of the groups QRN and the multiplic-
ative group Z∗N more faithfully. The work of Katz et al. [21] introduced a quantitative version
of the algebraic group model called the strong algebraic group model to relate the RSW
assumption [27] over QRN to the hardness of factoring (given that N is a product of safe
primes p, q). Their model and ideas were extended to Z∗N by Stevens and van Baarsen [31]
who gave a general framework for computational reductions in the (strong) algebraic group
model over Z∗N . Additionally, Rotem [28] reduces RSA to factoring in the algebraic group
model over Z∗N .

2 Technical Overview

Our main result shows that any generic attack on RSA with preprocessing gives rise to a
factoring algorithms with preprocessing in the random oracle model and plain models with
polynomially related parameters. We begin by recapping the subclass of RSA algorithms we
consider, and then discuss the high level approach of our proof of equivalence.

The RSA algorithm. Recall that we consider RSA adversaries that are split into two “fixed”
parts (Aπ0 , A1) and a third part Gπ that is adaptively chosen by A1 upon seeing the RSA
instance. In more detail, Aπ0 gets oracle access to π : {0, 1}κ → {0, 1}m and is completely
unbounded both in terms of computation and number of queries to π. Aπ0 finally outputs
a state state of size Sr (called A’s space). A1 takes as input state and the RSA instance
(N, e, π(y) = π(xe)), runs in time T1,r, and outputs a GRA Gπ of size (and hence running-
time) T2,r. The GRA Gπ is an oracle-aided program that computes relative to π. In other
words, each multiplication (resp. division, addition) step of Gπ with inputs y1, y2 outputs
π(π−1(y1) ·π−1(y2) (mod N)) (resp. π(π−1(y1) ·(π−1(y2))−1 (mod N)), π(π−1(y1)+π−1(y2)
(mod N))). A1 is computationally bounded but may run for superpolynomial time. However,
it may not make any queries to the oracle π. Finally, Gπ takes as input π(y) and evaluates
Gπ(π(y)). In the following, we fix π, a state state of some bounded size Sr output by
Aπ0 , as well as a modulus N and value e with gcd(e, ϕ(N)) = 1. We consider the success
probability ϵr on input π(y) of A1 relative to these fixed values in outputting Gπ such that
Gπ(π(y)) = π(x) and xe = y (mod N). Here, the success probability is taken over random
choice of y ← ZN and coins of A1. Fixing π, state, N, e simplifies our discussion and can
easily be justified by an averaging argument. Our final analysis, however, considers these
values drawn from an appropriate distribution. Our goal is to construct a factoring algorithm
with preprocessing and with parameters Sf , Tf , ϵf (space, time, and success probability) that
are polynomially related to Sr, T1,r, T2,r, ϵr. Specifically, we require that Sf = Sr + O(1),
Tf = poly(κ, T1,r, T2,r, 1/ϵr) and ϵf = poly(ϵr), where κ = log(N) is security parameter. We
consider algorithms with unbounded preprocessing. Moreover, the algorithm A1 does not

D. Dachman-Soled, J. Loss, and A. O’Neill 8:9

have access to π, but can perform arbitrary (and superpolynomially many) operations after
learning the modulus N and the RSA instance π(xe). Only then does it hand over the
remaining computation to the fully generic program Gπ. In order for this to be possible,
we must do several case analyses. To simplify this technical overview, we will henceforth
conflate the online portion of algorithm’s running times by setting Tr = Tr,1 + Tr,2.
In the following, we first restrict our attention to the special case where A1 outputs a
straight-line program (SLP) with addition/multiplication only (i.e., without equality checks).
This special case already requires most of the key ideas of our proof. We then briefly explain
how to extend our result to the case where A1 may output a generic ring algorithm (GRA).

First case analysis: Fiat-Naor argument. In the case that Tr · Sr ≥ ϵr · 2κ/4, we will
completely ignore the RSA algorithm, and construct a different Factoring algorithm in the
RO model “from scratch.” The idea is to use a theorem of Fiat and Naor [17], which extends
Hellman’s seminal result on space/time tradeoffs for inversion of a random function [19], to
obtain space/time tradeoffs for inversion of any function f . Specifically, Fiat and Naor consider
an arbitrary function f : D → D and show that f can be inverted with probability 1− 1/|D|
in the random oracle (RO) model with space S and time T , as long as S2 · T ≥ |D|3 · q(f),
where q(f) is the probability that two random elements in D collide under f .1 We apply
Fiat-Naor to the factoring problem by viewing f as the function that takes two κ/2 bit
strings and multiplies them to obtain a κ-bit string, where κ = log(N). By carefully setting
parameters and using properties of the second moment of the divisor function, to bound q(f)
as q(f) ∈ O(κ

3

2κ), we obtain a factoring algorithm Sf = Sr, Tf = poly(κ) · T 2
2,r and inversion

probability O(ϵr). Note that all parameters are polynomial in the parameters of the RSA
algorithm. See [11] for more details.

Factoring from RSA. We now consider the main parameter regime of interest, where
Tr · Sr < ϵr · 2κ/4. In this parameter regime, we will show how to use the RSA algorithm to
construct a factoring algorithm. However, before we can do that, we need to eliminate a
crucial case in which the RSA algorithm is unhelpful for constructing a factoring algorithm.
Let us first consider when and why the RSA algorithm is useful for factoring. Then we will
show how to eliminate the remaining case.

Note that if A is successful with probability ϵr, then with probability ϵr the SLP S output
by A1 is such that on a randomly chosen y = xe, Sπ(π(y)) = π(x). We begin by defining
an “inversion procedure” on SLP’s that, given Sπ with oracle access to π and such that
Sπ(π(y)) = π(x), outputs an SLP S̃ with no oracle access such that S̃(y) = x. (Crucially,
the inversion procedure itself requires oracle access to π.) This, in turn, means that y is a
root of the SLP S̃(Y)e − Y , with respect to formal variable Y . In AM’s analysis, they were
able to conclude that if A is successful, then S̃(Y)e − Y must have many roots. Then, they
showed an algorithm that successfully factors, given as input a non-zero SLP S̃(Y)e − Y
with a sufficiently large fraction of roots. In our setting, however, we cannot necessarily
conclude this. This is because we allow A1 to output a different SLP Sππ(y) after seeing input
π(y) (we use the notation Sππ(y) to emphasize that the chosen SLP may depend on π(y)).
This means that the SLP Sππ(y) output by A1 can be tailored to succeed on π(y) and on
only few other inputs. Note that it is possible for A1 to maintain an overall high success
probability with this strategy. So while w.h.p. y itself must still be a root of the “inverted
SLP” S̃π(y)(Y)e − Y , we are not guaranteed that S̃π(y)(Y)e − Y has many roots overall. In
this case, factoring fails.

1 Their final algorithm actually requires only k-wise independent hash functions instead of a RO. For this
overview, we assume a RO with O(1) evaluation time.

ITC 2024

8:10 Breaking RSA Generically Is Equivalent to Factoring, with Preprocessing

The above reasoning leads to the second and third cases considered in our proof: The
second case is that w.h.p. y is a root of S̃π(y)(Y)e − Y , and S̃π(y)(Y)e − Y has at most J
roots. The third case is that w.h.p. the SLP S̃π(y)(Y)e− Y , has at least J roots. The second
case will lead to contradiction due to a compression argument. We will therefore be left with
a (comparatively simple) third case which will imply existence of a factoring algorithm using
the arguments of AM.

Second case analysis: Compression. For this case, we show how to construct an encoding
routine that compresses the function table of a random injection π. Our main leverage to
achieve this is the following idea. Suppose that y is a root of S̃π(y)(Y)e−Y , and S̃π(y)(Y)e−Y
has at most J roots. Then there is a space-efficient way for an encoding routine Eπ (with
oracle access to π) to transmit y to a decoder D (without oracle access to π) who knows only
S̃π(y): Simply output the index of y among the J roots of S̃π(y)(Y)e − Y . (This takes log(J)
bits.) Intuitively, we save space when log(J) is small compared to the trivial encoding of y,
which specifies the index of y among all pre-images that are not yet mapped to an image in
the encoding which is being constructed by Eπ. Making this intuition rigorous, however, is
quite challenging.

First, we must show how the encoder can efficiently transmit the description of S̃π(y)
to the decoder. We may assume that A1 and state will be known to the decoder (we can
include state in the encoding). However, to obtain the correct SLP S̃π(y), the decoder must
run A1 on the correct random coins ρ and on the correct input π(y). Furthermore, A1 is
only guaranteed to output an SLP Sππ(y) that is successful on π(y) w.h.p., when π(y) = π(xe)
and ρ are chosen uniformly at random. But we cannot afford to transmit the value of a
random π(y), nor the value of random coins ρ of A1, while still achieving compression. To
solve both of these problems, we rely, as prior work of Corrigan-Gibbs and Kogan [10] did,
on a lemma of De, Trevisan, and Tulsiani [13]. This lemma proves incompressibility of an
element x from a sufficiently large set X in a setting that allows the encoder and decoder
to pre-share a random string of arbitrary length. For our purposes, this random string will
allow us to both (1) select a random π(y) from the set of images whose preimages are not yet
known and (2) select the random tape ρ for A1 to use together with input π(y). Thus, the
successful randomness can simply be encoded by its index within the shared random string,
thus saving space. We mention that Corrigan-Gibbs and Kogan avoided encoding successful
π(y) values by using the random self-reducibility property of the discrete log problem to
obtain an adversary that succeeds w.h.p. on every input. Unlike Corrigan-Gibbs and Kogan,
our argument does not require random self-reducibility, and rather uses the random tape to
select a random image π(y) instead. Thus, while RSA also enjoys random self-reducibility,
our proof does not make use of it, potentially making our techniques applicable to broader
settings.

The third challenge is that in order to obtain S̃π(y) from Sπ(y), the decoder must run the
SLP inversion procedure, which requires access to π. Therefore, our encoder Eπ includes
all the responses of queries to π during evaluation of the SLP inversion procedure in the
encoding, replacing any query to π−1(π(y)) itself with the formal variable Y . The final
challenge is the delicate setting of parameters needed for the result to go through. We must
set the value J (the number of roots in the SLP S̃π(y)(Y)e − Y) such that compression is
achieved when the number of roots is at most J and, looking ahead, such that efficient
factoring (with parameters Sf , Tf , ϵf that are polynomially related to Sr, Tr, ϵr) is possible
when the number of roots is at least J . We note that our techniques for analyzing the
encoding length are significantly different from those used by Corrigan-Gibbs and Kogan
and may be of independent interest. (See the full version [11] for more details.)

D. Dachman-Soled, J. Loss, and A. O’Neill 8:11

Factoring and Extending to the GRA case. Once we have ensured that the the SLP
Sπ(y)(Y)e − Y has at least J roots w.h.p., we can directly apply a theorem of AM to obtain
a factoring algorithm. Our final step will then be to extend the above discussion to a slightly
broader setting in which A1 outputs a GRA Gπ rather than an SLP Sπ. Here, we once again
build on arguments of AM, although we need to put in some additional effort to make them
work in our setting with preprocessing. In particular, the final factoring algorithm (with
preprocessing) that we obtain is in the random injection (RI) model, where the algorithm
requires access to both π and π−1. This is because our factoring algorithm requires access to
such a random injection in order to consistently simulate the oracle π to the RSA adversary
over the preprocessing phase and the online phase in a space efficient manner. Thus, it
remains to show how this oracle can be simulated in order to obtain a factoring algorithm
in the plain model. For simplicity, we omit our intermediate result in the Random Oracle
Model from this technical overview.

Obtaining our plain model result. In the following, we denote the random injective function
by H and we denote by π the GRM oracle interface expected by the RSA adversary. We
note that using backwards and forwards access to H, one can easily simulate queries made to
π. We show that with some additional work one can dispense with the RI in our result and
obtain a result in the plain model. To do so, we first observe that the online portion of our
factoring algorithm in the RI model makes only a single query to H in the forward direction
(on a uniformly random input modulo N), and makes a series of non-adaptive queries to
H−1. We will first show that we can simulate all the responses to the queries to H−1 while
adding only a small overhead to the non-uniform advice. We will then show that the single
query to the forward direction of H can be simulated as well.
Simulating queries to H−1. Recall that A1 receives the non-uniform advice state and the
input (N, e, π(xe mod N)) and outputs a GRA. The factoring algorithm will run the GRA
inversion algorithm by evaluating π−1 on hardcoded labels in the GRA that are not equal
to the input label π(xe mod N). Intuitively, since π is expanding, and since A1 may not
query the oracle, the only way A1 can hardcode a valid label into the GRA is if this label is
somehow stored in state. To formalize this intuition, for a fixed π, we consider the set Sπ
of valid images of π that are hardcoded into a GRA outputted by A1 with sufficiently high
probability over choice of input (N, e, π(xe mod N)) and the random coins of A1.
We use a compression argument to show that for most choices of π, the set Sπ is sufficiently
small such that it can be added to A1’s advice state. By definition, for a fixed π, it is unlikely
for A1 to hardcode images of π into its outputted GRA if these images are not part of Sπ.
Thus, queries to π−1 can be simulated without making a corresponding query to H by using
state as a lookup table.
Simulating the query to H. There is still a single query to the forward direction of H that
must be taken care of. This is the query made by the factoring algorithm when generating
the input to A1. Specifically, it is a query with input y = xe mod N and output π(y) = ỹ.
To simulate this query without accessing H, we construct a simulated plain model factoring
algorithm as follows: In the preprocessing phase, the plain model algorithm internally samples
a random injective function H, and the output of A0 in the preprocessing stage is computed
relative to this chosen H. Note that we can view A0’s input in the preprocessing stage as
the entire oracle, and in particular, this will include the input/output pair (y, ỹ′), where
y = xe mod N corresponds to the input value that will be given to A1 in the online phase.
In the online phase, our plain model factoring algorithm will actually resample the output
value of H on input y and replace it with a uniform random string ỹ. This resampled value

ITC 2024

8:12 Breaking RSA Generically Is Equivalent to Factoring, with Preprocessing

ỹ will then be given to A1 in the online phase as the supposed value of π(y). A lemma of
Drucker [16] implies that (on average) the output distribution of a compressing algorithm
A0, which outputs state, does not change much when a single input in a randomly chosen
location (location y) is switched from a fixed value to a randomly resampled value. This
implies that the RI factoring algorithm will behave roughly the same when π is simulated in
this manner. See the full version [11] for further details.

3 Preliminaries

3.1 Notation and Conventions

We denote the sampling of a uniformly random element x from a set S as x← S. Similarly,
we denote the output y of a randomized algorithm A on input x as y ← A(x). We sometimes
also write y := A(x;ω) to denote that A deterministically computes y on input x and random
coins ω. To denote that an algorithm A has access to an oracle O during runtime, we write
AO. We denote as ZN the ring of integers modulo N , and as [N] the set {1, ..., N}. We write
νN (f) to denote the fraction of roots of a polynomial f over ZN , i.e.,

νN (f) := |{a ∈ ZN | f(a) = 0}|
N

.

Throughout, we denote the security parameter as κ. For k,m ∈ N we denote by Func[k,m]
the set of functions F : {0, 1}k → {0, 1}m. Denote by Perm[m] the set of permutations on
{0, 1}m. We denote by FuncInj[k,m] the set of injective functions I : {0, 1}k → {0, 1}m.

3.2 Incompressibility Lemmas

We use the following lemma by De et al. [13].

▶ Lemma 4 (De, Trevisan, Tulsiani [13]). Let E : X × {0, 1}ρ → {0, 1}m and D : {0, 1}m →
X × {0, 1}ρ be randomized encoding and decoding procedures such that, for every x ∈
X ,Prr←{0,1}ρ [D(E(x, r), r) = x] ≥ γ. Then, m ≥ log |X | − log 1/γ.

▶ Remark 5. As noted by [10], this lemma also holds when the encoding and decoding
algorithms have access to a common random oracle.

The following lemma is from Drucker [16].

▶ Lemma 6 (Drucker [16]). Let N,S,m ≥ 1 be integers. Given a possibly-randomized
mapping A0(ỹ0, . . . , ỹN−1) : {0, 1}N×m → {0, 1}S, and a collection D0, . . . ,DN−1 of mutually
independent distributions over {0, 1}m, for y ∈ ZN , let

γy := Eỹ∼Dy [||A0(D0, . . . ,Dy−1, ỹ,Dy+1, . . . ,DN−1)−A0(D0, . . . ,DN−1)||stat],

where the notation || · − · ||stat denotes the statistical distance between two distributions.
We have that

1
N

∑
y∈ZN

γy ≤
√

ln 2
2 · S + 1

N
.

D. Dachman-Soled, J. Loss, and A. O’Neill 8:13

4 Main Results

We begin by stating two theorems that will be used to obtain both our plain model and RO
model results.
▶ Theorem 7. Let Sr := Sr(κ), T1,r := T1,r(κ), T2,r := T2,r(κ), ϵ = ϵ(κ) such that for
sufficiently large κ, Sr · T2,r ≤ ϵ/162κ. Let A = (Aπ0 ,A1) be an (Sr, T1,r, T2,r)-GP-RSA
algorithm relative to RSAGen, and let Advag-rsa

RSAGen(A) = ϵ.
Then there exists a (Sf , Tf)-factoring algorithm B in the random injective function model

relative to RSAGen such that

Advfac
RSAGen(B) ∈ Ω(ϵ3),

such that Tf := poly(κ) · (T1,r + T 5
2,r + T

7/2
2,r

ϵ3/2), and such that Sf := Sr.
This theorem is proved in the full version [11].

▶ Remark 8. We give a comparison here of the bounds we achieve in Theorem 7 versus
those achieved by AM’s factoring algorithm. First, we consider our runtime of Tf :=

poly(κ) · (T1,r + T 5
2,r + T

7/2
2,r

ϵ3/2), and focus on the (T1,r + T 5
2,r + T

7/2
2,r

ϵ3/2) part. The first term’s
dependence on T1,r is unavoidable, since the factoring algorithm must run the RSA algorithm
at least once. The second term of T 5

2,r comes from running the SLPFACπ algorithm with
M ′ := poly(κ) · (T2,r)2. This corresponds exactly to running AM’s Algorithm 1 M ′ number
of times, whereas they only run it once. The reason for one of the T2,r factors in M ′ is
that the success probability of AM’s Algorithm 1 depended linearly on 1/T2,r (the size of
the SLP) and we wanted to remove the dependence on T2,r from our factoring algorithm’s
success probability. The reason for the second T2,r factor is that the success probability of
AM’s Algorithm 1 also depends linearly on the fraction of roots in the SLP. For them, this
is essentially equivalent to the RSA algorithm’s success probability. But for us, due to our
compression argument, the fraction of roots in the SLP is only guaranteed to be at least
J/N ≈ ϵ/T2,r. Since we want to remove the dependence on T2,r from the success probability
of the factoring algorithm, this accounts for the second factor of T2,r in our runtime. Moving

to the third term of T
7/2
2,r

ϵ3/2 , this comes from the runtime of Alg2AM which is essentially the
same as Algorithm 2 of AM. We are able to reduce from ϵ3/2 to ϵ5/2 in the denominator, since
we assume that ϵ > 1/N and since we ignore polylog(N) = poly(κ) factors in our analysis.

Next we move on to our success probability. We have ϵ3 compared to linear dependence
on ϵ in AM because we only provide a factoring algorithm when a certain event occurs.
The event that we consider is only guaranteed to occur with probability ϵ with respect to
ϵ-fraction of oracles.
▶ Remark 9. Note that achieving the desired factoring algorithm when Tr,2 ≥ 2κ/10 or
ϵ′ ≤ 1/2κ/6 is trivial since there is a trivial factoring algorithm that runs in time Tf =
O

(
(2κ/10)5)

= O
(
2κ/2)

, with zero pre-processing and success probability 1, as well as a
trivial factoring algorithm that achieves success probability Ω

(
(2−κ/6)3)

= Ω
(
2−κ/2)

with
zero pre-processing and poly(κ) time (which just guesses a random number in [2κ/2] as one
of the factors of N). We therefore assume WLOG that Tr,2 < 2κ/10 and ϵ′ > 2−κ/6.

The following theorem instantiates the algorithm of Fiat-Naor in the setting of factoring-
with-preprocessing.
▶ Theorem 10. Let S̃ = S̃(κ), T̃ = T̃ (κ), ϵ̃ = ϵ̃(κ) such that for sufficiently large κ,
S̃ · T̃ ≥ ϵ̃2κ. Then there exists a plain-model (Sf , Tf)-factoring-with-preprocessing algorithm
A such that for κ ∈ N, we have

Advfac
RSAGen(A) ∈ Ω(ϵ̃),

we further have that Sf = S̃, and Tf = poly(κ) · T̃ 2.

ITC 2024

8:14 Breaking RSA Generically Is Equivalent to Factoring, with Preprocessing

This theorem is proved in the full version [11].
In Section 4.1 and 4.2 we formally state our results for the RO and plain model and

explain how Theorems 7 and 10 are used to obtain those results.

4.1 The RO model result

▶ Theorem 11. Let A = (Aπ0 ,A1) be an (Sr, T1,r, T2,r)-GP-RSA algorithm relative to RSAGen,
and let ϵ := Advag-rsa

RSAGen(A).
Then there exists a (Sf , Tf)-factoring algorithm B in the random injective function model

relative to RSAGen such that

Advfac
RSAGen(B) ∈ Ω(ϵ3),

such that Tf := poly(κ) · (T1,r + T 5
2,r + T

7/2
2,r

ϵ3/2), and such that Sf := Sr +O(1).

To prove Theorem 11 we first show that the RI-model factoring algorithm from Theorem 7
(which gets backwards and forwards access to the random injective function), can be converted
into a factoring algorithm in the Random Oracle model with the same parameters.

Specifically, in Proposition 21 we take A to be our final factoring algorithm FACπ (see [11])
and q = 2κ. Now set L such that

22κ/L ∈ O(N2/L) ≤ 1/(2N) .

As ϵf ∈ Ω(1/N) where ϵf is the advantage FACπ relative to a random injection on [L], we
have

ϵ′f ≥ ϵf/2

where ϵ′f is the advantage of the factoring algorithm in RO model that runs FACπ, answering
its queries via Luby-Rackoff. This RO-model factoring algorithm is for the case that for
sufficiently large κ, Sr · T2,r ≤ ϵ/162κ.

Setting S̃ = Sr, T̃ = T2,r, ϵ̃ = ϵ/16 and applying Theorem 10, we obtain a plain
model factoring algorithm with parameters Sf = Sr, Tf = poly(κ) · T 2

2,r, and advantage
ϵf ∈ Ω(ϵ). This plain-model factoring algorithm is for the case that for sufficiently large κ,
Sr · T2,r ≥ ϵ/162κ.

Note that it is also possible that neither of the above cases is satisfied and that, rather,
for infinitely many κ, Sr(κ) · T2,r(κ) ≥ ϵ(κ) · 2κ/16, and simultaneously, for infinitely many
κ, Sr(κ) · T2,r(κ) < ϵ(κ) · 2κ/16. If this occurs, we obtain our factoring algorithm by having
the unbounded pre-processing stage of the factoring algorithm do the following: On fixed
input κ, it will run the GP-RSA algorithm exhaustively on all possible random coins and
inputs to determine the exact constants Sr(κ), Tr,2(κ), ϵ(κ). It will then check whether
Sr(κ) · Tr,2(κ) ≥ ϵ(κ) · 2κ/16 or Sr(κ) · Tr,2(κ) < ϵ(κ) · 2κ/16. If the former is true, it will
append a “0” bit to the preprocessing advice state to tell the online portion of the factoring
algorithm to run the factoring algorithm for the first case. If the latter is true, it will append
a “1” bit to the preprocessing advice to tell the online portion of the factoring algorithm to
run the factoring algorithm for the second case. Thus, the preprocessing advice increases by
a single bit (so it still satisfies Sf = Sr +O(1)) and the other parameters Tf ,Advfac

RSAGen(B)
remain the same and therefore satisfy the required constraints of Theorem 11.

D. Dachman-Soled, J. Loss, and A. O’Neill 8:15

4.2 The plain model result
▶ Theorem 12. Let A = (Aπ0 ,A1) be an (Sr, T1,r, T2,r)-GP-RSA algorithm relative to RSAGen,
and let ϵ := Advag-rsa

RSAGen(A).
Then there exists a (Sf , Tf)-factoring algorithm B in the plain model relative to RSAGen

such that

Advfac
RSAGen(B) ∈ Ω(ϵ6),

such that Tf := poly(κ) · (T1,r + T 5
2,r + T

7/2
2,r

ϵ3/2), and such that Sf := O(Sr).

To prove Theorem 12 we start from the RI model factoring algorithm obtained in
Theorem 7 and prove the following theorem:

▶ Theorem 13. Let Sr := Sr(κ), T1,r := T1,r(κ), T2,r := T2,r(κ), ϵ = ϵ(κ). Let A = (Aπ0 ,A1)
be an (Sr, T1,r, T2,r)-GP-RSA algorithm relative to RSAGen, and let ϵ := Advag-rsa

RSAGen(A).
There exists a constant c such that, if for sufficiently large κ, Sr · T2,r ≤ c · ϵ62κ, then

there exists a (Sf , Tf)-factoring algorithm B in the plain model relative to RSAGen such that

Advfac
RSAGen(B) ∈ Ω(ϵ6),

such that Tf := poly(κ) · (T1,r + T 5
2,r + T

7/2
2,r

ϵ3/2), and such that Sf := Sr.

The proof of Theorem 13 appears in the full version [11]. To obtain an algorithm for the
case that for sufficiently large κ, Sr · T2,r ≥ c · ϵ62κ, we set S̃ = Sr, T̃ = T2,r, ϵ̃ = c · ϵ6 and
apply Theorem 10. This yields a plain model factoring algorithm with parameters Sf = Sr,
Tf = poly(κ) · T 2

2,r, and advantage ϵf ∈ Ω(ϵ6). Using the same argument as in Section 4.1,
we obtain a single factoring algorithm that covers all cases in the plain model with the
parameters of Theorem 12.

Two Events. Fix A, N, e, π and state as in Lemma 5 in [11]. We consider the probability of
two events over the randomness of ComGRA and choice of y ← ZN . Set J := (1−ϵ′/2)ϵ′·N

8 logNT2,r
=

(1−ϵ′/2)·N
4R1T2,r

= N · δ, where δ := J/N .
Event E[N, e, state, π]1: ComGRA[A]π on input π(y) returns a list of polynomials
{R1, . . . , Rψ+1} s.t. y is negatively oriented with respect to one of {R1, . . . , Rψ+1}.
Event E[N, e, state, π]2: ComGRA[A]π on input π(y) returns a list of polynomials
{R1, . . . , Rψ+1} s.t. νN (Rψ+1) ∈ (δ, 1− δ).

▶ Corollary 14 (of Lemma 5 in [11]). Suppose that the conditions of Lemma 5 in [11] hold.
Then at least one of the events E[N, e, state, π]1 or E[N, e, state, π]2 occurs with probability
at least ϵ/4.

Looking ahead, if E[N, e, state, π]1 occurs, then A will be useless for factoring. Our task,
therefore, is to prove that E[N, e, state, π]1 occurs with probability less than ϵ′ = ϵ/4 (which
we do in the full version [11] via a compression argument). We therefore conclude that
E[N, e, state, π]2 occurs with probability at least ϵ′ = ϵ/4.

References
1 Divesh Aggarwal and Ueli Maurer. Breaking RSA generically is equivalent to factoring. In

Antoine Joux, editor, EUROCRYPT 2009, volume 5479 of LNCS, pages 36–53. Springer,
Heidelberg, April 2009. doi:10.1007/978-3-642-01001-9_2.

ITC 2024

https://doi.org/10.1007/978-3-642-01001-9_2

8:16 Breaking RSA Generically Is Equivalent to Factoring, with Preprocessing

2 Mihir Bellare and Phillip Rogaway. Random oracles are practical: A paradigm for designing
efficient protocols. In Dorothy E. Denning, Raymond Pyle, Ravi Ganesan, Ravi S. Sandhu,
and Victoria Ashby, editors, ACM CCS 93, pages 62–73. ACM Press, November 1993. doi:
10.1145/168588.168596.

3 Daniel J. Bernstein and Tanja Lange. Non-uniform cracks in the concrete: The power
of free precomputation. In Kazue Sako and Palash Sarkar, editors, ASIACRYPT 2013,
Part II, volume 8270 of LNCS, pages 321–340. Springer, Heidelberg, December 2013. doi:
10.1007/978-3-642-42045-0_17.

4 Dan Boneh. Twenty years of attacks on the rsa cryptosystem. Notices of the American
Mathematical Society (AMS), 46(2):203–213, 1999.

5 Dan Boneh and Ramarathnam Venkatesan. Breaking RSA may not be equivalent to factoring.
In Kaisa Nyberg, editor, EUROCRYPT’98, volume 1403 of LNCS, pages 59–71. Springer,
Heidelberg, May / June 1998. doi:10.1007/BFb0054117.

6 D. R. L. Brown. Breaking rsa may be as difficult as factoring. Eprint Cryptology Archive,
2006.

7 Don Coppersmith. Modifications to the number field sieve. J. Cryptol., 6(3):169–180, 1993.
8 Sandro Coretti, Yevgeniy Dodis, and Siyao Guo. Non-uniform bounds in the random-

permutation, ideal-cipher, and generic-group models. In Hovav Shacham and Alexandra
Boldyreva, editors, CRYPTO 2018, Part I, volume 10991 of LNCS, pages 693–721. Springer,
Heidelberg, August 2018. doi:10.1007/978-3-319-96884-1_23.

9 Sandro Coretti, Yevgeniy Dodis, Siyao Guo, and John P. Steinberger. Random oracles and
non-uniformity. In Jesper Buus Nielsen and Vincent Rijmen, editors, EUROCRYPT 2018,
Part I, volume 10820 of LNCS, pages 227–258. Springer, Heidelberg, April / May 2018.
doi:10.1007/978-3-319-78381-9_9.

10 Henry Corrigan-Gibbs and Dmitry Kogan. The discrete-logarithm problem with preprocessing.
In Jesper Buus Nielsen and Vincent Rijmen, editors, EUROCRYPT 2018, Part II, volume
10821 of LNCS, pages 415–447. Springer, Heidelberg, April / May 2018. doi:10.1007/
978-3-319-78375-8_14.

11 Dana Dachman-Soled, Julian Loss, and Adam O’Neill. Breaking rsa generically is equivalent
to factoring, with preprocessing. Cryptology ePrint Archive, Paper 2022/1261, 2022. URL:
https://eprint.iacr.org/2022/1261.

12 Ivan Damgård and Maciej Koprowski. Generic lower bounds for root extraction and signature
schemes in general groups. In Lars R. Knudsen, editor, EUROCRYPT 2002, volume 2332 of
LNCS, pages 256–271. Springer, Heidelberg, April / May 2002. doi:10.1007/3-540-46035-7_
17.

13 Anindya De, Luca Trevisan, and Madhur Tulsiani. Time space tradeoffs for attacks against
one-way functions and prgs. In Tal Rabin, editor, Advances in Cryptology – CRYPTO 2010,
pages 649–665, Berlin, Heidelberg, 2010. Springer Berlin Heidelberg.

14 Yevgeniy Dodis, Siyao Guo, and Jonathan Katz. Fixing cracks in the concrete: Random oracles
with auxiliary input, revisited. In Jean-Sébastien Coron and Jesper Buus Nielsen, editors,
EUROCRYPT 2017, Part II, volume 10211 of LNCS, pages 473–495. Springer, Heidelberg,
April / May 2017. doi:10.1007/978-3-319-56614-6_16.

15 Yevgeniy Dodis, Iftach Haitner, and Aris Tentes. On the instantiability of hash-and-sign
RSA signatures. In Ronald Cramer, editor, TCC 2012, volume 7194 of LNCS, pages 112–132.
Springer, Heidelberg, March 2012. doi:10.1007/978-3-642-28914-9_7.

16 Andrew Drucker. New limits to classical and quantum instance compression. In 53rd FOCS,
pages 609–618. IEEE Computer Society Press, October 2012. doi:10.1109/FOCS.2012.71.

17 Amos Fiat and Moni Naor. Rigorous time/space tradeoffs for inverting functions. In Proceedings
of the 23rd Annual ACM Symposium on Theory of Computing, May 5-8, 1991, New Orleans,
Louisiana, USA, pages 534–541, January 1991. doi:10.1145/103418.103473.

https://doi.org/10.1145/168588.168596
https://doi.org/10.1145/168588.168596
https://doi.org/10.1007/978-3-642-42045-0_17
https://doi.org/10.1007/978-3-642-42045-0_17
https://doi.org/10.1007/BFb0054117
https://doi.org/10.1007/978-3-319-96884-1_23
https://doi.org/10.1007/978-3-319-78381-9_9
https://doi.org/10.1007/978-3-319-78375-8_14
https://doi.org/10.1007/978-3-319-78375-8_14
https://eprint.iacr.org/2022/1261
https://doi.org/10.1007/3-540-46035-7_17
https://doi.org/10.1007/3-540-46035-7_17
https://doi.org/10.1007/978-3-319-56614-6_16
https://doi.org/10.1007/978-3-642-28914-9_7
https://doi.org/10.1109/FOCS.2012.71
https://doi.org/10.1145/103418.103473

D. Dachman-Soled, J. Loss, and A. O’Neill 8:17

18 Georg Fuchsbauer, Eike Kiltz, and Julian Loss. The algebraic group model and its applications.
In Hovav Shacham and Alexandra Boldyreva, editors, CRYPTO 2018, Part II, volume 10992 of
LNCS, pages 33–62. Springer, Heidelberg, August 2018. doi:10.1007/978-3-319-96881-0_2.

19 Martin E. Hellman. A cryptanalytic time-memory trade-off. IEEE Trans. Inf. Theory,
26(4):401–406, 1980.

20 Antoine Joux, David Naccache, and Emmanuel Thomé. When e-th roots become easier than
factoring. In Kaoru Kurosawa, editor, ASIACRYPT 2007, volume 4833 of LNCS, pages 13–28.
Springer, Heidelberg, December 2007. doi:10.1007/978-3-540-76900-2_2.

21 Jonathan Katz, Julian Loss, and Jiayu Xu. On the security of time-lock puzzles and
timed commitments. In Rafael Pass and Krzysztof Pietrzak, editors, TCC 2020, Part III,
volume 12552 of LNCS, pages 390–413. Springer, Heidelberg, November 2020. doi:10.1007/
978-3-030-64381-2_14.

22 Gregor Leander and Andy Rupp. On the equivalence of RSA and factoring regarding generic
ring algorithms. In Xuejia Lai and Kefei Chen, editors, ASIACRYPT 2006, volume 4284 of
LNCS, pages 241–251. Springer, Heidelberg, December 2006. doi:10.1007/11935230_16.

23 Michael Luby and Charles Rackoff. How to construct pseudorandom permutations from
pseudorandom functions. SIAM Journal on Computing, 17(2), 1988.

24 Ueli M. Maurer. Abstract models of computation in cryptography (invited paper). In Nigel P.
Smart, editor, 10th IMA International Conference on Cryptography and Coding, volume 3796
of LNCS, pages 1–12. Springer, Heidelberg, December 2005.

25 V. I. Nechaev. Complexity of a determinate algorithm for the discrete logarithm. Mathematical
Notes, 55(2):165–172, 1994.

26 Ronald L. Rivest, Adi Shamir, and Leonard M. Adleman. A method for obtaining digital
signatures and public-key cryptosystems. Communications of the Association for Computing
Machinery, 21(2):120–126, 1978.

27 Ronald L. Rivest, Adi Shamir, and David A. Wagner. Time-lock puzzles and timed-release
crypto. Technical report, MIT, 1996.

28 Lior Rotem. Revisiting the uber assumption in the algebraic group model: Fine-grained
bounds in hidden-order groups and improved reductions in bilinear groups. In Dana Dachman-
Soled, editor, 3rd Conference on Information-Theoretic Cryptography, ITC 2022, July 5-7,
2022, Cambridge, MA, USA, volume 230 of LIPIcs, pages 13:1–13:13. Schloss Dagstuhl –
Leibniz-Zentrum für Informatik, 2022.

29 Lior Rotem and Gil Segev. Generically speeding-up repeated squaring is equivalent to
factoring: Sharp thresholds for all generic-ring delay functions. In Daniele Micciancio and
Thomas Ristenpart, editors, CRYPTO 2020, Part III, volume 12172 of LNCS, pages 481–509.
Springer, Heidelberg, August 2020. doi:10.1007/978-3-030-56877-1_17.

30 Victor Shoup. Lower bounds for discrete logarithms and related problems. In Walter Fumy,
editor, EUROCRYPT’97, volume 1233 of LNCS, pages 256–266. Springer, Heidelberg, May
1997. doi:10.1007/3-540-69053-0_18.

31 Aron van Baarsen and Marc Stevens. On time-lock cryptographic assumptions in abelian
hidden-order groups. In ASIACRYPT, pages 367–397, 2021.

32 Mark Zhandry. To label, or not to label (in generic groups). In Yevgeniy Dodis and Thomas
Shrimpton, editors, Advances in Cryptology - CRYPTO 2022 - 42nd Annual International
Cryptology Conference, CRYPTO 2022, Santa Barbara, CA, USA, August 15-18, 2022, Pro-
ceedings, Part III, volume 13509 of Lecture Notes in Computer Science, pages 66–96. Springer,
2022.

A Relevant Problems

In this section, we introduce the main relevant problems: the RSA Problem, the Factoring
Problem, and the general Function Inversion Problem (all with preprocessing). Algorithm
RSAGen on input 1κ generates (N, e, d, p, q) where N = pq and p, q are primes of bit-length
κ/2 with leading bit 1. Finally, ed = 1 mod ϕ(N).

ITC 2024

https://doi.org/10.1007/978-3-319-96881-0_2
https://doi.org/10.1007/978-3-540-76900-2_2
https://doi.org/10.1007/978-3-030-64381-2_14
https://doi.org/10.1007/978-3-030-64381-2_14
https://doi.org/10.1007/11935230_16
https://doi.org/10.1007/978-3-030-56877-1_17
https://doi.org/10.1007/3-540-69053-0_18

8:18 Breaking RSA Generically Is Equivalent to Factoring, with Preprocessing

▶ Definition 15 (Factoring with Preprocessing). Let F = (F0,F1) be an algorithm and RSAGen
be an RSA generator. Consider the factoring-with-preprocessing game facF

RSAGen:
Offline Phase. Run F0 on input 1κ to obtain an advice string state.
Online Phase. Run RSAGen on input 1κ to obtain(N, e, d, p, q). Then run F1 on input
(N, state).
Output Determination. When F1 returns p′, the experiment returns 1 if p = p′ or
q = p′. It returns 0 otherwise.

Define F’s advantage in the above experiment as

Advfac
RSAGen(F) = Pr[facF

RSAGen = 1] .

We call F an (S, T)-factoring algorithm relative to RSAGen if F0 outputs advice strings of
size at most S and F1 runs in time at most T .

▶ Definition 16 (RSA with Preprocessing). Let A = (A0,A1) be an adversary. Consider the
RSA-with-preprocessing game rsaARSAGen:

Offline Phase. Run A0 on input 1κ to obtain an advice string state.
Online Phase. Run RSAGen on input 1κ to obtain(N, e, d, p, q). Sample x← ZN and
run A1 on input (N, e, state, xe mod N).
Output Determination. When A1 returns x′, the experiment returns 1 if x = x′

(mod N). It returns 0 otherwise.
Define A’s advantage in the above experiment as

Advrsa
RSAGen(A) = Pr[rsaA

RSAGen = 1] .

We call A an (S, T)-RSA algorithm relative to RSAGen if A0 outputs advice strings of size at
most S and A1 runs in time at most T .

In the following, we consider a domain D of finite size along with a randomized point
generator G that outputs points in D.

▶ Definition 17 (Function Inversion with Preprocessing). Let D be a finite set and let f : D → D

be a function. Let I = (I0, I1) be an adversary and Gen a point generator. Consider the
function-inversion-with-preprocessing game δI

f,Gen:
Offline Phase. Run I0 on input 1κ to obtain an advice string state.
Online Phase. Run Gen on input 1κ to obtain a point y ∈ D. Run I1 on input (y, state)
Output Determination. When I1 returns x′, the experiment returns 1 if f(x′) = y. It
returns 0 otherwise.

Define I’s advantage in the above experiment as

Advδf,Gen(I) = Pr[δI
f,Gen = 1] .

We call I an (S, T)-function-inversion algorithm relative to Gen if I0 outputs advice strings of
size at most S and I1 runs in time at most T .

▶ Definition 18 (Collision Probability). Let D be a finite set and let f : D → D be a function.
For z ∈ D, If (z) denotes the number of preimages for z under f , i.e.

If (z) := |{u ∈ D : f(u) = z}| .

The collision probability of f : D → D, denoted by q(f) is defined as follows:

q(f) :=
∑
z∈D I

2
f (z)

|D|2
.

D. Dachman-Soled, J. Loss, and A. O’Neill 8:19

▶ Theorem 19 (Fiat-Naor [17]). For any D, f,Gen as in Definition 17 and any S, T such that
T ·S2 = |D|3 · q(f), there is an (S, T)-function-inversion algorithm I such that Advδf,Gen(I) ≥
1− 1/|D|.2

B Computational Models

In this section, we review some idealized models that will be relevant in our analyses and
discuss their relationships to each other.

Random Oracle Model (ROM). In the random oracle model [2] all algorithms have oracle
access to a uniformly random function from Func[m1,m2] for some m1,m2 ∈ N specified by
the model.

Random Injection Model (RIM). In the random injection model all algorithms have
forwards and backwards oracle access to a uniformly random function from FuncInj[n,m] for
some n ≤ m specified by the model.

Random Permutation Model (RPM). In the random permutation model all algorithms
have forwards and backwards oracle access to a uniformly random function from Perm[m] for
some m ∈ N specified by the model.

B.1 Switching from RIM to ROM
To switch from the RIM to the ROM, we need to show how to simulate oracle access to a
random injection (forward and backward), given oracle access to a random function. We
implement the random injection by padding the input and using Luby-Rackoff’s strong
pseudorandom permutation construction [23].

Luby-Rackoff. We first recall the Luby-Rackoff construction [23], which we view as a
construction of a random permutation oracle from a random oracle. Formally, suppose ρ is a
RO from {0, 1}m/2 to {0, 1}m/2 for m ∈ N. Define oracle LubRac[ρ] on {0, 1}m as follows:

Parse x as x1∥x2 with |x1| = |x2| = m/2 and apply a 4-round balanced Feistel network
with h as the round function to obtain y. Output y.

Oracle LubRack−1[ρ] is defined accordingly.
▶ Theorem 20 (Luby-Rackoff [23]). For any (even unbounded) adversary A making at most
q queries it holds that

| Pr
ρ←Func[m/2,m/2]

[ALubRack[ρ](·),LubRack−1[ρ](·) outputs 1]−

Pr
π←Perm[m]

[Aπ(·),π−1(·) outputs 1]| ∈ O(q2/2m/2).

Random Injection from Random Permutation. We next show a construction of a random
injection oracle π from a random permutation oracle ψ. Suppose ψ is a random permutation
oracle on m bits and ψ−1 is its inverse. For n ≤ m, define π[ψ] : {0, 1}n → {0, 1}m as
π[ψ](x) := ψ(pad(x)) where pad(x) is the function that pads the LSBs of x with m− n zeros.
Define π[ψ]−1 accordingly. It should be clear that π[ψ] is a random injection oracle.

2 This statement is weaker than the one proven in [17] but is sufficient for our purpose.

ITC 2024

8:20 Breaking RSA Generically Is Equivalent to Factoring, with Preprocessing

Now, composing the above constructions gives a construction of a random injection
oracle from a random oracle. Namely, suppose ρ : {0, 1}m/2 → {0, 1}m/2 is a RO. Define the
random injection oracle π[ρ] : {0, 1}n → {0, 1}m as π[ρ](x) = LubRac[ρ](pad(x)) and π[ρ]−1

accordingly. By a simple hybrid argument we have:

▶ Proposition 21 (RIM-to-ROM). For any (even unbounded) adversary A making at most q
queries it holds that

| Pr
ρ←Func[m/2,m/2]

[Aπ[ρ](·),π[ρ]−1(·) outputs 1]−

Pr
π←FuncInj[n,m]

[Aπ(·),π−1(·) outputs 1]| ∈ O(q2/2m/2).

B.2 Straight-Line Programs and Generic Ring Algorithms
Let N ∈ N and assume that m ≥ κ, where κ is the bit length of N . Below, we define two
types of programs (aka. algorithms) that use oracles, namely generic-ring algorithms (GRAs)
and straight-line programs (SLPs).

Program Graphs and Their Execution. The below is based on [1]. We consider deterministic
programs that perform arithmetic operations (mod N) on indeterminate Y .

We associate a program on a single input with its program graph over ZN , a labelled
graph where a label of a node represents a (binary) operation and the program implicitly
stores all intermediate results. We only consider programs whose graphs are binary trees.
Vertices can be either branching or non-branching.

Execution of a program corresponds to traversing a labelled path in its program graph
over ZN . Non-branching vertices are used to execute arithmetic operations (mod N) or to
load inputs and constants into the program. They are accordingly labelled with elements
a ∈ ZN corresponding to constants in the program, with a (unique) indeterminate Y

corresponding the programs input, or with an arithmetic operation label (i, j, ◦, b) which
applies the arithmetic ring operation ◦ (mod N) to operands at indices i and j that the
program previously stored. (The flag b ∈ {−1, 1} indicates inversion of the second operand.)
Branching vertices are used to test two values i, j previously computed by the program for
equality (mod N). A branching vertex has two outgoing edges that are labelled 0 (for left)
and 1 (for right).

The program applies the operations indicated by the labels of the vertices and edges it
encounters in the order of traversal as follows:

The first three vertices are a path and are always labelled 0, 1, and Y . That is, they are
used to load the constants 0 and 1, and the single input y of the program. The program
stores the intermediate results y0 = 0, y1 = 1, y2 = y for these vertices, respectively, and
continues execution along this path.
For k ≥ 4:

If the kth vertex vk is labelled with a ∈ ZN , the program stores yk ← a as the
intermediate result for this vertex. It continues execution along this path.
If the kth vertex vk is labelled with (i, j, ◦, b) then the program does as follows. Here
◦ ∈ {·,+}, b ∈ {−1, 1}, and i, j < k correspond to the ith and jth vertices on the
path of traversal, which must be non-branching. The program computes yk := yi ◦ ybj
(mod N) and stores the intermediate result yk for vertex v. In case ◦ = + and b = −1,
then ybj = −yj (mod N). In case ◦ = ·, b = −1, and yj = 0 (mod N), yk := ⊥. In
case yi = ⊥ or yj = ⊥, yk := ⊥. It continues execution along this path.

D. Dachman-Soled, J. Loss, and A. O’Neill 8:21

If the kth vertex vk is labelled (i, j) where i, j < k correspond to the ith and jth
vertices on the path of traversal, which must be non-branching, the program makes an
equality test whether yi = yj (mod N). If the result is 1, the program continues its
execution along the right edge; otherwise, along the left.

Whenever vk is the last vertex on the path, the program computes yk and outputs it,
terminating execution.

Oracle-Aided Programs. Apart from the types of programs we have discussed above, we
are also interested in programs that can perform arithmetic operations via oracle access (as
opposed to directly).

Hence, we define oracles π, eq, and opπ as follows. Oracle π initially samples a random
function π ∈ FuncInj[κ,m] and on query x ∈ ZN returns y = π(x) ∈ {0, 1}m. Here we refer
to y ∈ {0, 1}m as a label. We slightly abuse notation by referring to the oracle π and the
internally sampled function indiscriminately. We also make the convention of parsing x ∈ ZN
as a κ-bit binary string. Given π ∈ FuncInj[κ,m], we first consider an oracle eq for testing
equality. On input y1, y2 ∈ {0, 1}m, eq returns 1 iff π−1(y1) = π−1(y2) (mod N), and 0
otherwise. Now, we define the behavior of the ring oracle opπ on input as y1, y2 ∈ {0, 1}m as

opπ(y1, y2, ◦, b) := π
(
π−1(y1) ◦

(
π−1(y2)

)b mod N
)

for all y1, y2 ∈ {0, 1}m, ◦ ∈ {+, ·}, b ∈ {1,−1}, where the inverse is additive in case
◦ = +, b = −1. We implicitly assume that in case ◦ = ·, b = −1, opπ internally queries
eq(y2, 0). opπ returns ⊥ in case either of the operands is ⊥ or the call to eq returns 1, i.e., if
π−1(y2) = 0 (mod N).
▶ Remark 22. Throughout the paper, when there is no possibility of confusion we abbreviate
oracles opπ and eqπ by π. That is, for an oracle-aided program P we abbreviate P opπ,eqπ by
Pπ.

Oracle-aided program graphs over ZN are labelled very similarly to plain program graphs
over ZN . Roughly speaking, all values in ZN are now replaced with their labels, according
to π. Thus, a non-branching vertex is now labelled in one of two ways. Either it is labelled
with (i, j, ◦, b) where i and j correspond to the ith and jth non-branching vertex among the
vertices previously encountered on the path and ◦ ∈ {+, ·}, b ∈ {1,−1}. Otherwise, it is
labelled with some m-bit label σ in the image of π.

As before, a branching vertex is labeled with (i, j), where i and j correspond to the ith
and jth non-branching vertex among the vertices previously encountered on the path. It has
two outgoing edges labelled 0 (for left edge) and 1 (for right edge). The only difference is
that the program now has to invoke eq on the intermediate values yi and yj so as to test
their equality (rather simply testing whether they are equal).

Execution of an oracle-aided program corresponds to its program graph by adapting the
above correspondence in the straight forward manner:

The first two nodes on a path are always labelled as π(0), π(1), respectively; that is, they
are used to load the constants 0 and 1. The third node on a path is used to load the
(single) input π(y) to the program. It is labelled with a special label ϕ. The program
stores the intermediate results y0 = 0, y1 = 1, y3 = π(y) for these vertices, respectively,
and continues execution along this path.
When the program encounters a non-branching vertex v:

If v is labelled with (i, j, ◦, b), where i, j are indices and b ∈ {0, 1}, and this is the kth
non-branching vertex on the path of traversal for some k ≥ 4, and, then the program
invokes the oracle opπ on input (yi, yj , ◦, b). It stores the output of opπ as yk.

ITC 2024

8:22 Breaking RSA Generically Is Equivalent to Factoring, with Preprocessing

If v is labelled with σ and this is the kth non-branching index on the path of traversal
for some k ≥ 4, store yk ← σ and continue the execution of the program along this
path.

If the program encounters a branching vertex v: if v is labelled (i, j), the program invokes
the oracle eq on input (yi, yj). If the result is 1, the program continues its execution
along the right edge; otherwise, along the left.
If k is the last vertex on the path, the program outputs yk and terminates.

Types of Programs. We define two types of programs:

▶ Definition 23. A T -step (possibly oracle-aided) straight line program (SLP) S over ZN is
a program whose program graph over ZN is a labelled path v0, . . . , vT+3.

A deterministic generic ring algorithm (GRA) is a generalization of SLPs that allows
equality tests. As explained above, such queries are represented as branching vertices in our
graph representation of a GRA. Thus, an SLP can be seen as special case GRA, where an
SLP is a GRA that contains no branching vertices.

▶ Definition 24. A T -depth deterministic (possibly oracle-aided) generic ring algorithm
(GRA) G over ZN is a program whose program graph over ZN is a depth-(T+3) vertex-labelled
and partially edge-labelled binary tree.

To keep the distinction between oracle aided vs. regular programs clear, we will always
make the dependency on π explicit by superscripting oracle-aided programs with π, i.e., Gπ.

The following definition applies only to non-oracle aided programs. It inductively defines
the polynomial corresponding to an execution of a program on input x ∈ ZN . Essentially, if the
program encounters a non-branching vertex v and v corresponds to an arithmetic operation,
then we associate the resulting tuple (PGv (x), QGv (x)) with vertex v. Here, PGv (x) and QGv (x)
are interpreted as the numerator and denominator of a rational function PGv (x)/QGv (x) that
is the result of applying the arithmetic operation to the rational functions associated with
prior vertices w, u.

▶ Definition 25. For a GRA G (or SLP S) over ZN of size T and non-branching vertex v
in its execution graph, the pair (PGv (x), QGv (x)) of polynomials in ZN [x] associated with v is
defined inductively, as follows:
1. The root has associated the pair (0, 1), the child of the root the pair (1, 1), and the child

of that child has the pair (x, 1).
2. A vertex v labelled with a ∈ ZN is associated with (a, 1).
3. For each non-branching vertex v, labelled with operation (u,w,+, b), we have:

(PGv (x), QGv (x)) :={
(PGu (x) ·QGw(x) + PGw (x) ·QGu (x), QGu (x) ·QGw(x)) b = 1
(PGu (x) ·QGw(x)− PGw (x) ·QGu (x), QGu (x) ·QGw(x)) b = −1

4. For each non-branching vertex v, labelled with operation (u,w, ·, b), we have:

(PGv (x), QGv (x)) :=
(PGu (x) · PGw (x), QGu (x) ·QGw(x)) b = 1
(PGu (x) ·QGw(x), QGu (x) · PGw (x)) b = −1, QGu (x) ̸= 0 (mod N)
⊥ b = −1, QGu (x) = 0 (mod N)

Note that PGv (x) and QGv (x)) can each be represented as an SLP of size at most T .

D. Dachman-Soled, J. Loss, and A. O’Neill 8:23

▶ Definition 26. For an SLP S over ZN of size T , we denote by (PS(x), QS(x)) the pair of
polynomials in ZN [x] associated with the final vertex on the evaluation path. If QS(x) ≡ 1,
we denote by fS the polynomial PS(x). Note that PS(x) and QS(x)) can each be represented
as an SLP of size at most T .
▶ Definition 27. For each non-branching vertex v in the program graph over ZN of an ℓ-step
GRA G with corresponding pair of polynomials (PGv (a), QGv (a)), we associate the function

fGv : ZN → ZN ∪ {⊥} : a 7→ PGv (a)
QGv (a)

where the function is undefined if QGv (a) = 0, which is denoted as fGv (a) =⊥, and where PGv (a)
and QGv (a) are evaluated over ZN . Moreover, for an argument a ∈ ZN , the computation
path from the root v0 to a leaf vℓ+3(a) is defined by taking, for each equality test of the form
(u,w), the edge labeled 0 if fGv (a) = fGw (a), and the edge labeled 1 if fGu (a) ̸= fGw (a). The
partial function fG computed by G is defined as

fG : ZN → ZN ∪ {⊥} : a 7→ fGvℓ+3(a).

We define the output of G on input x ∈ ZN as G(x) := fG(x).

B.3 Model Specific Versions of the RSA Assumption
We introduce a new variant of the RSA game with preprocessing model specifically tailored
to the oracle-aided computational models from the previous section. In the following, we fix
the security parameter κ and an integer m ∈ Z,m ≥ κ.
▶ Definition 28 (Generic RSA Problem with Preprocessing). For a tuple of algorithms A =
(Aπ0 ,A1) and an RSA instance generator RSAGen, define experiment ag-rsaA

RSAGen as follows:
Offline Phase. Sample π ← FuncInj[κ,m]. Run Aπ0 on input 1κ. Let state denote the
return value of Aπ0 .
Online Phase. Compute (N, e, d) ← RSAGen(1κ) and sample x ← ZN . Run A1 on
input (N, e, π(xe), state) and let Gπ denote the output. If Gπ does not correspond to the
description of a GRA, abort. Note that A1 does not get access to oracle π.
Output Determination. Run Gπ on input (N, e, π(xe)). When Gπ outputs z ∈ {0, 1}m,
the experiment evaluates to 1 iff z = π(x).

Define A’s advantage relative to RSAGen as

Advag-rsa
RSAGen(A) = Pr[ag-rsaA

RSAGen = 1] .

We call A = (Aπ0 ,A1) an (S, T1, T2)-generic-RSA-with-preprocessing algorithm (GP-RSA)
relative to RSAGen if Aπ0 outputs advice strings state of size at most S, A1 runs in time at
most T1, and and any program Gπ in the output of A1 runs in time at most T2. Note that
we require that T1 ≥ T2.

We also give an alternative version of this game in which π ∈ FuncInj[κ,m] and (N, e, d) ∈
RSAGen(1κ) are a fixed.
▶ Definition 29 (Fixed Generic RSA Problem with Preprocessing). Fix integers (N, e, d) ∈
RSAGen(1κ), let π ∈ FuncInj[κ,m], and let state be of size at most S. Define experiment
fcrsaA

(N,e,d,state,π) as follows:
Online Phase. Sample x← ZN . Run A on input (N, e, π(xe), state) and let Gπ denote
the output. If Gπ does not correspond to the description of a GRA, abort. Note that A
does not have oracle access to π.

ITC 2024

8:24 Breaking RSA Generically Is Equivalent to Factoring, with Preprocessing

Output Determination. Run Gπ on input (N, e, π(xe)). When Gπ outputs z ∈ {0, 1}m,
the experiment evaluates to 1 iff z = π(x).

Define A’s advantage relative to (N, e, d, state, π) as

Advfcrsa
(N,e,d,state,π)(A) = Pr[fcrsaA

(N,e,d,state,π)(1κ) = 1],

We call A an (S, T1, T2)-fixed-generic-RSA-with-preprocessing (FGP-RSA) algorithm relative
to (N, e, d, state, π) if A runs in time at most T1, and and any program Gπ in the output of
A runs in time at most T2.

Note that in the above definition we do not require the advice string state to be output
by a preprocessor Aπ0 . However, by a standard averaging argument, we obtain the following
lemma:

▶ Lemma 30. Let A = (Aπ0 ,A1) be an (S, T1, T2)-GP-RSA algorithm and suppose
that Advag-rsa

RSAGen(A) ≥ ϵ. Then with probability at least ϵ/2 over the coins of RSAGen,
the choice of π, and coins of Aπ0 , Aπ0 outputs state and RSAGen outputs (N, e, d) s.t.
Advfcrsa

(N,e,d,state,π)(A1) ≥ ϵ/2.

	1 Introduction
	1.1 Motivation and Main Results
	1.2 Related Work

	2 Technical Overview
	3 Preliminaries
	3.1 Notation and Conventions
	3.2 Incompressibility Lemmas

	4 Main Results
	4.1 The RO model result
	4.2 The plain model result

	A Relevant Problems
	B Computational Models
	B.1 Switching from RIM to ROM
	B.2 Straight-Line Programs and Generic Ring Algorithms
	B.3 Model Specific Versions of the RSA Assumption

