
Finding Maximum Common Contractions Between
Phylogenetic Networks
Bertrand Marchand #

Department of Computer Science, University of Sherbrooke, Canada

Nadia Tahiri #

Department of Computer Science, University of Sherbrooke, Canada

Olivier Tremblay-Savard #

Department of Computer Science, University of Manitoba, Winnipeg, Canada

Manuel Lafond #

Department of Computer Science, University of Sherbrooke, Canada

Abstract
In this paper, we lay the groundwork on the comparison of phylogenetic networks based on edge
contractions and expansions as edit operations, as originally proposed by Robinson and Foulds
to compare trees. We prove that these operations connect the space of all phylogenetic networks
on the same set of leaves, even if we forbid contractions that create cycles. This allows to define
an operational distance on this space, as the minimum number of contractions and expansions
required to transform one network into another. We highlight the difference between this distance
and the computation of the maximum common contraction between two networks. Given its ability
to outline a common structure between them, which can provide valuable biological insights, we
study the algorithmic aspects of the latter. We first prove that computing a maximum common
contraction between two networks is NP-hard, even when the maximum degree, the size of the
common contraction, or the number of leaves is bounded. We also provide lower bounds to the
problem based on the Exponential-Time Hypothesis. Nonetheless, we do provide a polynomial-time
algorithm for weakly galled trees, a generalization of galled trees.

2012 ACM Subject Classification Applied computing → Bioinformatics; Theory of computation →
Problems, reductions and completeness

Keywords and phrases Phylogenetic networks, contractions, algorithms, weakly galled trees

Digital Object Identifier 10.4230/LIPIcs.WABI.2024.16

Related Version Full Version: https://arxiv.org/abs/2405.16713

1 Introduction

The reconstruction of evolutionary histories, and ultimately of a universal “Tree of Life” based
on biological data is one of the core tasks of comparative genomics, and bioinformatics as a
whole. However, due to events such as horizontal gene transfer [1, 33] and hybridization [23],
evolutionary histories may not always be represented as trees. As a result, the concept
of phylogenetic networks has emerged to represent evolution in its full generality, and has
become a central topic in bioinformatics research [30]. Unlike trees, it allows for the presence
of nodes with more than one parent, usually called reticulations. Reconstructing phylogenetic
networks from data is a notoriously difficult problem, and a wide variety of methods have
emerged for tackling it [6, 9, 13, 28]. However, given the same dataset, different methods may
not always yield the same result, which can be the source of heated debate in the community
(see e.g., the exchanges on the reconstructions of COVID phylogenetic networks [24, 44, 25]).

© Bertrand Marchand, Nadia Tahiri, Olivier Tremblay-Savard, and Manuel Lafond;
licensed under Creative Commons License CC-BY 4.0

24th International Workshop on Algorithms in Bioinformatics (WABI 2024).
Editors: Solon P. Pissis and Wing-Kin Sung; Article No. 16; pp. 16:1–16:24

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:bertrand.marchand@usherbrooke.ca
https://orcid.org/0000-0001-8060-6640
mailto:Nadia.Tahiri@USherbrooke.ca
https://orcid.org/0000-0002-1818-208X
mailto:olivier.tremblay-savard@umanitoba.ca
https://orcid.org/0000-0003-2514-0264
mailto:manuel.lafond@usherbrooke.ca
https://orcid.org/0000-0002-5305-7372
https://doi.org/10.4230/LIPIcs.WABI.2024.16
https://arxiv.org/abs/2405.16713
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

16:2 Finding Maximum Common Contractions Between Phylogenetic Networks

This raises the question of the development of metrics on phylogenetic networks, in order
to be able to compare different predictions, evaluate their accuracy against simulated or gold
standard datasets, and identify outliers or similarities among them. In the case of trees, one
of the most established metrics is the Robinson-Foulds distance [42], due to the simplicity of
its definition, its ease of computation, and the fact that it also yields a maximum common
structure between the trees as a by-product. It is usually defined as the size of the symmetric
difference of the sets of clades (i.e. sets of leaves descending from a single node) of the two
input trees. Note however that its original definition in [42] presented it as the minimum
number of edge contractions and expansions required to go from one tree to the other.

The situation is not as simple in the case of networks. To start with, for networks of
unbounded degree (i.e. allowing for an unbounded number of ancestors and descendants
per node), even deciding whether two networks are identical is Graph Isomorphism-
complete [16]. Nonetheless, many different metrics have been developed for sub-classes of
networks. Some of them generalize the clade-based definition of the Robinson-Foulds metric,
such as hardwired cluster [30, 14], softwired cluster [30] and tri-partition [41, 14] distances.
There exists however even binary networks that are distinct while exhibiting the same sets of
clusters [30, Figure 6.28], and likewise for the tripartition distance [18]. In addition, in the
case of the soft-wired distance, there can be an exponential number of clusters to compare,
making a polynomial-time algorithm unlikely. The same problem arises when comparing
networks in terms of the trees they display [30, Section 6.14.3]. Another group of proposals for
metrics on phylogenetic networks includes the µ-distance [5, 17], as well as the nodal distance
and triplet distance [15]. One could loosely describe them as comparing the “connectivity”
induced on leaves by the networks topologies. While they are polynomial to compute, they
are only valid on sub-classes of networks, namely orchard networks [17] and time-consistent
tree-child networks [15]. A notable exception is the subnetwork distance [30, Section 6.14.4],
defined as the symmetric difference of the sets of rooted subnetworks, which is valid on all
networks, and can be computed in polynomial-time for bounded-degree networks.

However, contrary to the Robinson-Fould metric on trees, none of the measures mentioned
above allow to outline a single common sub-structure in input networks (at least not directly).
A natural way to obtain metrics valid on the entire space of phylogenetics is to use operational
definitions, i.e., to define a distance as the minimum number of a set of “edition operations”
needed to transform one network into another. Note that, as mentioned earlier, the original
definition of the Robinson-Foulds distance falls into this category. On networks, examples of
such operations include nearest-neighbor interchange (NNI, [26]), subtree prune and regraph
(SPR, [10]) or cherry-picking operations [35] on orchard networks. While cherry-picking
operations have been successfully used to define and compute metrics on orchard networks [36],
computing distances based on NNI+SPR operations is NP-hard even for trees [11, 21]. A
remarkable aspect of operational distances is also that, if some operations “reduce” the
network (as the edge contraction for Robinson-Foulds) and others “expand” it (as the edge
expansion for Robinson-Foulds) then a natural notion of “maximum common reduced network”
emerges as a way to compare networks. We see it as the best possible case of “exhibiting
common structure” using a metric. Interestingly, both cherry-picking operations [36] and
SPR [32] allow to define such a maximum common structure. Another example of this
philosophy is the computation of maximum agreement sub-networks [19], although their
definition is not operational.

In this work, we generalize the original definition of Robinson-Foulds, by defining and
studying an operational metric for phylogenetic networks based on edge contractions and
expansions. We first prove the connectivity of the space of networks having the same

B. Marchand, N. Tahiri, O. Tremblay-Savard, and M. Lafond 16:3

leafsets under these operations. Then, we use them to define two possible ways of comparing
networks: (1) through the minimum number of contractions and expansions connecting two
networks and (2) based on the size of a maximum common contraction. We show that the
former defines a distance, and the latter a semi-distance, i.e. a dissimilarity measure verifying
all properties of a distance except the triangle inequality. Given our purpose to outline
common structures between networks, we focus on the computation of a maximum common
contraction (MCC) semi-distance. We prove its NP-hardness under different conditions:
when restricted to bounded-degree networks and a common contraction of size ≤ 3, and
when one of the networks has only 5 leaves, and the other has unbounded degree. However,
we also provide a polynomial-time algorithm for the case of weakly galled trees.

All omitted proofs may be found in the Appendix, or in the full online pre-print.

Related works outside of phylogenetics. Perhaps the closest related work in its philosophy
is [45], which defines a distance between (isomorphism classes of) undirected, unlabeled graphs.
However, no algorithmic results are given. There does exist a rich line of work in algorithmic
graph theory on contraction problems in undirected, unlabeled graph [12, 37, 31, 7, 40].
The typical problem of interest in this literature is that of deciding whether a graph H

is the contraction of a graph G (either with H fixed or not), not computing a common
contraction between them. To the knowledge of the authors, no attention has been given
to this problem so far from an algorithmic perspective. This is surprising in the light of
the fact that the maximum common subgraph problem, which is similar in philosophy (but
completely different in its definition), has been the subject of some work [34, 3]. We also
highlight that we forbid contractions that create directed cycles, which differs from most
previous work. We also assume that leaves are uniquely labeled in the networks. This is an
important difference, as deciding whether an unlabelled tree is the contraction of another
unlabelled tree is NP-hard [40], whereas this is polynomial-time solvable when leaves are
labeled, as this is equivalent to computing the Robinson-Foulds distance.

2 Contraction-Expansion distance

2.1 Preliminaries
This article uses standard directed graph terminology (nodes, edges, in-neighbors, out-
neighbors, acyclic graphs, . . .), as can for instance be found in [22]. We write [n] for the set
of integers going from 1 to n. A phylogenetic network N = (V, E) is a directed acyclic graph
such that exactly one node (the root) has no in-neighbors, and nodes with no out-neighbor
(the leaves) have in-degree 1. We may write network for short. A non-leaf node is called
an internal node. We use V (N), E(N), I(N), and L(N) to denote, respectively, the set of
nodes, edges, internal nodes, and leaves of N . If there is an edge from u to v, we may write
either (u, v) or u → v. A reticulation is a node of in-degree two or more. In a network, an
in-neighbor of a node is called a parent, and an out-neighbor is a child. The set of parents
and children of a node u ∈ V (N) are respectively denoted by Γ−

N (u) and Γ+
N (u). Note that

a node may have multiple parents, and that we allow a root with a single child, as well as
nodes with a single parent and a single child. We say that u reaches a leaf ℓ if there exists a
directed path from u to ℓ. The set of leaves that u reaches in N is denoted DN (u) (or D(u)
for short). If N is a tree, such a set D(u) is sometimes called a clade or cluster.

To continue, developing metrics between networks requires in particular a notion of equality
between them. To that end, we use the notion of graph isomorphism, augmented with leaf
preservation. Specifically, two networks N1 = (V1, E1) and N2 = (V2, E2) are said isomorphic,

WABI 2024

16:4 Finding Maximum Common Contractions Between Phylogenetic Networks

Figure 1 (top) The transformation of a network into another through contractions, followed by
expansions. Midway, the intermediate network is a maximum common contraction, which can be
achieved from N2 by reversing the expansions. (bottom) Illustration of edge contractions (left) and
expansions (right). For expansions, the sets X−, Y −, Z−, X+, Y +, Z+ specify how the neighbors of
u are distributed to v and w. Note that contractions may delete cycles and expansions create them.

denoted N1 ∼ N2, if there exists a bijection ϕ : V1 → V2 such that (a) ∀u, v ∈ V1, (u, v) ∈ E1
if and only if (ϕ(u), ϕ(v)) ∈ E2 and (b) ∀u ∈ L(N1), ϕ(u) = u. Given this notion, we recall the
definition of a metric (or distance) on phylogenetic networks. A function d, associating a real
value to an arbitrary pair of input networks, is a metric if ∀N1, N2: (positivity) d(N1, N2) ≥ 0;
(identity) d(N1, N2) = 0 if and only if N1 ∼ N2; (symmetry) d(N1, N2) = d(N2, N1); and
(triangle inequality) ∀N1, N2, N3 d(N1, N3) ≤ d(N1, N2) + d(N2, N3).

▶ Remark 1 (graph isomorphism). Note that graph isomorphism is polynomial-time solvable
on bounded-degree graphs [38], and therefore on bounded-degree networks as well1.

Note that it is often the identity criteria which has limited the applicability of metrics
to sub-families of networks. For instance, [30, Figure 6.28] gives an example of a pair
of networks that are different, while their hardwired cluster, softwired cluster and tree
containment distances are 0. A similar example is given in [5] for the µ-distance.

2.2 Contractions and expansions
We now define edge contractions and expansions, as illustrated in Figure 1, and the two ways
we compare networks using them.

▶ Definition 2 (Contraction). Let N = (V, E) be a network and let (u, v) ∈ E. The
contraction operation c(u, v, w) on N , where w /∈ V , yields the directed graph N ′ = (V ′, E′)
such that:
1. V ′ = (V \ {u, v}) ∪ {w};
2. Γ−

N ′(w) = Γ−
N (u) ∪

(
Γ−

N (v) \ {u}
)
; and

3. Γ+
N ′(w) =

(
Γ+

N (u) \ {v}
)

∪ Γ+
N (v).

We denote by N /(u, v) the network obtained after applying the contraction c(u, v, w) on N .

1 Isomorphism on networks is contained in the isomorphism problem on directed graphs, as each leaf may
be replaced by a unique subgraph, implementing the same mapping constraint.

B. Marchand, N. Tahiri, O. Tremblay-Savard, and M. Lafond 16:5

A contraction c(u, v, w) on a network N is said admissible if N /(u, v) is also a network,
on the same set of leaves. This means that v is not a leaf, and that the contraction does not
create a cycle. The following proposition characterizes the set of admissible contractions in a
network. This result can also be found in [29, Lemma 3].

▶ Proposition 3. A contraction c(u, v, w) applied to N creates a cycle if and only if there
exists a directed path from u to v that does not use edge u → v.

A network M is said to be a contraction of a network N if there exists a series of
admissible contractions yielding, when applied on N , a network isomorphic to M. Also, M
is a common contraction of two networks N1 and N2 if it is both a contraction of N1 and N2.

As for expansions, they essentially transform a node into an edge. The definition is
slightly more involved, as we must specify how the in and out-neighbors are split. Note that
expansions may simply be seen as the inverse operation of contractions.

▶ Definition 4 (Expansion). Let N = (V, E) be a network and let u ∈ V . The expansion
operation e(u, v, w, X−, Y −, Z−, X+, Y +, Z+), such that X−, Y −, Z− (resp. X+, Y +, Z+)
is a partition of Γ−

N (u) (resp. Γ+
N (u)) yields the network N ′ = (V ′, E′) such that:

1. V ′ = V \ {u} ∪ {v, w}, where v, w are two new nodes;
2. Γ−

N ′(v) = X− ∪ Z−, Γ−
N ′(w) = Y − ∪ Z− ∪ {v}, Γ+

N ′(v) = X+ ∪ Z+ ∪ {w} and Γ+
N ′(w) =

Y + ∪ Z+.

The sets X−, Y −, Z−, X+, Y +, Z+ specify how the neighbors of the original node u are
distributed among the newly created ones v and w. Nodes in X−/X+ are attributed to v

only, those in Y −/Y + to w only, and those in Z+/Z− to both. Note that, compared to the
definition of these operations in the case of trees [42], we need to specify more information
as to how the neighbors of the original node u are “split” between v and w. It is quite
straightforward to see that, if an expansion replaces u with (v, w), then the contraction
c(v, w, u) reverses it. Conversely, a contraction c(u, v, w) that yields node w can be reversed
with the expansion that specifies the X, Y, Z parameters as the appropriate sets of previous
in and out-neighbors of u and v. As for contractions, we define admissible expansions on a
network N on L leaves as those that yield a phylogenetic network on L leaves after application
(no creation of a second root, of new leaves, or cycles).

Based on these definitions, we define two ways of comparing phylogenetic networks. The
first one is the contraction-expansion distance, defined as the least number of contractions and
expansions required to transform one network into another. The second one is a dissimilarity
measure based on the maximum common contraction of two networks (or more precisely, the
distance to a common contraction). Although we will see that the latter does not verify the
triangle inequality, and therefore does not qualify as a “metric”, we still make it the main
subject matter of this article, given the common structure it outlines between two networks.

▶ Definition 5 (contraction-expansion distance). Given two networks N1 and N2 over the
same leafsets, the contraction-expansion distance dCE(N1, N2) is the minimum length of a
sequence of admissible contractions and expansions transforming N1 into N ′

2 ∼ N2.

As for the dissimilarity measure based on maximum common contraction, we call it δMCC,
emphasizing that it is not a distance by not using d.

▶ Definition 6 (MCC dissimilarity measure). Given two phylogenetic networks N1 and N2
over the same leafsets, the maximum common contraction (MCC) dissimilarity measure
δMCC(N1, N2) is defined as δMCC(N1, N2) = |I(N1)| + |I(N2)| − 2|I(M)| where M is a
common contraction of N1, N2 of maximum size.

WABI 2024

16:6 Finding Maximum Common Contractions Between Phylogenetic Networks

▶ Remark 7. As a common contraction also provides a sequence of contractions and expansions
connecting both networks (by inverting one of the list of contractions into expansions), we
have dCE(N1, N2) ≤ δMCC(N1, N2).

Our main algorithmic problem of interest, formulated as a decision problem, is the
following: given a pair of networks N1 and N2 on the same leafset and an integer k, is there
a common contraction of size larger than k?

Maximum Common Network Contraction (MCNC)
Input: Networks N1, N2, integer k

Question: Is there a common contraction of N1 and N2 with more than k internal
nodes?

Note that it is equivalent to asking whether δMCC(N1, N2) ≤ k′, with k′ = |I(N1)| +
|I(N2)| − 2k. We next establish important properties of dCE and δMCC.

2.3 Properties of dCE and δMCC

We first establish that admissible contractions and expansions connect the set of all phylo-
genetic networks on the same set of leaves. Within it, the star network denotes the network
consisting of a single non-leaf node to which all leaves are connected.
▶ Proposition 8. Any phylogenetic network N may be contracted into the star network by a
series of admissible contractions.
Proof sketch. Let r be the root of N . Because N is an acyclic digraph, r has a child u such
that no other child of r reaches u (here, u would be next to r in a topological ordering).
Thus, there is no other path from r to u, meaning that r → u is admissible by Proposition 3.
We can thus keep doing contractions from the root until a star is achieved. ◀

The corollary below uses Proposition 8 and the star network to show that one can always
transform a network into another.
▶ Corollary 9. Given any two networks N1 and N2 over the same leafset, there always
exists a common contraction, and there always exists a series of admissible contractions and
expansions that transforms N1 into N ′

2 ∼ N2.
▶ Remark 10. To finish, note that the length of the sequence described above is |I(N1)| +
|I(N2)| − 2, which is an upper bound on the distance.

It can then be shown that dCE is a metric. Due to its “operational” definition, it is
relatively straightforward. In particular, the triangle inequality is satisfied, since given three
networks N1, N2, N3, we can always transform N1 into N2, then N2 into N3.
▶ Proposition 11. dCE is a metric on the set of phylogenetic networks with the same leafsets.

As for δMCC, it does verify identity (δMCC(N1, N2) = 0 if and only if their common
contraction is themselves, i.e., they are isomorphic), positivity, and symmetry (by definition).
However, Figure 2 (A) shows an example in which δMCC(N1, N3) = 10, while δMCC(N1, N2)+
δ(N2, N3) = 4 + 2 = 6, i.e., not verifying the triangle inequality. Therefore, δMCC is a semi-
metric. We also highlight the difference between dCE and δMCC by showing on Figure 2 (B)
an example of two networks for which dCE(N1, N2) = 2, whereas δMCC(N1, N2) = 6.
▶ Remark 12. If we allow contractions that create cycles, then we could show that expansions
and contractions can commute. This would imply that contractions can always be carried
out before expansions, and therefore dCE = δMCC. The fact that δMCC is a distance on
unlabelled, undirected graphs with the same number of nodes has also been shown [45].

B. Marchand, N. Tahiri, O. Tremblay-Savard, and M. Lafond 16:7

(A) (B)

Figure 2 (A) Examples of 3 networks for which δMCC(N1, N3) > δMCC(N1, N2) + δMCC(N2, N3).
Indeed, one can check that there is a common contraction of size 4 between N1 and N2, and of size
5 between N2 and N3. However, the only possible common contraction between N1 and N3 is the
star network. This is due the edge highlighted in N1 not being admissible, enforcing the contraction
of the whole cycle. Since all networks have 6 internal nodes, we have δMCC(N1, N3) = 12 − 2 = 10
whereas δMCC(N1, N2) = 12 − 8 = 4 and δMCC(N2, N3) = 12 − 10 = 2. (B) An example further
highlighting the difference between dCE and δMCC, as we have there two networks N1, N2 such that
dCE(N1, N2) = 2 (following the top path) whereas δMCC(N1, N2) = 6 (following the bottom path).

2.4 Witness structure to a contraction
So far, we have only looked at contractions from an operational point of view, in which a
network is gradually changed into its contraction. For the purpose of easing formal proofs in
the following sections, we borrow from the undirected graph contraction literature (see for
instance [7]) the concept of witness structure of a contraction. The main idea is that, for
a network N with contraction M, a node v of M corresponds to a set of nodes Wv of N
that got contracted “together” to become v. Contractions impose Wv to be connected if we
ignore edge directions (i.e., weakly connected), and the Wv’s must partition V (N).

▶ Definition 13. Given two phylogenetic networks N and M on the same set of leaves, we
call an M-witness structure in N any partition W = {Wu | u ∈ V (M)} of the internal nodes
of N such that:
(1) ∀u ∈ V (M), Wu is a weakly connected sub-graph of N .
(2) ∀u, v ∈ V (M) × V (M), (u, v) ∈ E(M) iff ∃x ∈ Wu, y ∈ Wv such that (x, y) ∈ E(N).
(3) ∀u ∈ L(M), the parent pu of u in N must be in Wp′

u
, where p′

u is the parent of u in M.

Note that as V (N) and V (M) are the sets of internal nodes, conditions (1) and (2) do
not enforce an agreement on the placement of the leaves between the contraction of N and
M. To obtain the equivalence between the presence of an M-witness structure and the
contractibility of N into M, condition (3) is therefore needed.

In the case of undirected graphs, the equivalence between the presence of an M-witness
structure and the contractibility into M is trivial. In our case though, we need to guarantee
that, although the connectivity of the sets in a witness structure is only required in a weak
sense (i.e. ignoring directions), the presence of a M-witness structure in N is still equivalent
to M being a contraction of N , with all intermediary networks being acyclic. This can be
proved using similar ideas as in Proposition 8.

WABI 2024

16:8 Finding Maximum Common Contractions Between Phylogenetic Networks

▶ Proposition 14. Let M and N two networks over the same set of leaves. Then M is a
contraction of N if and only if there exists a M-witness structure in N .

Proof sketch. In the (⇒) direction, if v ∈ V (M) is a node of the contraction, reversing the
contractions “re-expands” v to a witness set Wv, which must be weakly connected as each
expansion adds an edge. In the (⇐) direction, in each witness set Wu, the first edge in a
topological ordering is always admissible to contraction, and since it is connected, we may
contract it to a single node. ◀

3 NP-hardness of finding maximum common contractions

In this section, we prove that the Maximum Common Network Contraction problem
is NP-hard, through reductions from the Set Splitting problem (SP12 in [27]).

Set Splitting
Input: A set X, a family A of subsets of X

Question: Is there a bipartition X1, X2 of X such that ∀S ∈ A, S ∩ X1 ≠ ∅ and
S ∩ X2 ̸= ∅ ?

If (X, A) is a yes-instance, we say it is splittable. We then call X1, X2 the split of (X, A).
Note that Set Splitting may be seen as Positive Not-All-Equal-SAT, i.e. CNF
satisfiability with the additional requirements that (1) negations are completely absent
(“positive”, also sometimes called “monotone” in the literature) and (2) at least one variable
is set to false in each clause.

We provide two reductions from Set Splitting to Maximum Common Network
Contraction. The first one has three interesting features. First, it shows that Maximum
Common Network Contraction remains NP-hard when k (the size of the common
contraction) is equal to 3. Second, noting that Positive NAE-SAT remains NP-hard
with 3 variables per-clauses (Positive-NAE-3-SAT) and at most 4 occurrences of each
variable in all clauses [20], it shows that MCNC is NP-hard on phylogenetic networks of
bounded degree. Third, when not putting any constraint on the number of occurrences of
each element, it allows importing lower bounds for Positive-NAE-3-SAT conditional to
ETH (Exponential-Time Hypothesis) [4, Proposition 5.1]. As for the second one, it shows
that MCNC remains hard even when one of the network is a path on 4 nodes, each parent to
one leaf. Not only is this simple network a tree, but it also has a constant number of leaves.

3.1 Hardness with common contraction of size k = 3
Given an instance (X, A) of Set Splitting, we build two binary phylogenetic networks
in the following way (see Figure 3 for an illustration on an example). First, we introduce
two leaves ℓS and ℓ′

S for each set S ∈ A. We also add to this leaf-set two couples of leaves
{ℓ1, ℓ′

1} and {ℓ2, ℓ′
2} whose positions in N1, N2 will allow us to enforce specific contractions.

As for the networks, let us start with N1. Its purpose is to encode the relationships
between the elements of X and the sets in A. Its internal node set is composed of one node
tx for each x ∈ X, two nodes uS and vS for each S ∈ A, a root r1, and other nodes named
r′

1, a1, a′
1, b1, b′

1. We write U = {uS}S∈A and V = {vS}S∈A. For all S ∈ A, the parents of
ℓS and ℓ′

S are uS and vS , respectively. ℓ1 and ℓ′
1 share a parent a′

1, whose own parent is
a1 (see Figure 3). The same connectivity pattern is set between ℓ2, ℓ′

2, b′
1 and b1. The root

has a child r′
1 which is the parent of a1 and b1, while the other child is the first of a series

of intermediary nodes (white circles on Figure 3), called W O[r1], ensuring that r1 ⇝ uS ,

B. Marchand, N. Tahiri, O. Tremblay-Savard, and M. Lafond 16:9

X = {1, 2, 3, 4} A = {a = (123), b = (234), c = (13), d = (14)}

r1

r′1

a1a′
1 b′1b1

ua

ub

uc

ud

va

vb

vc

vd

t1

t2

t3

t4

ℓa

ℓb

ℓc

ℓd

ℓ′a

ℓ′
b

ℓ′c

ℓ′
d

ℓ1

ℓ′
1

ℓ2

ℓ′
2

N1

r

a b
ℓ1

ℓ′
1

ℓa

ℓb

ℓc

ℓ2

ℓ′
2

ℓ′a
ℓ′
b

ℓ′c

M1: Maximum common
contraction if yes-instance

r

ℓ1

ℓ′
1

ℓa

ℓb

ℓc

ℓ2

ℓ′
2

ℓ′a
ℓ′
b

ℓ′c

M0: Maximum common
contraction if no-instance

r2

x2
a2 b2

ℓ1 ℓ2

ℓa
ℓb
ℓc
ℓd

ℓ′
1

ℓ′a
ℓ′
b

ℓ′c
ℓ′
d

ℓ′
2N2

Figure 3 Illustration of our first reduction from Set Splitting to Maximum Common Network
Contraction on an example.

∀S ∈ A. Denoting A as {S1, . . . , Sm}, W O[r1] consists of a path p1 → p2 → . . . → pm−1 of
m − 1 nodes, such that ∀i ∈ [m − 1], pi → uSi , r1 → p1, and pm−1 is connected to Sm in
addition to Sm−1. Likewise, ∀x ∈ X, we implement a directed path between a1 and tx, and
between tx and b1, using intermediary nodes called W O[a1] and W I [b1], also arranged in a
path of size |X| − 1, with each node connected to one tx (except the last one, connected to
2). Their purpose is to implement directed paths with bounded degree nodes. Finally and
most importantly, we add an edge from uS to tx, and from tx to vS , if and only if x ∈ S.

As for N2, it is a much simpler network. Its main feature is the presence of a “separation”
between {ℓS | S ∈ A} and {ℓ′

S | S ∈ A}, emulating the purpose of “splitting” each element
of A. Similarly to N1, it contains nodes r2 (root) and a2, b2. The root r2 has two children,
which are themselves the parents of ℓ1 and a2, and ℓ2 and b2, respectively. a2 and b2 are
connected by an edge a2 → b2. Finally, a2 b2 are the parents of, respectively, a path of nodes
with children {ℓS | S ∈ A} ∪ {ℓ1, ℓ′

1} and {ℓ′
S | S ∈ A} ∪ {ℓ2, ℓ′

2}.
We prove below that N1 and N2 have a common contraction of size ≥ 3 (more specifically,

the network M1 depicted on Figure 3) if and only if (X, A) is splittable.

▶ Theorem 15. Maximum Common Network Contraction is NP-hard, even when
restricted to k = 3

Proof sketch. Because ℓ1, ℓ′
1 and ℓ2, ℓ′

2 share a parent in N1, it follows that N2 must be
contracted to M1 to reach any common contraction with N1. The question is then whether
M1 is a possible contraction. We consider therefore the existence conditions of a M1-witness
structure. The essence of the proof is that to reach this witness structure, the uS vertices
must be in the same witness Wa set as a1 and a′

1. That witness set must form a weakly
connected subgraph, and the tx must be used to connect each uS with a1, a′

1 (as r1, r′
1 must

belong to another witness set). A similar situation holds for the vS vertices and b1, b′
1, which

must be in the same witness set Wb. Thus, tx must be split between Wa and Wb, and this
split may either yield a split for (X, A), or be inferred from an existing split of (X, A). ◀

WABI 2024

16:10 Finding Maximum Common Contractions Between Phylogenetic Networks

Restricting the instances of Set Splitting to having sets of size 3 and exactly 4 total
occurrences of an element x in A (a variant that it still NP-hard [20]), we get the following.

▶ Theorem 16. Maximum Common Network Contraction is NP-hard, even with
k = 3 and networks of degree ≤ 10.

The complexity remains open for binary networks (i.e. with in+out degree=3 for every
node). Finally, we can argue that the number of nodes and edges of N1 and N2 produced by
our reduction is linear with respect to |X| + |A|. The correspondence with Positive-NAE-
SAT allows to import ETH-based lower bounds [4, Proposition 5.1]:

▶ Theorem 17. Assuming the Exponential Time Hypothesis, Maximum Common Network
Contraction cannot be solved in time 2o(|V (N1)|+|E(N1)|).

3.2 Hardness with N2 a path with 5 leaves
We still reduce from Set Splitting, but proceed a bit differently. This time, N2 is a path
on 4 nodes a, b, c, d, to which are respectively connected leaves ℓ1, ℓ2, ℓ3 and {ℓ4, ℓ′

4} (see
Figure S1 for an illustration). As for N1, it is composed of 4 nodes a1, s, t, b1 to which
are respectively connected ℓ1, ℓ2, ℓ3 and {ℓ4, ℓ′

4}. As previously, two nodes uS and vS are
introduced for each S ∈ A, one node tx for each x ∈ X. There are edges from a1 to s, from
a1 to each uS , from each uS to the corresponding vS , from each vS to b1, from s to t, from t

to b1, from s to each tx, and from each tx to t. Finally, to encode the instance, there are
edges from uS to tx and tx to vS if and only if x ∈ S. This construction yields the following.

▶ Theorem 18. Maximum Common Network Contraction is NP-hard, even on
networks with 5 leaves, one of them being a tree and k = 4.

4 On weakly galled-trees, clades, and contraction sequences

When computing the classical Robinson-Foulds distance, the fact that trees are closed under
contractions is quite useful, since after contracting an edge corresponding to a clade not
in the other tree, the result is still a tree and we can repeat the procedure. Perhaps the
simplest class beyond trees are galled trees, in which no two cycles share a node, but this
network class is not closed under contractions. As a starting point for the investigation of
polynomial-time algorithms to MCNC, the so-called weakly galled trees appear the most
appropriate to study, as they form the simplest class that is closed under contractions, to
our knowledge. We define this class and extend the notion of clades to it.

A reticulation cycle of a network N , or cycle for short, is a set of nodes C formed by a pair
of directed paths r → u1 → . . . → up → t and r → v1 → . . . → vq → t that only intersect at
nodes r and t, and such that t is the only node of C with two in-neighbors from C. We call r

the root of C, t its reticulation, and the other nodes its internal nodes. A network is a weakly
galled tree if no pair of reticulation cycles have an edge in common. In [43], the following
properties were shown on weakly galled trees: (1) every reticulation of N has an in-degree of
exactly 2, and is the reticulation of exactly one cycle; (2) every cycle C contains exactly one
reticulation node of N . In other words, there is a 1-to-1 correspondence between cycles and
reticulations. Note that the internal nodes of such a cycle C have exactly one child in C.
We note that a node v could be the root of multiple cycles (which all intersect only at v),
and that v could be internal to a cycle, and also be the root of another cycle. The closure
property follows from the undirected version of this class, namely cactus graphs, see [2].

B. Marchand, N. Tahiri, O. Tremblay-Savard, and M. Lafond 16:11

▶ Proposition 19. If M is a contraction of a weakly galled tree N , then M is also a weakly
galled tree.

One can verify that a contraction c(u, v, w) cannot increase the number of reticulations.
Therefore, by Proposition 19, the number of cycles in a weakly galled tree can only decrease
when applying a contraction. In fact, the only way to remove a cycle C is if it has three
nodes, that is, a single internal node x that gets contracted with the root or reticulation.

Another difficulty of working on networks is that in trees, the sets D(u) of clades in a
contraction are contained in the set of clades of the original tree. In other words, a contraction
in a tree T cannot create a clade that did not exist before. This is not true even in weakly
galled trees, as new clades can be created by contraction (see Figure S2 in Appendix). For
our algorithms, it is necessary to design an appropriate notion of clade that avoids this
problem. We distinguish two types of clades in a weakly galled tree N .

(1-clades) A node u ∈ V (N) is a 1-clade node if u is not an internal node of a cycle, in
which case D(u) is called a 1-clade.
(2-clades) Let C be a cycle of N with reticulation t. A pair of distinct nodes u, v of C is
called a 2-clade pair if u and v are on distinct paths that form the cycle, or if one of u, v

is the reticulation of C and the other is internal. The set D(u) ∪ D(v) is called a 2-clade.
Note that if u does not belong to a cycle, or is a reticulation, or is a root of a cycle while
not being internal to another cycle (which may happen in weakly galled trees), then u is a
1-clade node. Also note that multiple nodes may represent the same 1-clade, for instance
a reticulation u with a single child v. Examples of 1-clades and 2-clades may be found on
Figure 2: {1, 2, 3, 4} is a 1-clade of N1, whose 1-clade vertex is the root of the cycle of N1,
and {1, 2, 3} is a 2-clade of N2, with the parents of 1 and 3 as a 2-clade pair. We let Σ1(N)
denote the set of all 1-clades of N , and Σ2(N) denote the set of all 2-clades. These new
types of clades are preserved under contractions.

▶ Proposition 20 (clade-set conservation). If M is a contraction of a network N , then
Σ1(M) ⊆ Σ1(N) ∪ Σ2(N) and Σ2(M) ⊆ Σ2(N).

Since new 1-clades or 2-clades cannot be created through contractions, it follows that
a 1-clade or a 2-clade that is present in one network N1, but not in another network N2,
needs to be removed. In trees, a unique contraction can achieve this, but in networks this is
much less obvious. In the case of 2-clades, we must choose between two possible contractions
(one for each side of the cycle) that eliminate the 2-clade. Even for 1-clade nodes that are
the root of a cycle, we may have to choose between the left or right child to contract. Still,
we can argue that if we look at clades close to the root, some contractions can be forced
unambiguously in a pre-processing step, which is shown very useful in the next section. Recall
that a reduction rule alters a given instance if certain conditions are met. We say that a rule
is safe if, given networks N1, N2, the rule contracts an edge (u, v) ∈ E(N1) ∪ E(N2) that is
contracted in any sequence of contractions leading to a maximum common contraction (note
that in the following, the roles of N1 and N2 can be swapped to reduce N2 instead).

Rule 1. If the root r1 of N1 has a child u such that D(u) is a 1-clade of N1, but is not a
1-clade nor a 2-clade of N2, then contract (r1, u).

Rule 2. If the root r1 of N1 has a child u that is an internal node of a cycle, such that
every 2-clade containing u is not a 1-clade nor a 2-clade of N2, then contract (r1, u).

▶ Lemma 21. Rule 1 and Rule 2 are safe.

WABI 2024

16:12 Finding Maximum Common Contractions Between Phylogenetic Networks

(A) (B) (C)

(D) (E)

Figure 4 Sub-networks used in our polynomial algorithm for weakly galled trees. The dynamic
programming is primarily based on Ni⟨

•
u⟩ and Ni⟨C, u, v⟩ ((A) and (B)) on the figure. The others

are intermediate networks on which reduction rules are applied to fall back to Ni⟨
•
u⟩ and Ni⟨C, u, v⟩.

We end this section by noting that if, for a 1-clade node u of N1, the set D(u) is in N2
as a 2-clade, we may still have to contract the edge between u and its (unique) parent. An
example is given in Figure S2 (Appendix). A common 2-clade may also need to be removed.

5 A Dynamic Programming Algorithm for Weakly Galled Trees

We now show that computing the minimum number of contractions needed to achieve a
common contraction for a pair of weakly galled trees N1, N2 is polynomial. Let C be a cycle
of N ∈ {N1, N2} with root r. It will be convenient to use a cyclic ordering of its nodes. Let
r, v1, v2, . . . , vl, r be the sequence of nodes obtained by traversing the cycle C when seen as
an undirected graph, starting at r and choosing one of its neighbors v1 arbitrarily. We view
this as traversing the cycle counter-clockwise. For a node u of C, we write u + 1 for the node
that succeeds u in this sequence, and u − 1 for the node that precedes u (note that this is
also well-defined for r, as it has only one predecessor, which is vℓ, and one successor, which
is v1). For u, w in C, we write u ≤C w if u = w or u precedes w in the sequence, and we
drop the C subscript if clear. As a special case, for every u of C both u ≤C r and r ≤C u.
For u ≤ v, we denote by |v − u| the number of edges on the path from u to v, following the
cyclic ordering. If v < u, then |v − u| = 0.

Some useful subnetworks

Let N be a weakly galled tree. In our recurrences, we will make use of the following networks
that can be obtained from N . They are all displayed in Figure 4.

N ⟨u⟩ and N ⟨•
u⟩ (Figure 4 (A)): for u a 1-clade node, N ⟨u⟩ is the network induced by u

and all the nodes that u reaches. N ⟨•
u⟩ is obtained from N ⟨u⟩ by adding a new node r

and the edge r → u. The circle above u represents a “dangling” root with a single child u.
N ⟨C, u, v⟩ (Figure 4 (B)): for C a cycle of N with reticulation t, and u < t < v, N ⟨C, u, v⟩
is obtained from the network induced by any node reached by u + 1, v − 1 (inclusively),
then adding a new node ruv with children u + 1, v − 1. Such a sub-network can be seen
as the result of contracting the upper part of the cycle between u and v into its root.

B. Marchand, N. Tahiri, O. Tremblay-Savard, and M. Lafond 16:13

It is possible that u + 1 = v − 1, in which case they are the reticulation t of the cycle. In
this case, notice that N ⟨C, u, v⟩ is equal to N ⟨

•
t⟩. It is also possible that u = v is the root

of C (which is why we need to specify C in the notation, since u root multiple cycles). In
this case, the cycle C is kept as is, but if u has children outside of C, they are removed.
N B⟨u, v⟩ (Figure 4 (C)): for u, v a 2-clade node pair, or u = v a reticulation, N B⟨u, v⟩ is
the subnetwork obtained by (1) removing any node not descending from u or v and (2)
contracting the path from u to v going through the reticulation of the cycle. Note that u

or v could be the reticulation. The B stands for bottom.
N L⟨u, v⟩ (Figure 4 (D)): for u, v a pair of non-reticulation nodes belonging to the same
side of a cycle, N L⟨u, v⟩ is the network induced by all the nodes reached by u, but that
are not reached by v + 1. For technical reasons, an extra leaf ℓT is added, with v as its
parent (which simulates that there existed a lower portion of the cycle). Note that this
network includes u and excludes v + 1. Moreover, if v is not u or one if its descendants,
we assume that N L⟨u, v⟩ is a network with no node. The L stands for lateral.
N S⟨u, v⟩ (Figure 4 (E)): for u, v pair of nodes belonging to the same side of a cycle,
N S⟨u, v⟩ is obtained from N L⟨u, v⟩ by removing ℓT and contracting the path from u to
v. If v does not descend from u, this is the empty network. The S stands for side.

Join subnetworks. Let N1, N2 be two networks with distinct leafsets. We write N1 ∗ N2 for
the network obtained by identifying the roots of N1 and N2 (or, alternatively, we create a
new root that inherits all the children of the roots of N1 and N2, and delete the two previous
roots). If N is a weakly galled tree, we say that a network N ′ is a join subnetwork of N if
N ′ = N 1 ∗ . . . ∗ N p, with each N i either of the form N ⟨•

u⟩ for some u ∈ V (N), or N ⟨C, u, v⟩
for some cycle C of N and u, v on C. If p = 1, then N ′ is called a prime join subnetwork of
N , and otherwise it is a composite join subnetwork of N . Note that by the definition of ∗, no
two N i subnetworks may have a leaf in common. Two join subnetworks N1 = N 1

1 ∗ · · · ∗ N p
1

and N2 = N 1
2 ∗ · · · ∗ N q

2 are said to be matching if p = q and ∀i ∈ [p], L(N i
1) = L(N i

2).
Our dynamic programming tables will contain join subnetworks as entries. The following

will be useful to argue that applying contractions keeps us in the realm of join subnetworks.

▶ Lemma 22. Let N be a weakly galled tree and let N ′ be a join subnetwork of N . Then
applying to N ′ any sequence of contractions of edges outgoing from its root yields a join
subnetwork of N .

The last but not least ingredient before we can describe our procedure is to use Rules 1-2
from the previous section in order to reach join subnetworks with corresponding leaf sets.

▶ Lemma 23. Suppose that Rules 1-2 are not applicable to N1 or N2. Then the networks
can be written as matching join subnetworks N1 = N 1

1 ∗ . . . ∗ N p
1 and N2 = N 1

2 ∗ . . . ∗ N p
2

such that L(N i
1) = L(N i

2) for every i ∈ [p].

A dynamic programming algorithm

We next describe our dynamic programming algorithm. Its overall workflow is sketched
in Figure 5, relying on the concept of join subnetwork. The present section details the
“decomposition” and “recursive equations” displayed in Figure 5.

We define two functions fP and fC , linked together by recursive equations. They
both compute, given two join subnetworks N ′

1, N ′
2 of N1 and N2, the minimum number of

contractions needed on both networks to achieve a common contraction. The difference is
that fP (N ′

1, N ′
2) assumes that the given pair are prime join subnetworks, whereas fC(N ′

1, N ′
2)

WABI 2024

16:14 Finding Maximum Common Contractions Between Phylogenetic Networks

input pair: , pair of join-subnetworks: is an instance of matching pair of join-subnetworks:Rules 1&2

decomposition
recursive equations

or or

fusion fusion

pair of prime networks with same leaf-set:

lower nodes

&

fusion

& &

Figure 5 Overview of our algorithm for weakly galled trees.

is given an arbitrary pair of join subnetworks (which may be composite or prime). The role
of fC is to apply rules 1 and 2, in order to get a matching pair of join-subnetworks, and then
call fP on the resulting pairs of prime subnetworks. Our value of interest is fC(N1, N2).

For join subnetworks N ′
1, N ′

2, we start with the simple base cases.

Base cases. If L(N ′
1) ̸= L(N ′

2) or if one of N ′
1, N ′

2 is not acyclic, then fC(N ′
1, N ′

2) =
fP (N ′

1, N ′
2) = ∞ as no common contraction is possible. If none of the above holds and if N ′

1
and N ′

2 each have no node, or each has a single node, put fC(N ′
1, N ′

2) = fP (N ′
1, N ′

2) = 0.

Main entries fC . If N ′
1 and N ′

2 are both prime join subnetworks, then fC(N ′
1, N ′

2) =
fP (N ′

1, N ′
2). Otherwise, suppose that at least one of N ′

1 or N ′
2 is a composite join subnetwork

of N1 or N2. Then proceed as follows:
As long as one of Rule 1 or Rule 2 is applicable to N ′

1 or N ′
2, we apply it. Let N ′′

1 , N ′′
2 be

the resulting pair of networks, which are join subnetworks by Lemma 22, and suppose
that Rule 1-2 enforced k contractions. Then we have fC(N ′

1, N ′
2) = k + fC(N ′′

1 , N ′′
2)

If no rule is applicable to either network, by Lemma 23, we have matching join subnetworks
N ′

1 = N 1
1 ∗ . . .∗N p

1 and N ′
2 = N 1

2 ∗ . . .∗N p
2 , with L(N i

1) = L(N i
2) for each i ∈ [p]. We can

solve each pair of prime subnetworks independently with fC(N ′
1, N ′

2) =
∑p

i=1 fP (N i
1, N i

2).

Prime entries fP . We now assume that both N ′
1 and N ′

2 are prime join subnetworks of N1

and N2, respectively. By definition, N ′
1 must have the form N ′

1 = N ⟨•
u⟩ or N ′

1 = N ⟨C, u, v⟩.
The same holds for N ′

2. There are thus four combinations to check.

Case 1: For u ∈ V (N1), v ∈ V (N2): fP (N1⟨•
u⟩, N2⟨•

v⟩) = fC(N1⟨u⟩, N2⟨v⟩). This is because
both networks start with a single edge ru → u and rv → v (respectively). An optimal
common contraction simply keeps both of these edges and defers the computation to N1⟨u⟩
versus N2⟨v⟩, which are join subnetworks (possibly prime) and can use other fC entries.

Case 2: For u ∈ V (N1), and cycle C of N2 and v, w ∈ V (N2) belonging to C:

fP (N1⟨•
u⟩, N2⟨C, v, w⟩) = min

{
fC(N1⟨•

u⟩, N B
2 ⟨v + 1, w − 1⟩) + |w − v| − 2,

fC(N1⟨u⟩, N2⟨C, v, w⟩) + 1

B. Marchand, N. Tahiri, O. Tremblay-Savard, and M. Lafond 16:15

I IVII

I IIIIII III

III

II IV III IV

kept

=

=

+

+
I IVII

+

+

:

Figure 6 The handling of Case 4. The gray boxes represent calls to fC entries, and vertical bars
separate possible cases. First row: The left and right children of the first network are u + 1, v − 1,
and the left and right children of the second are w + 1, x − 1. In the gray box, the four ways of
contracting an edge incident to a root (in bold edges is the untouched network). If we do not apply
those, we keep these edges. Second row: we choose a, b, c, d and contract the corresponding paths
and defer the computation to fB(a, b, c, d), which requires optimizing over the N B

1 , N B
2 bottom

networks, plus what is above a, b, c, d. Third row: the two ways of matching the lateral networks,
considered by fB. Fourth row: given two lateral networks for an fL entry, we either contract the
whole lateral paths to get N S networks, or split the paths and solve two smaller lateral networks.

Here, N1⟨•
u⟩ starts with a single edge ru → u, while N2⟨C, u, v⟩ starts with a root of a

cycle. The minimization distinguishes two cases: either (a) edge ru → u is conserved, in
which case the cycle must be contracted to a single edge, or (b) the edge is contracted.

Case 3: For a cycle C of N1, u, v ∈ V (N1) and w ∈ V (N2), the computation of
fP (N1⟨C, u, v⟩, N2⟨ •

w⟩) is symmetric to the previous case.

Case 4: This is the most complicated case, which is illustrated in Figure 6. For a cycle C1 of
N1 and nodes u, v ∈ C1, and cycle C2 of N2 and w, x ∈ C2, with respective cycle reticulations
t1 and t2, let us consider the following possibilities for fP (N1⟨C1, u, v⟩, N2⟨C2, w, x⟩): either
we contract an edge incident to u, v, w, or x on the cycles, or not. In the latter case, we treat
these incident edges as “kept”, and we must handle the bottom of the cycles. For clarity,
this value is described in a separate and temporary entry fB(a, b, c, d), which represents the
best scenario if we contract the subpath of N1⟨C1, u, v⟩ from a to b into t1, and the subpath
of N2⟨C2, w, x⟩ from c to d into t2. We get:

fP (N1⟨C1, u, v⟩, N2⟨C2, w, x⟩) = min



fC(N1⟨C1, u, v⟩/(ruv, u + 1), N2⟨C2, w, x⟩) + 1
fC(N1⟨C1, u, v⟩/(ruv, v − 1), N2⟨C2, w, x⟩) + 1
fC(N1⟨C1, u, v⟩, N2⟨C2, w, x⟩/(rwx, w + 1)) + 1
fC(N1⟨C1, u, v⟩, N2⟨C2, w, x⟩/(rwx, x − 1)) + 1
minu<a≤t1≤b<v

w≤c≤t2≤d≤x

fB(a, b, c, d)

Note that the first four entries create a composite join subnetwork, as one root inherits
the prime subnetworks going out of its contracted child. In the event that one of these
contractions is inadmissible, a cycle is created and the base case returns ∞.

WABI 2024

16:16 Finding Maximum Common Contractions Between Phylogenetic Networks

An fB entry needs to consider the contractions at the bottom of the cycle, plus the join
subnetworks created at the bottom, plus the contractions needed on the two lateral parts of
the cycles. The latter requires comparing subnetworks of the form N L

1 ⟨i, j⟩ and N L
2 ⟨p, q⟩.

For clarity, we denote by fL(i, j, p, q) the minimum number of contractions needed to obtain
a common contraction of N L

1 ⟨i, j⟩ and N L
2 ⟨p, q⟩). We get

fB(a, b, c, d) = |b − a| + |d − c| + fC(N B
1 ⟨a, b⟩, N B

2 ⟨c, d⟩) +

min
{

fL(u + 1, a − 1, w + 1, c − 1) + fL(v − 1, b + 1, x − 1, d + 1)
fL(u + 1, a − 1, x − 1, d + 1) + fL(v − 1, b + 1, w + 1, c − 1)

The latter minimization occurs because we do not know which sides of the cycles should be
put in correspondence. It only remains to describe how to compute these lateral subnetworks,
i.e. entries fL(i, j, p, q). To start with, if L(N L

1 ⟨i, j⟩) ̸= L(N L
2 ⟨p, q⟩), we set fL(i, j, p, q) =

+∞. Then, in the case of equality, if i > j (which implies p > q given the constraint
L(N L

1 ⟨i, j⟩) = L(N L
2 ⟨p, q⟩), the corresponding subnetworks are empty and fL(i, j, p, q) = 0.

For i, j on the same side of the N1 cycle and p, q on the same side of the N2 cycle, we consider
two cases: either there is an edge k, k + 1 between i, j and a corresponding edge k′, k′ + 1
between p, q that can be kept, or not (in the proofs, the extra leaf ℓT is there to enforce that
if (k, k + 1) is kept on the N ′

1 lateral path, the corresponding edge in N ′
2 is on the other

lateral path and not elsewhere). In the former case, the edge splits the computation into two
subproblems, and in the latter we must contract everything. This yields:

fL(i, j, p, q) = min

min i≤k<j
p≤k′<q

fL(i, k, p, k′) + fL(k + 1, j, k′ + 1, q),

fC(N S
1 ⟨i, j⟩, N S

2 ⟨p, q⟩) + |j − i| + |p − q|

The chain of recurrences can stop here, since the N S ’s are join subnetworks, which can
make use of other fC entries. Although not trivial, we can argue that a polynomial number
of entries is sufficient to compute δMCC(N1, N2) = fC(N1, N2). As detailed in the full online
pre-print, where the proof of the Theorem below is given, a rough analysis of the worst-case
complexity of this computation yields O(n9), with n = max(N1, N2).

▶ Theorem 24. The value of δMCC(N1, N2) between two weakly galled trees can be computed
in polynomial time.

6 Conclusion and discussion

We have generalized the original formulation of the Robinson-Foulds distance on phylogenetic
trees, based on edge contractions and expansions, to phylogenetic networks. This required
novel versions of contractions/expansions capable of creating and suppressing cycles. Both our
measures dCE and δMCC connect the whole space of networks on the same leaves. However,
whereas in the case of trees, dCE is equivalent to finding a maximum common contraction,
that it is not the case for networks, making both measures require their own separate studies.

Our work poses several questions and open problems. From a parameterized complexity
point of view, our reductions prove Para-NP-hardness (i.e. NP-hardness for a constant value
of the parameter) of computing δMCC with “size of the common contraction plus maximum
degree” as a parameter, as well as the number of leaves. However, other parameters, such
as the level of the input networks, their treewidth [39], their scanwidth [8] as well as the
maximum number of allowed contractions, could be of interest and will be the subject of
future work. Regarding treewidth, a starting point could be the O(|H|tw(G)+1|G|) algorithm

B. Marchand, N. Tahiri, O. Tremblay-Savard, and M. Lafond 16:17

for determining if a bounded-degree graph H is a contraction of another graph G [40].
Although the bounded-degree constraint is unlikely to help, the complexity of computing
δMCC on binary networks (in+out degree ≤ 3) is also open. To finish, the diameter of a
measure is often important in practice, i.e. obtaining the largest possible value between
two elements, as it allows normalization and comparison between heterogeneous datasets.
Establishing the diameters for the dCE and δMCC is left as an open problem.

References
1 Sophie S Abby, Eric Tannier, Manolo Gouy, and Vincent Daubin. Lateral gene transfer as a

support for the tree of life. Proceedings of the National Academy of Sciences, 109(13):4962–4967,
2012.

2 Akanksha Agrawal, Lawqueen Kanesh, Saket Saurabh, and Prafullkumar Tale. Paths to trees
and cacti. Theoretical Computer Science, 860:98–116, 2021.

3 Tatsuya Akutsu, Avraham A Melkman, and Takeyuki Tamura. Improved hardness of maximum
common subgraph problems on labeled graphs of bounded treewidth and bounded degree.
International Journal of Foundations of Computer Science, 31(02):253–273, 2020.

4 Dhanyamol Antony, Yixin Cao, Sagartanu Pal, and RB Sandeep. Switching classes: Charac-
terization and computation. arXiv preprint arXiv:2403.04263, 2024.

5 Allan Bai, Péter L Erdős, Charles Semple, and Mike Steel. Defining phylogenetic networks
using ancestral profiles. Mathematical Biosciences, 332:108537, 2021.

6 Hans-Jurgen Bandelt, Peter Forster, and Arne Röhl. Median-joining networks for inferring
intraspecific phylogenies. Molecular biology and evolution, 16(1):37–48, 1999.

7 Rémy Belmonte, Petr A Golovach, Pim van’t Hof, and Daniël Paulusma. Parameterized
complexity of three edge contraction problems with degree constraints. Acta Informatica,
51(7):473–497, 2014.

8 Vincent Berry, Celine Scornavacca, and Mathias Weller. Scanning phylogenetic networks is
np-hard. In SOFSEM 2020: Theory and Practice of Computer Science: 46th International
Conference on Current Trends in Theory and Practice of Informatics, SOFSEM 2020, Limassol,
Cyprus, January 20–24, 2020, Proceedings 46, pages 519–530. Springer, 2020.

9 Alix Boc, Alpha Boubacar Diallo, and Vladimir Makarenkov. T-rex: a web server for
inferring, validating and visualizing phylogenetic trees and networks. Nucleic acids research,
40(W1):W573–W579, 2012.

10 Magnus Bordewich, Simone Linz, and Charles Semple. Lost in space? generalising subtree
prune and regraft to spaces of phylogenetic networks. Journal of theoretical biology, 423:1–12,
2017.

11 Magnus Bordewich and Charles Semple. On the computational complexity of the rooted
subtree prune and regraft distance. Annals of combinatorics, 8:409–423, 2005.

12 Andries Evert Brouwer and Henk Jan Veldman. Contractibility and np-completeness. Journal
of Graph Theory, 11(1):71–79, 1987.

13 Pablo G Cámara, Arnold J Levine, and Raul Rabadan. Inference of ancestral recombination
graphs through topological data analysis. PLoS computational biology, 12(8):e1005071, 2016.

14 Gabriel Cardona, Mercè Llabrés, Francesc Rosselló, and Gabriel Valiente. Metrics for phylo-
genetic networks i: Generalizations of the robinson-foulds metric. IEEE/ACM Transactions
on Computational Biology and Bioinformatics, 6(1):46–61, 2008.

15 Gabriel Cardona, Mercè Llabrés, Francesc Rosselló, and Gabriel Valiente. Metrics for phylo-
genetic networks ii: Nodal and triplets metrics. IEEE/ACM Transactions on Computational
Biology and Bioinformatics, 6(3):454–469, 2008.

16 Gabriel Cardona, Mercè Llabrés, Francesc Rosselló, Gabriel Valiente, et al. The comparison
of tree-sibling time consistent phylogenetic networks is graph isomorphism-complete. The
Scientific World Journal, 2014, 2014.

WABI 2024

16:18 Finding Maximum Common Contractions Between Phylogenetic Networks

17 Gabriel Cardona, Joan Carles Pons, Gerard Ribas, and Tomas Martınez Coronado. Comparison
of orchard networks using their extended µ-representation. IEEE/ACM Transactions on Com-
putational Biology and Bioinformatics, pages 1–8, 2024. doi:10.1109/TCBB.2024.3361390.

18 Gabriel Cardona, Francesc Rosselló, and Gabriel Valiente. Tripartitions do not always
discriminate phylogenetic networks. Mathematical Biosciences, 211(2):356–370, 2008.

19 Charles Choy, Jesper Jansson, Kunihiko Sadakane, and Wing-Kin Sung. Computing the
maximum agreement of phylogenetic networks. Theoretical Computer Science, 335(1):93–107,
2005.

20 Andreas Darmann and Janosch Döcker. On a simple hard variant of not-all-equal 3-sat.
Theoretical Computer Science, 815:147–152, 2020.

21 Bhaskar DasGupta, Xin He, Tao Jiang, Ming Li, John Tromp, and Louxin Zhang. On
computing the nearest neighbor interchange distance. Computing, 23(22):21–26, 1998.

22 Reinhard Diestel. Graph Theory. Springer, 2016.
23 Norman C Ellstrand and Kristina A Schierenbeck. Hybridization as a stimulus for the evolution

of invasiveness in plants? Proceedings of the National Academy of Sciences, 97(13):7043–7050,
2000.

24 Peter Forster, Lucy Forster, Colin Renfrew, and Michael Forster. Phylogenetic network analysis
of sars-cov-2 genomes. Proceedings of the National Academy of Sciences, 117(17):9241–9243,
2020.

25 Peter Forster, Lucy Forster, Colin Renfrew, and Michael Forster. Reply to sanchez-pacheco
et al., chookajorn, and mavian et al.: explaining phylogenetic network analysis of sars-cov-2
genomes. Proceedings of the National Academy of Sciences of the United States of America,
117(23):12524, 2020.

26 Philippe Gambette, Leo Van Iersel, Mark Jones, Manuel Lafond, Fabio Pardi, and Celine
Scornavacca. Rearrangement moves on rooted phylogenetic networks. PLoS computational
biology, 13(8):e1005611, 2017.

27 Michael R Garey and David S Johnson. Computers and intractability, volume 174. freeman
San Francisco, 1979.

28 Dan Gusfield, Satish Eddhu, and Charles Langley. Optimal, efficient reconstruction of phylo-
genetic networks with constrained recombination. Journal of bioinformatics and computational
biology, 2(01):173–213, 2004.

29 Marc Hellmuth, David Schaller, and Peter F Stadler. Clustering systems of phylogenetic
networks. Theory in Biosciences, 142(4):301–358, 2023.

30 Daniel H Huson, Regula Rupp, and Celine Scornavacca. Phylogenetic networks: concepts,
algorithms and applications. Cambridge University Press, 2010.

31 Marcin Kamiński, Daniël Paulusma, and Dimitrios M Thilikos. Contractions of planar graphs
in polynomial time. In Algorithms–ESA 2010: 18th Annual European Symposium, Liverpool,
UK, September 6-8, 2010. Proceedings, Part I 18, pages 122–133. Springer, 2010.

32 Jonathan Klawitter. Spaces of phylogenetic networks. PhD thesis, ResearchSpace@ Auckland,
2020.

33 Eugene V Koonin, Kira S Makarova, and L Aravind. Horizontal gene transfer in prokaryotes:
quantification and classification. Annual Reviews in Microbiology, 55(1):709–742, 2001.

34 Nils Kriege, Florian Kurpicz, and Petra Mutzel. On maximum common subgraph problems in
series–parallel graphs. European Journal of Combinatorics, 68:79–95, 2018.

35 Kaari Landry, Aivee Teodocio, Manuel Lafond, and Olivier Tremblay-Savard. Defining phylo-
genetic network distances using cherry operations. IEEE/ACM Transactions on Computational
Biology and Bioinformatics, 2022.

36 Kaari Landry, Olivier Tremblay-Savard, and Manuel Lafond. A fixed-parameter tractable
algorithm for finding agreement cherry-reduced subnetworks in level-1 orchard networks.
Journal of Computational Biology, 2023.

https://doi.org/10.1109/TCBB.2024.3361390

B. Marchand, N. Tahiri, O. Tremblay-Savard, and M. Lafond 16:19

37 Asaf Levin, Daniël Paulusma, and Gerhard J Woeginger. The computational complexity of
graph contractions i: Polynomially solvable and np-complete cases. Networks: An International
Journal, 51(3):178–189, 2008.

38 Eugene M Luks. Isomorphism of graphs of bounded valence can be tested in polynomial time.
Journal of computer and system sciences, 25(1):42–65, 1982.

39 Bertrand Marchand, Yann Ponty, and Laurent Bulteau. Tree diet: reducing the treewidth to
unlock fpt algorithms in rna bioinformatics. Algorithms for Molecular Biology, 17(1):8, 2022.

40 Jiří Matoušek and Robin Thomas. On the complexity of finding iso-and other morphisms for
partial k-trees. Discrete Mathematics, 108(1-3):343–364, 1992.

41 Bernard ME Moret, Luay Nakhleh, Tandy Warnow, C Randal Linder, Anna Tholse, Anneke
Padolina, Jerry Sun, and Ruth Timme. Phylogenetic networks: modeling, reconstructibility,
and accuracy. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 1(1):13–
23, 2004.

42 David F Robinson and Leslie R Foulds. Comparison of phylogenetic trees. Mathematical
biosciences, 53(1-2):131–147, 1981.

43 Francesc Rosselló and Gabriel Valiente. All that glisters is not galled. Mathematical biosciences,
221(1):54–59, 2009.

44 Santiago J Sánchez-Pacheco, Sungsik Kong, Paola Pulido-Santacruz, Robert W Murphy, and
Laura Kubatko. Median-joining network analysis of sars-cov-2 genomes is neither phylogenetic
nor evolutionary. Proceedings of the National Academy of Sciences, 117(23):12518–12519, 2020.

45 Bohdan Zelinka. Contraction distance between isomorphism classes of graphs. Časopis pro
pěstování matematiky, 115(2):211–216, 1990.

A Proofs for Section 2 (Contraction-Expansion distance)

▶ Proposition 8. Any phylogenetic network N may be contracted into the star network by a
series of admissible contractions.

Proof. We argue that the contraction of the edge between the root r of N and its first non-
leaf out-neighbor in any topological ordering is always admissible (recall that a topological
ordering is a permutation σ = (u1, . . . , un) of N such that (ui, uj) ∈ E(N) implies i < j,
and that such an ordering always exists in a directed acyclic graph). Let σ be any topological
ordering of V (N), and let u be the first non-leaf out-neighbor of r that occurs in σ. If there
exists a directed path between r and u that does not use edge r → u, then any node on this
path must be between r and u in σ, which goes against the definition of u. Therefore, by
Proposition 3, r → u is admissible. It follows that N can then be contracted into the star
network by picking such an element u as long as there are non-root internal nodes. ◀

▶ Proposition 14. Let M and N two networks over the same set of leaves. Then M is a
contraction of N if and only if there exists a M-witness structure in N .

Proof.
From contraction sequence to W. We work by induction on the length of the contraction
sequence. For an empty contraction sequence from N to M, N and M are isomorphic. An
M-witness structure in N is given by Wu = {ϕ(u)} for all u internal node of M, and ϕ

isomorphism from M to N .
Let now be C = c1 . . . cp the contraction sequence yielding M from N . Let us call M′ the

network obtained by applying the first p − 1 contractions to N . By the induction hypothesis,
there is a M′-witness structure W ′ in N . Let c(x, y, z) be the p-th contraction. We remove
Wx and Wy from W ′, and add to it a new set Wz = Wx ∪ Wy. We call the result W and
argue it is a M-witness structure in N . Let us verify each point from the definition. (1) is

WABI 2024

16:20 Finding Maximum Common Contractions Between Phylogenetic Networks

verified as Wx and Wy were both weakly connected, and are connected together by edge
x → y. (2) is inherited from W ′ for any pair of nodes not involving z. For u internal node of
M, u → z is an edge if and only if u → x or u → y were edges, which is equivalent to the
existence of some edge from Wu to Wx or Wu to Wy, in turn equivalent to the existence of
an edge between Wu and Wz. The case of an edge outgoing from z is treated similarly. As
for (3), any leaf u whose parent is x or y in M′ now has z has a parent, and indeed, denoting
by pN (u) the parent of u in N , pN (u) ∈ Wx or pN (u) ∈ Wy implies pN (u) ∈ Wz.

From W to contraction sequence. Given an M-witness structure in N called W , we prove
that each set of W may be contracted into a single node. The result will then trivially be a
network isomorphic to M (if pu is the node obtained from contracting Wu then ϕ : pu → u

is an isomorphism). We prove the result for each u by induction on |Wu|.
Consider therefore Wu ∈ W, for u internal node of M, and the sub-graph Hu induced

by Wu in N . We show that there is always an admissible contraction in Hu. Indeed, Hu

must be acyclic since a cycle in Hu would be a cycle of N . Consider the first node x in a
topological ordering of Hu, and y its first neighbor (in Hu) according to the same topological
ordering. Note that unless Wu is already a single node, such a y must exist, as otherwise x

has both no in-neighbor and no out-neighbor in Hu, and thus Hu is not weakly connected.
By Proposition 3, the contraction of x → y is admissible if and only if there is no directed
path from x to y not using edge x → y. Such a path within Hu is not possible, as then y

would not be the first neighbor of x in a topological ordering. Outside of Hu, such a path
is not possible either: let u1, . . . , ut be, in order, the list of nodes whose corresponding set
(Wu1 , . . . , Wut

) is visited on such a path. By equivalence between the presence of an edge
between Wu and Wv and the presence of u → v in M, u, u1, . . . , ut, u is a directed cycle of
M, which is not possible. Overall, there is always an admissible contraction in any set of a
M-witness structure. As the result is still a M-witness structure, now in N /(x → y), and
with |Wu| reduced by 1, Wu is contractible to a point by the induction hypothesis. We do
the same for each Wu to conclude the proof. ◀

B Proofs for Section 3 (NP-hardness of finding maximum common
contractions)

▶ Theorem 18. Maximum Common Network Contraction is NP-hard, even on
networks with 5 leaves, one of them being a tree and k = 4.

Proof. We prove that a Set Splitting instance (X, A) is splittable if and only if, with the
construction detailed above and illustrated on Figure S1, N2 is a contraction of N1. This is
equivalent to asking whether (N1, N2, k) is a yes-instance of MCNC with k = 4.

(X, A) splittable ⇒ N2 contraction of N1. Given X1, X2 split for (X, A), we describe a
sequence of edge contractions on N1 yielding N2. We first contract {tx | x ∈ X1} into s and
{tx | x ∈ X2} into t. These contractions are admissible, as no other directed path from s to
tx other than edge (s, tx) exist (Proposition 3). Then, since ∀S ∈ A, S ∩ X1 ̸= ∅, there is
now an edge from uS to s, which we contract (one can easily check that it is also admissible).
Likewise, we contract each vS into t. The result is N2.

N2 contraction of N1 ⇒ (X, A) splittable. Per Proposition 14, N2 is a contraction of
N1 if and only if there exists an N2-witness-structure in N1, i.e. a partition Va, Vb, Vc, Vd of
the internal nodes of N1, such that: (1) each of these sets is weakly connected, (2) the parent

B. Marchand, N. Tahiri, O. Tremblay-Savard, and M. Lafond 16:21

X = {1, 2, 3, 4, 5}

A = {a = (123), b = (345), c = (25)}

N1

N2

a1 b1

uc

ub

ua

vc

vb

va

t1

t2

t3

t4

t5s t

ℓ1

ℓ2 ℓ3

ℓ4

ℓ′4

a b c d

ℓ1 ℓ2 ℓ3 ℓ4

ℓ′4

Figure S1 Illustration of our second reduction, also from Set Splitting. The blue nodes
represent the sets of A, and the orange nodes the elements of X. We use this construction in
Theorem 18, to prove that even when restricted to networks on 5 leaves, Maximum Common
Network Contraction is NP-hard.

of ℓ1 (resp. ℓ2, ℓ3, ℓ4, ℓ′
4) in N1 is in Va (resp. Vb, Vc, Vd) and (3) there are edges from Va to

Vb, Vb to Vc and Vc to Vd, but all other edges in N1 are internal to each set. With such a
partition, we must have a1 ∈ Va, s ∈ Vb, t ∈ Vc and b1 ∈ Vd. If any uS is in Va, then the
undirected distance from Va to Vd is at most 2, whereas it must be 3. Therefore Va = {a1}
and Vd = {b1}. From a similar distance argument (if uS ∈ Vc then the distance between Vc

and Va is incorrect), {uS}S∈A ⊆ Vb and {vS}S∈A ⊆ Vc. Each tx can only be in Vb or Vc. We
define X1 = {x ∈ X | tx ∈ Vb} and X2 = {x ∈ X | tx ∈ Vc}. If for some S ∈ A, S ∩ X1 = ∅,
then uS is not connected to the other nodes in Vb. Therefore ∀S ∈ A, S ∩ X1 ̸= ∅, and
likewise for X2. X1, X2 is indeed a split for (X, A). ◀

C Proofs for Section 4 (On weakly galled-trees, clades, and
contraction sequences)

▶ Proposition 20 (clade-set conservation). If M is a contraction of a network N , then
Σ1(M) ⊆ Σ1(N) ∪ Σ2(N) and Σ2(M) ⊆ Σ2(N).

Proof. It is enough to show that the statement holds if M is obtained from N by applying
a single contraction c(u, v, w), as further contractions will also produce networks whose
clade-set is a subset of M. So suppose that M is obtained by contracting (u, v) into the
new node w. Note that since w inherits the out-neighbors of u and v, we have DM (w) =
DN (u) ∪ DN (v) = DN (u) (the latter because u reaches every leaf that v reaches). Let S be
a 1-clade of M. We have S = DM (x) for some x 1-clade node of M.

If x ̸= w, then x is also a node of N , different from u and v. We argue it is also a 1-clade
node in N . Indeed, if it is not, then it is internal to a cycle in N . Since x is not u nor v, no
edge incident to x is contracted, and x is still part of a cycle in M (to see this, note that
the only way to remove a cycle of N is if it has a single internal node which is part of the
contraction). Moreover, it is not hard to see that x is still internal to that cycle, which is a
contradiction. Therefore DN (x) is a 1-clade of N . This means that in N , x either reaches
both u, v, or none of them (if not, x would reach v but not u, in which case v would be a
reticulation and x would be internal to the cycle with that reticulation). This implies that
DN (x) = DM (x) = S, as the contraction does not alter the leaves that x reaches.

WABI 2024

16:22 Finding Maximum Common Contractions Between Phylogenetic Networks

If x = w, then S = DM (x) = DM (w) = DN (u). Either u was a 1-clade node of N , and
S is indeed a 1-clade of N , or u was internal to a cycle in N . Since w is a 1-clade node
in M, the only possibility is that u was the only internal node in its cycle, and v was the
reticulation of the cycle on which u stood. In this case u, v was a 2-clade pair of N , with
DN (u) ∪ DN (v) = S. Therefore, S ∈ Σ2(N).

Let us now look at the other case, where S is a 2-clade of M. Let x, y be the corresponding
2-clade node pair, and C the cycle they stand on. As cycles may only be deleted, and not
created, by contractions, C is also a cycle in N , possibly with a difference of one edge (if
u, v was an edge in C). If w /∈ {x, y}, then we also have that neither x or y are the nodes u

and v, and therefore also nodes of N . Since they stand on distinct paths in C in M, this is
also the case in N , and x and y are also a 2-clade node pair in N . To finish on this case, we
need DN (x) ∪ DN (y) = DM(x) ∪ DN (y). We have DN (x) ∪ DN (y) ⊆ DM(x) ∪ DN (y) as a
path N from x or y to a leaf still exists (although potentially slightly modified) after the
contraction of (u, v). If DN (x) ∪ DN (y) ̸= DM(x) ∪ DN (y), then the only possibility is that
x or y could reach v but not u, and that the contraction of (u, v) allowed to reach new leaves
from DN (u). But if this is the case, then v is a reticulation. Whether it is the reticulation of
C or not, x or y can reach u in N , which is a contradiction. Therefore S is in Σ2(N).

If x = w or y = w, say x = w, then we look at a few cases. If w is internal to C

in M, then u was also internal in C in N . Therefore u, y is a 2-clade node pair, and
S = DM (w) ∪ DM (y) = DN (u) ∪ DN (y) is in Σ2(N). If w is the reticulation of C in M,
then either v or u were the reticulation of C in N . If v was the reticulation, then either u was
on the same path as y or not. If u was not on the same path as y, then u, y is a 2-clade node
pair in N and we conclude as above. If u was on the same side as y, then DN (u) ⊆ DN (y),
and v, y is a 2-clade node pair with clade S in N . Last, if u was the reticulation, then u, y is
a valid 2-clade pair node in N , and we have S = DN (u) ∪ DN (y) ∈ Σ2(N). ◀

▶ Lemma 21. Rule 1 and Rule 2 are safe.

Proof. Let us argue Rule 1 first. Let M be any maximum common contraction of N1 and
N2. If (r1, u) is never contracted to transform N1 into M, then DN1(u) must be a 1-clade of
M. Since M is a contraction of N2, by Proposition 20, DN1(u) is also a 1-clade or a 2-clade
of N2, contradicting the conditions of the rule.

Let us now show that Rule 2 is safe. Let M be a maximum common contraction of N1 and
N2. We use the witness interpretation of M. That is, let W1, W2, . . . , Wp be the partition of
V (N1), and W ′

1, . . . , W ′
p the partition of V (N2) that result in M. Assume without loss of

generality that r1 ∈ W1. If u ∈ W1 as well, then M can be reached after contracting (r1, u)
and the rule is safe. So assume that r1 ∈ W1 and u ∈ W2, again without loss of generality.

Let C be the cycle of N1 in which u is internal. Let r1 = v1, v2, . . . , vk be the path of C

that does not contain u, where vk is the reticulation of C. We claim that vk /∈ W1. Indeed,
if vk ∈ W1, there are two paths from r1 to vk that can be used to connect them in W1, and
the one that uses u cannot be used. If we had r1, vk ∈ W1, after contracting all nodes in
the same Wi’s, the would be an edge from the node representing W1 to that representing
W2, because of the edge (r1, u), and the latter node representing W2 would then have a
path to the node representing W1, because vk ∈ W1. This creates a cycle in M and thus
a contradiction. Hence, there is some i ∈ [k − 1] such that vi ∈ W1 but vi+1 /∈ W1. This
implies that the edges (r1, u) and (vi, vi+1) of N1 are not contracted to obtain M, implying
in turn that DN1(u) ∪ DN1(vi+1) is a 1-clade or a 2-clade of M. By Proposition 20, this is
also a 1-clade or 2-clade of N2, which contradicts the conditions of the rule. ◀

B. Marchand, N. Tahiri, O. Tremblay-Savard, and M. Lafond 16:23

keep x
→

y

do not keep it

x

y

1

2

3

4

13

12

11

10

5

6

7

9

8

N1

1

2

3

4

13

12

11

10

5

6

7

9

8

N2

1

2

3

4

13

12

11

10

5

6

7

9

8

N1

1

2

3

4

13

12

11

10

5

6

7

9

8

N2

→

1
2
3
4

13
12
11
10

5
6

9
8

M

M

1

2

3

4

13

12

11

10

5

6

75 6 8 9

9

8

Figure S2 Example of an instance where keeping a common 1-clade is not optimal. Indeed,
if the edge incoming to the root of the second cycle in N1 is kept (corresponding to the 1-clade
{5, 6, 7, 8, 9}), then its two ends belong to two different sets Wu and Wv of an M-witness structure,
with M common contraction of N1 and N2. One of them, say u, must reach exactly {5, 6, 7, 8} in
M, and Wu must be weakly connected. The only possibility to achieve this in N2 is to contract the
cycle into a single edge, as depicted by the orange and blue shaded areas on the top path. Without
forcing the preservation of {5, 6, 7, 8} (bottom path), we get a larger common contraction. This
example highlights the difference between computing a maximum common contraction of two trees
(where one can simply keep the clades in common) and two networks.

D Proofs for Section 5 (A Dynamic Programming Algorithm for
Weakly Galled Trees)

▶ Lemma 22. Let N be a weakly galled tree and let N ′ be a join subnetwork of N . Then
applying to N ′ any sequence of contractions of edges outgoing from its root yields a join
subnetwork of N .

Proof. It suffices to argue that a single contraction preserves the desired form, as in turn,
applying any number of them will do so. Let r be the root of N ′ and suppose that edge
r → w is contracted. Denote N ′ = N 1 ∗ . . . ∗ N p. Assume without loss of generality that
w belongs to N 1. Suppose first that N 1 = N ⟨ •

w⟩ for some w ∈ V (N). Notice that because
N is a weakly galled tree, N ⟨w⟩ is itself a composite join subnetwork of N , as it can be
obtained by joining its 1-clade children under a common root, and joining the cycles that w

is a root of. In other words, we may write N ⟨w⟩ = N 1
u ∗ . . . ∗ N q

u . Then, after contracting
r → w, the network N ′ becomes N 1

w ∗ . . . ∗ N q
w ∗ N 2 ∗ . . . ∗ N p, which is a join subnetwork

of N , as desired. So suppose that N 1 = N ⟨C, u, v⟩ for some cycle C and nodes u, v. Then
w = u + 1 or w = v − 1. Either way, if the cycle is still present after contracting r → u,
N 1 can be replaced with N ⟨u + 1, v⟩ or N ⟨u, v − 1⟩, in which case the contraction yields
another join subnetwork (as the other subnetworks N 2, . . . , N p are unaltered). If the cycle
is contracted to an edge, then N 1 becomes N ⟨

•
t⟩, with t the reticulation of the cycle. Again,

this preserves the join subnetwork form. ◀

▶ Lemma 23. Suppose that Rules 1-2 are not applicable to N1 or N2. Then the networks
can be written as matching join subnetworks N1 = N 1

1 ∗ . . . ∗ N p
1 and N2 = N 1

2 ∗ . . . ∗ N p
2

such that L(N i
1) = L(N i

2) for every i ∈ [p].

Proof. Let r1 and r2 be the roots of N1 and N2, respectively. Notice that a network is a
join subnetwork of itself, so we may write N1 = N 1

1 ∗ . . . ∗ N p
1 and N2 = N 1

2 ∗ . . . ∗ N q
2 . If

the superscripts can be arranged so that leafsets are equal as desired in the statement, we
are done, so assume this is not the case. Let us start with an observation:

WABI 2024

16:24 Finding Maximum Common Contractions Between Phylogenetic Networks

▷ Claim. If two leaves x and y from a network N belong both to some 1-clade or 2-clade
other than L(N), then there is an (undirected) path between them that does not use the
root.

Proof of Claim. In case of a 1-clade S = D(u), simply concatenate a path from x to u (which
must exist as u reaches x) and a path from u to y. Likewise, in the case of a 2-clade
S = D(u) ∪ D(v), use u and v, then the reticulation of the cycle that u and v belong to, as
intermediate points to get a path from x to y not using the root. ◁

The matching condition states that ∀i ∈ [p], ∃j such that L(N i
1) = L(N j

2). Therefore, if
it is not verified, there exists i ∈ [p] such that ∀j ∈ [q], L(N i

1) ̸= L(N j
2). Since {L(N j

2)}j∈[p]
forms a partition of the common leafset of N1 and N2, there must exist j such that, in
addition L(N i

1) ∩ L(N j
2) ̸= ∅. Let us pick such a pair i, j and denote A = L(N i

1) and
B = L(N j

2). We have A ̸= B and A ∩ B ̸= ∅, and therefore B \ A ̸= ∅ or A \ B ≠ ∅. We
analyze the case B \ A ̸= ∅, but the arguments apply symmetrically to the other. Note that
N j

2 is either rooted at a node with a single child, or rooted at a cycle.
Consider the case where the root r2 of N j

2 has a single child v. Let x ∈ A ∩ B and
y ∈ B \ A. We have that v is a child of r2 in N2 and, moreover, DN2(v) = B is a 1-clade of
N2 containing both x an y. However, in N1, all paths between x and y goes through r1, by
the Claim above, x and y cannot share a clade, implying that B cannot be a 1-clade nor a
2-clade of N1. Therefore, Rule 1 is applicable to r2 → v, a contradiction.

So consider the case where N j
2 is rooted at a cycle C. Let z be the reticulation of C

and let x be a leaf that z reaches (in N2 and N j
2). Suppose for now that x ∈ A. Then let

y ∈ B \ A, which again exists. Let v be a non-reticulation child of r2 in N2 that reaches y

(which exists), and note that v also reaches x. Therefore, any 2-clade involving v contains x

and y. Again because all paths between x and y in N1 go through r1, such a 2-clade cannot
be in N1, in which case Rule 2 should be applied to r2 → v, a contradiction. So suppose
that x /∈ A. Then let y ∈ A ∩ B. As before, we let v be a non-reticulation child of r2 that
reaches y. This v also reaches x, and we get the same contradiction. ◀

	1 Introduction
	2 Contraction-Expansion distance
	2.1 Preliminaries
	2.2 Contractions and expansions
	2.3 Properties of d_{CE} and delta_MCC
	2.4 Witness structure to a contraction

	3 NP-hardness of finding maximum common contractions
	3.1 Hardness with common contraction of size k = 3
	3.2 Hardness with N_2 a path with 5 leaves

	4 On weakly galled-trees, clades, and contraction sequences
	5 A Dynamic Programming Algorithm for Weakly Galled Trees
	6 Conclusion and discussion
	A Proofs for Section 2 (Contraction-Expansion distance)
	B Proofs for Section 3 (NP-hardness of finding maximum common contractions)
	C Proofs for Section 4 (On weakly galled-trees, clades, and contraction sequences)
	D Proofs for Section 5 (A Dynamic Programming Algorithm for Weakly Galled Trees)

