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Abstract
The use of a real-time operating system (RTOS) raises the abstraction level for embedded systems
design when compared to traditional bare-metal programming, resulting in simpler and more reusable
application code. Modern RTOSes for resource-constrained platforms, like Zephyr and FreeRTOS,
also offer threading support, but this kind of shared memory concurrency is a poor fit for expressing
the reactive and interactive behaviors that are common in embedded systems. To address this,
alternative concurrency models like the actor model or communicating sequential processes have been
proposed. While those alternatives enable reactive design patterns, they fail to deliver determinism
and do not address timing. This makes it difficult to verify that implemented behavior is as intended
and impossible to specify timing constraints in a portable way. This makes it hard to create reusable
library components out of common embedded design patterns, forcing developers to keep reinventing
the wheel for each application and each platform. In this paper, we introduce the embedded target
of Lingua Franca (LF) as a means to move beyond the threaded programming model provided by
RTOSes and improve the state of the art in embedded programming. LF is based on the reactor
model of computation, which is reactive, deterministic, and timed, providing a means to express
concurrency and timing in a platform-independent way. We compare the performance of LF versus
threaded C code – both running on Zephyr – in terms of response time, timing precision, throughput,
and memory footprint.
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1 Introduction

Microcontrollers are ubiquitous in embedded applications, such as consumer electronics,
industrial automation, robotics, and automotive systems. Such applications are concurrent,
event-driven, and in many cases, time-sensitive. Traditionally, these systems have been
programmed in C, based on a limited shared-memory concurrency model offered by interrupts.
However, such programs have long been known to be notoriously difficult to get right [24,
5]. This has contributed to serious bugs and vulnerabilities, sometimes with catastrophic
results [11, 10, 14].

Real-time operating systems (RTOSes) offer a richer version of the shared-memory
concurrency model through threads. Threads enable the user to decompose their application
into multiple concurrent activities. The RTOS offers low-level primitives for controlling the
scheduling, synchronization, timing, and communication between threads. Just like interrupts,
the threaded programming model admits nondeterminism [12] and leaves the error-prone
job of synchronizing the threads’ accesses to shared variables to the programmer [25]. A
concurrency primitive that popular operating systems like Zephyr [4] provide as an alternative
to threads is callbacks, which are invoked from interrupt service routines [20]. Callbacks
do not address the problem of nondeterminism either, but they do create the problem of
control flow inversion [5], which makes programs much harder to understand [18]. The RTOS
introduces a notion of time, which is useful when designing time-aware applications. However,
the timing is too imprecise for many applications. The RTOS will use regular interrupts,
called systicks, to measure time and provide timing abstractions. The interval between the
systicks is user-configurable but typically in the order of milliseconds. For many applications,
this level of accuracy is not sufficient [9]. Developers can resort to implementing the timed
behavior through callbacks, but this will expose them to the aforementioned problems.

In this paper, we propose Lingua Franca (LF) [16] as a means to enable intuitive concurrent,
reactive, and time-aware programming of microcontrollers. LF offers lightweight concurrent
objects called reactors, which can be composed in a network. Reactors do not share state
but communicate through message passing via named ports. Deterministic concurrency is
ensured on the basis of the topology of the reactor network. LF has a semantic notion of time
that enables specification of arbitrary timing behavior of a program. Being a coordination
language, not a general-purpose programming language, LF lets the programmer express
computation in a target language of their choice. The Zephyr support implemented and
evaluated in this paper is based on the C target. We compare the implementation of typical
patterns in embedded system software using the timed reactor-based concurrency model
against achieving the same kinds of behavior with threads.

The remainder of the paper is organized as follows. Section 2 briefly introduces the
reactor-oriented paradigm followed by LF and its suitability for embedded system design.
Section 3 takes a look at related work. Section 4 introduces the Zephyr support layer we
developed for LF. In Section 5 we compare the performance of LF on Zephyr versus threaded
C code running directly on Zephyr. Conclusions are provided in Section 6.

2 Embedded Programming in Lingua Franca

In the reactor-oriented programming paradigm followed by LF, concurrency is exposed
by the programmer through the composition of stateful components called reactors that
encapsulate event-triggered reactions, leaving the task of concurrency management to the LF
compiler and runtime. Programmers need not deal with locks, semaphores, or other low-level
synchronization mechanisms. Any two simultaneously triggered reactions that do not have
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any data dependencies between them may execute in arbitrary order (or in parallel, on a
multicore system) without execution order affecting the effects of those reactions. It is the
runtime system, not the programmer, that is in charge of ensuring that data dependencies
are observed. This is what makes LF programs deterministic by default.

When events are not logically simultaneous, the LF runtime guarantees that they will
appear to be processed in order according to their positions, called tags, on a totally ordered
logical timeline. Through its correspondence to physical time, as measured by the system
clock, this logical timeline also determines the program’s real-time behavior. Events with
well-defined logical times are produced by hooking up reactors to timers that produce events
periodically, or by scheduling events in reaction code via actions. LF’s timing constructs
can be parameterized to let the runtime control the offsets, periods, and spacing between
events. Logical delays and deadlines can be used to specify timing constraints and to handle
possible timing violations.

LF separates a declarative specification of a program’s coordination fabric from the
program’s imperative code, which is contained in reaction bodies and written in a target
language of choice. The LF toolchain capitalizes on this by providing automatically synthe-
sized interactive diagrams in the IDE. In the diagrams, reactors are shown as rounded boxes.
Small black triangles denote ports, and reactions are represented by chevrons. Reactions
can be triggered by events originating from upstream ports or actions, connected via dashed
lines. There are also distinguished startup and shutdown triggers that, respectively, have
events at the very first and very last time instant of program execution. Dashed lines also
connect a reaction to its effects, which are downstream ports or actions that it can produce
events on. Events produced on ports are always instantaneous; those produced on actions
are always scheduled to occur at a future time.

To express modal behaviors, where the software has to switch between different modes of
operation, LF also has syntax for grouping a reactor’s elements in mutually exclusive regions
called modes. A modal reactor has a single initial mode and can have several other modes.
A transition from one mode to another is initiated in reaction code and requires the reaction
to specify the target mode among its effects. A mode can be entered via a reset transition
(the default) or a history transition. The former initializes all timers and resets any state
marked to be reset; the latter resumes operation where it left off when the mode was last
exited. Modes and transitions are rendered visually in the diagrams as highlighted areas
with arcs between them. The initial mode is marked by a thicker border.

The LF runtime can be compared to an RTOS kernel. Like a kernel, it supports
message-passing and context-switching between concurrently executing components. The
message-passing is done by setting up direct pointers from input ports to the output ports
they are connected to on. Ports carry immutable data by default which enables zero-copy
communication. There are two types of context-switches performed by the LF runtime. The
first, referred to as reaction-switching, involves scheduling a new reaction at the same tag
a the previously executed reaction. The second type of context-switch requires advancing
the logical time of the program. This is referred to as logical time advancement. It might
include putting the system into low-power sleep to wait for the physical time to reach that
particular value.

2.1 Embedded design patterns

In the following sections we will show how three common design patterns in embedded
systems can be expressed easily using Lingua Franca.

NG-RES 2023
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1 target C;
2
3 reactor ButtonDebounce {
4 preamble {=
5 void * button_press_action ; // Pointer to physical action
6 void gpio_pin_isr () {
7 lf_schedule ( button_press_action , 0);
8 }
9 =}

10
11 physical action button_press (0, 10 msec )
12
13 reaction ( startup ) -> button_press {=
14 // Setup GPIO pin and register ISR
15 ...
16 // Make physical action available externally
17 button_press_action = button_press ;
18 =}
19
20 reaction ( button_press ) {=
21 // Handle
22 =}
23 }

Figure 1 Button debouncing in Lingua Franca.

2.1.1 Button debouncing

When a button is pressed, it may generate multiple spurious open and close transitions.
Debouncing is the process of filtering out transitions that are so close in time that they likely
are not due to an actual button press or release. LF’s timed semantics makes such patterns
simple to express. To capture asynchronous events, like button presses, and pin them to
LF’s logical timeline, a physical action is used, which can be scheduled from an external
thread or ISR. The tag of such an event is derived not from the runtime’s current logical
time (as an event scheduled on a logical action would), but from the systems’s physical time.
An action can be assigned a minimum spacing, which will make the scheduler reject events
scheduled too close to one another. Fig. 1 shows how this is expressed in the C target of
Lingua Franca. The physical action button_press has a minimum spacing of 10 ms, and the
runtime system handles the debouncing.

2.1.2 Sensor parsing

Consider the common application of parsing an incoming packet from an external sensor
connected through a digital communication interface. Figs. 2b and 2a show the imple-
mentation and diagram of a generic packet parser reactor in LF. Parsing a stream of bytes
is conveniently expressed as a state machine. LF has native support for encoding state
machines through modal reactors. The SensorParsing reactor has an input port for incoming
bytes and an output port for the parsed packet. How the reactor responds to data on its
input port depends on its current mode. In the initial mode, ReadSync, the incoming bytes
are compared against the known sync ID of the packet. Upon finding the sync bytes, the
reactor performs a mode change to ReadLength, where it reads the length field of the packet.
When the length has been decoded, the reactor moves to the ReadPacket mode, reads the
packet, and outputs the result on the pkt output port.
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SensorParsing

ReadSync

1
byte

ReadLength

2
byte

ReadPacket

3
byte pkt

byte

byte byte

byte pkt

(a) Diagram.

1 reactor SensorParser {
2 input byte:char
3 output pkt: sensor_pkt_t ;
4
5 initial mode ReadSync {
6 reaction (byte) -> ReadLength {=
7 // Search for sync -byte ...
8 lf_set_mode ( ReadLength );
9 =}

10 }
11
12 mode ReadLength {
13 reaction (byte) -> ReadPacket {=
14 // Read length field ...
15 lf_set_mode ( ReadPacket );
16 =}
17 }
18
19 mode ReadPacket {
20 reaction (byte) -> pkt {=
21 // Read packet into p ...
22 lf_set (pkt , p);
23 =}
24 }
25 }

(b) Source code.

Figure 2 A sensor packet parser in Lingua Franca.

SenseToAct

Sensor

(0, 1 msec)

20 usec
out

Processing
in out

Actuator

1 msec
in

Figure 3 Tight control loop application in Lingua Franca.

2.1.3 Control loops

Another common design pattern is that of tight control loops in, for example, robotics and
control. Consider the LF program depicted Fig. 3. It consists of a Sensor reactor that
reads from a sensor every 1 ms. The sensor values are passed downstream to the Processing
reactor, which implements a control algorithm. Finally, the control set points calculated by
Processing are applied to the actuators in the Actuator reactor.

Notice that there are two deadlines. First, the Sensor reaction is associated with a 20 us
deadline. This is a way of expressing a bound on how much jitter we accept in our sensor
readings. Likewise, the Actuator reactor has a deadline of 1 ms. This corresponds with the
period of the control loop and expresses that the overhead starting from obtaining a reading
from Sensor up to right before invoking Actuator should be less than 1 ms. The timed
semantics of LF provides an intuitive way to express such control loops and their timing
requirements.

NG-RES 2023
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3 Related Work

There is a rich body of work exploring ways of raising the abstraction level for embedded
software design. SynchronVM [20] is a virtual machine running on top of Zephyr OS or
ChibiOS targeting microcontrollers. The underlying concurrency model is based on message
passing and resembles communicating sequential processes (CSP) [6]. In SynchronVM one
can specify a time window in which a synchronous message passing should occur. The time
window informs the scheduling of the processes but does not have a well defined semantics.
The underlying model of computation, CSP, is fundamentally nondeterministic as it allows
processes to wait for events on multiple channels and synchronize with the first available.

MicroPython [19] is a project bringing the interpreted and garbage-collected high-level
language Python to microcontrollers. The MicroPython interpreter supports REPL (Read-
Evaluate-Print-Loop) interaction, which greatly simplifies prototyping. However, MicroPy-
thon requires FLASH memory on the order of 256KB, and its garbage collection and dynamic
typing make it unsuited for real-time and safety-critical applications.

Medusa [2] is a concurrent programming language based on the Actor model [1]. Medusa
is an extension of Python and runs an Owl Python runtime for microcontrollers. The Owl
runtime has a code size of 38KB, and each Actor requires 100B of RAM. In Medusa, the
hardware is also modeled as actors, and the peripherals communicate with the rest of the
system through message passing performed by the interrupt service routines. Medusa does
not have a semantic notion of time, and the underlying actor model is nondeterministic.

xC [22] is a C-based programming language designed for the Xcore [17] CPU architecture
from XMOS. xC also has CSP as its underlying model, but it targets a CPU architecture
with hardware support for processes and rendezvous. As such, there is no runtime providing
a message-passing API. xC has language primitives representing hardware timers, which
provide sleeping and waiting. The Xcore architecture is timing-predictable, and the tools
support worst-case execution time analysis.

4 Design and Implementation

Zephyr OS

Zephyr kernel APIZephyr Counter API

LF Zephyr support

LF C-runtime

Reactor 1 Reactor 2 Reactor 3 Reactor 4
Zephyr 
task 2

Zephyr 
task 1

Figure 4 Lingua France runtime stack.

Fig. 4 shows the software stack supporting LF on embedded systems. The Zephyr OS [4]
forms the foundation of this stack. This was chosen over a bare-metal target for multiple
reasons. First of all, the APIs of the Zephyr kernel and drivers are platform independent,
and, at the time of writing, Zephyr supports more than 400 boards. Zephyr also comes with
many useful drivers for communication protocols like Bluetooth Low Energy (BLE), Ethernet,
USB, and CAN buses. This makes Zephyr an attractive framework even for single-threaded
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Table 1 LF code and data size (B is bytes).

Runtime Reactor Reaction Timer Action Mode Port (In/Out) Event

Code size 9.8KB(1KB) 96B 62B 88B 174B 36B 32B/16B –

Data size 266B(170B) 72B 80B 60B 72B 28B 104B/40B 32B

applications. Using Zephyr also enables simple integration of LF programs with existing
libraries like TCP/IP stacks or clock synchronization implementations. These can simply
execute in separate threads and be scheduled by the Zephyr kernel. Lastly, for running LF
on multicore platforms, a threading library is needed in order to make use of all the cores.
Zephyr implements a POSIX-compliant threading library.

In this paper we focus on the single-threaded LF C runtime. Like any LF target port,
this one must implement a few key functions to (1) enter and leave critical sections; (2) sleep
for a duration or until interrupted asynchronously; and (3) read a monotonically increasing
physical clock. A critical section is created by disabling all interrupts; this functionality is
exposed by the kernel API. Sleeping can be achieved in various ways, but the Zephyr kernel
provides the function k_sleep which puts the calling thread to sleep for a number of clock
ticks. A physical clock can be read using k_cycle_get_32. However, on many platforms,
this clock, which underlies the kernel services, is a low-frequency 32KHz clock. This might
not be sufficient for high-precision control or highly dynamic robots [9]. Most platforms will
also have high-frequency clocks which can drive hardware timers. Such hardware timers can
be used through the platform-independent Counter API. The Counter API is not part of the
kernel API and might not be implemented for all platforms.

For multi-threaded support, a full POSIX-like implementation must be provided. Zephyr
does implement the POSIX API, but again the granularity of the timing services is too
coarse. Here, we use the Counter API again to provide high-precision sleeps.

For platforms that do not have hardware timers or do not implement the Counter API,
the Zephyr kernel’s timing primitives are used. This drastically reduces precision, but it
enables testing and running LF programs on QEMU emulations [3].

5 Evaluation

The evaluation was done on a NRF52832 development kit from Nordic Semiconductor [21].
It has an Arm Cortex M4 microcontroller with 64KB RAM and 512KB flash clocked at
64MHz. Benchmarks were compiled with the west build tool version 0.14.0 using Zephyr
version 3.2.0.

5.1 Memory footprint
Memory footprint is a critical property for most microcontroller applications. In the following
we provide a detailed evaluation of both the flash and RAM footprints of LF.

5.1.1 Code size
The top row of Table 1 shows the code size of different LF components. The runtime
itself consumes less than 10KB and can be further reduced by 3KB if the program has no
modal reactors. The 1KB in the parenthesis is the implementation of the Zephyr Counter
driver. The Zephyr kernel adds around 19KB which makes a total of less than 30KB. For
comparison, Medusa [2] requires a total of 38KB, Espruino [23] and MicroPython [19] requires
100KB-200KB and SynchronVM [20] requires 32KB.

NG-RES 2023
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1 target C;
2
3 reactor Unbounded {
4 logical action a;
5 logical action b
6 state i:int (0)
7
8 reaction (a,b) -> a,b {=
9 lf_schedule (a ,0);

10 lf_schedule (b ,++ self ->i);
11 =}
12 }

(a) LF program with unbounded event queue.

1 target C;
2
3 reactor Bounded {
4 timer t1(0, 10 msec )
5 timer t2(0, 50 msec )
6 reaction (t1) {= =}
7 reaction (t2) {= =}
8 reaction (t1 ,t2) {= =}
9 }

(b) LF program with bounded event queue.

Figure 5 Memory requirements for LF programs.

A minimal reactor with just a single reaction triggered at startup only requires 96B.
Adding reactions, timers and modes all add less than 100B of overhead. The user code in
the reaction bodies, as well as the SDK components they depend on, will add to this.

As we will see next, the limiting factor for platforms like the NRF52 is not the size of the
program memory but rather the size of RAM.

5.1.2 Data size

The bottom row of Table 1 shows the RAM footprint of LF. It consists of three parts. First,
there is the constant size of the runtime, which only amounts to 265B plus 170B for the
Counter implementation. Then there is the memory footprint for each LF component like
reactions, actions and ports. This is known at compile-time but is currently being allocated
dynamically in the initialization routine. Last, we have the events being communicated
between the reactors over the ports through the event queue. These events are allocated
as needed at run-time. When an event has been consumed, it is recycled to avoid memory
fragmentation. Due to the expressiveness of the Reactor model of computation, there is,
in general, no upper bound to the size of the event queue. There exist syntactically valid
pathological LF programs for which the event queue can grow without bound. For instance,
consider the reactor Unbounded in Fig. 5a. Each time the action a triggers, two events will
be added to the event queue. The first triggers a at the same tag, while the second triggers b

at a future tag. Only events triggering a will ever be handled and the events triggering b will
accumulate. Such a program is said to exhibit a stuttering Zeno condition [13].

However, there also exist classes of “safe” LF programs for which upper bounds on the
event queue can be computed. Consider for instance the reactor Bounded in Fig. 5b. It is a
simple reactor with two periodic timers and three reactions triggered by them. The size of
the event queue for this reactor will never exceed two. At any time during execution, there
is one event per timer on the event queue. In fact, any LF program that uses only timers to
drive logical time forward will have a statically computable bound on the size of its event
queue.

5.2 Timing precision

One of the advantages of using LF for embedded applications is its timed semantics. An
implementation of LF has good timing precision if the physical time at which a reaction is
executed is close to the logical time at which it was scheduled to execute.
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Figure 6 Logical analyzer dump.
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Figure 7 Actuator driving precision.

SenseToActWithDelay

Sensor

(0, 1 msec)

40 usec
out

Processing
in out

Actuator

35 usec
in

1 msec

Figure 8 Tight control loop with after-delay.

5.2.1 Square-wave generator
To test the timing precision, the NRF52 was configured to generate a 1 KHz square wave on
an output pin using hardware timers. We created a simple LF program to generate the same
signal using a timer and a reaction that toggles a GPIO pin.

Fig. 6 shows the two resulting square waves as measured by a Salaea Logic Pro logic
analyzer. Fig. 7 shows a histogram of the offset between the LF square wave and the hardware
generated square wave. Clearly, the LF runtime can deliver precise and repeatable timing.
All observed offsets were less than 1 µs. The multi-modality of the distribution is due to
inaccuracies associated with waking up from sleep. This could be improved by targeting
a lower-level timer API; however, such an approach would not be platform-agnostic. An
important observation is that this timing precision can be affected by independent long-
running reactions due to barrier synchronization at each time tag. We are working on new
scheduling strategies and language primitives to improve timing precision.

5.2.2 Tight control loops with load
Consider again the SenseToAct example from Fig. 3 in Section 2.1.3. An interesting perfor-
mance metric is the load a system can sustain while still meeting its deadlines. By introducing
busy-waits in the reaction bodies, different workloads can be emulated. Our experiments
show that the runtime overhead for SenseToAct is only 70 µs. This leaves 93% of the 1 ms
period for actual computation.

An important observation is that the semantics of an LF deadline only puts an upper
bound on the lag of a reaction invokation. In fact, for Fig. 3 there is a full 1 ms interval
in which the Actuator reaction can legally be invoked. To introduce a lower bound on
the invokation time we can use logical delays. In Fig. 8 we have introduced a 1 ms logical

NG-RES 2023
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Figure 9 Physical action precision.
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Figure 10 Physical action latency.

delay on the connection between Processing and Actuator. This means that any output
produced by Processing will be visible at Actuator one logical ms later. This, together with
the deadline, specifies an interval of 35 µs in which it is acceptable to invoke the Actuator
reaction. This is a portable way of explicitly specifying bounds on jitter. Notice also that
this will coincide with the next evaluation of Sensor, so we have, in effect, made a pipeline.

With this configuration, we can execute Processing for 885 µs, without missing any
deadlines. This yields a utilization of 88.5%. Notice that both the utilization is lower and
the deadlines are higher. The reason for this is that the logical delay on the connection is
syntactic sugar for a reactor consisting of two reactions and a logical action, which introduces
some additional overhead [15].

The execution of this program without any deadline misses means that the runtime
claims that timing is not being violated. To verify this, we instrumented hardware timers to
generate events on GPIO pins and compared with events generated from within the reaction
bodies of Sensor and Actuator.

The results show offsets of around 28 µs and 35 µs for sensing and actuating, respectively.
This is well below their deadlines. Sensor is lagging more than Actuator, this is expected as
their reactions are logically simultaneous. On single-core platforms, simultaneous reactions
are ordered based on earliest deadline first scheduling.

5.2.3 Asynchronous events

The ability to react to asynchronous events in a timely manner is crucial for many embedded
systems. For instance, a sensor might signal that it has made a new sample by creating
a transition on a pin. There are two important timing properties of a reaction to such an
event. (1) The precision with which the system timestamps the occurrence of the event and
(2) latency from occurrence to being handled by the system.

Fig. 9 shows the latency between the invokation of an interrupt handler that schedules a
physical action and LF’s timestamping of the resulting event. The low jitter indicates that a
constant offset of around 6.22 µs could be subtracted from the timestamp associated with
the physical action.

Fig. 10 shows the latency from asynchronously scheduling a physical action until a reaction
triggered by the physical action is invoked. The latency is normally distributed with a mean
of 50 µs.

The reported overheads are in addition to the interrupt latency of the underlying platform.
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Figure 11 Results of Thread-Metric and Savina benchmark suites for Lingua Franca and a
threaded implementation targeting Zephyr kernel API.

5.3 Performance
To assess the general performance of LF on microcontrollers, we run a relevant subset of the
Thread-Metric and Savina benchmarks against a baseline implementation using Zephyr’s
thread APIs. At a fundamental level, LF’s scheduling and context-switching overhead is
compared to Zephyr’s overhead of message-passing and context-switching. This is evaluated
for multiple different program topologies and workloads. In the following, we will use the
term actor to refer to a concurrent component. In the threaded baseline, it corresponds to a
thread, and in the LF implementation, it corresponds to a reactor.

5.3.1 Thread-Metric
Thread-Metric [8] is a benchmark for measuring performance of RTOSes. It consists of seven
benchmarks that measure overheads associated with different RTOS services like message
passing, synchronization, scheduling, interrupt latency and memory allocation. LF does not
expose low-level APIs for interrupts, memory allocation and message buffers to the user.
In this evaluation, we have thus excluded Message Processing, Synchronization Processing,
Interrupt Processing, and Memory Allocation.

The left part of Fig. 11 shows the results of the remaining Thread-Metric benchmarks
normalized to the threaded baseline. Performance is measured as the number of iterations
through the program during a fixed period. In Cooperative Scheduling, LF achieves 74% of
the performance of Zephyr threads.

We measured the cost of a Zephyr thread yield to be 8 µs while LF’s reaction-switching
and logical time advancement take 4 µs and 29 µs respectively. This means that the LF
implementation would need eight low-overhead reaction switches to make up for the relatively
expensive time advancement. Cooperative Scheduling only consists of five actors and thus
renders LF’s performance worse than the baseline.

In the Preemptive Scheduling benchmark, LF outperforms threads by 26%. The reason
is the long chain of preemptions occurring when the lowest priority thread executes first. In
LF this is not a problem as there is no priority-based scheduling, rather, the topology of the
reactor network imposes well-defined restrictions on scheduling. In LF, the preemption is
translated into reaction-switching followed by a logical time advancement in each iteration.
The threaded baseline must perform twice as many context-switches as reaction-switches in
the LF version, due to the priority-based preemption.

Basic Processing only involves a single actor, in a while loop, performing a long-running
computation before incrementing a counter. LF is outperformed as it performs logical time
advancement after each iteration.
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5.3.2 Savina
The Savina benchmark suite is an actor-oriented benchmark suite [7]. The Savina benchmarks
focus on compute-intensive rather than IO-intensive applications and put emphasis on message-
passing overhead. We evaluate LF on a subset of the Savina benchmarks called the micro
benchmarks. The right portion of Fig. 11 shows the result normalized to the Zephyr baseline.

PingPong only consists of two actors sending a message back and forth. The Zephyr
implementation uses a message queue [26], which incurs around 8 µs overhead for each
communication. In LF the same communication only takes around 6 µs. However, LF
advances logical time after each round of back and forth. This takes almost 30µs. In other
words, LF performs better when there are long chains of reactions between each logical time
advancement. Counting suffers from the same problem. While PingPong has three reactions
per logical tag, Counting only has two. Moreover, the threaded implementation of Counting
allows for two iterations per context-switch where PingPong requires a context-switch between
each ping and pong. This is because we are using a message queue of size 1 which can buffer
one element and thus enable two elements communicated per context-switch.

Throughput and ThreadRing are examples at the other extreme. In Throughput, a single
producer sends a message to 60 consumers, each performing some floating-point arithmetic on
the received data. In LF, this constitutes a chain of 60 reactions per logical time advancement.
The Zephyr baseline performs a normal context-switch for each communication. ThreadRing
is similar only there is a a chain of consumers rather than the one-to-many topology of
Throughput. Again the low reaction-switching overhead of LF enables a 87% and 81%
improvement over Zephyr, respectively.

Big is a many-to-many benchmark where each actor sends a ping to a random actor and
waits for a response. Due to limitations in RAM we only use 10 actors. This constitutes a
chain of reactions just long enough to make up for the expensive logical time advancement.

Chameneos measures how contention on a shared resource affects the performance. In
this benchmark, a large number of creatures called chameneos send messages to a single mall,
which pairs up two chameneos for a meeting. The Zephyr threading API and the LF runtime
both allow the mall to process messages in batches without context-switching between each
message. This lets both implementations attain good performance because the mall processes
a large volume of messages in comparison to the other actors in the program.

6 Conclusion

We have introduced the embedded target of Lingua Franca, which brings deterministic
concurrency and portable specification of timing behaviors to resource-constrained platforms
like microcontrollers. The embedded target is built on top of the popular Zephyr RTOS. The
runtime is evaluated in terms of memory footprint, timing precision and general performance
against baselines using Zephyr’s shared memory concurrency primitives directly. We show
that the LF runtime adds little overhead and in several cases outperforms the baseline.
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