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ABSTRACT

This habilitation thesis presents research that aims to enable long-term deployment of
mobile robots in changing environments. The presented approaches encompass methods
that ensure robustness of autonomous visual navigation in outdoor environments for pro-
longed time periods, spatio-temporal representations that explicitly model the environment
changes over time, and supporting software modules that enable robust and accurate robot
localisation.

The main contribution of the thesis is a novel approach that allows to incorporate
the notion of time into most stationary environment models used in mobile robotics.
This is achieved by representing the uncertainty of the environment states not by fixed
probabilities, but by probabilistic functions of time, represented in the frequency domain.
The method allows to integrate unlimited numbers of sparse and irregular observations
obtained during long-term deployments of mobile robots into memory-efficient models that
reflect the persistence and recurrence of environment variations. The frequency-enhanced
spatio-temporal models allow to predict the future environment states, which improves the
efficiency of mobile robot operation in changing environments. In this thesis, we present a
series of articles, which demonstrate that the proposed approach improves mobile robot
localization, path and task planning, activity recognition, human-robot interaction and
allows for life-long spatio-temporal exploration of perpetually-changing environments.

Tato habilita¢ni prédce se zabyva problémem dlouhodobé samostatnosti mobilnich roboti
v prostiedich, které podléhaji postupnym zméndm. Préce prezentuje metody, které zvysuji
spolehlivost dlouhodobé vizudlni navigace mobilnich robott v exteriérech, prostorocasové
representace svéta, které explicitné modeluji zmény prosttedi v ¢ase, a néstroje, které
umoznujici spolehlivou a pfesnou lokalizaci mobilnich robott.

Hlavnim p¥inosem préce je princip, ktery umoZziuje rozsifit vétsinu prostorovych rep-
resentaci svéta pouzivanych v robotice tak, aby tyto zahrnovaly pojem ¢asu. Tohoto
rozsifeni je dosaZeno tim, Ze neurditost stavli prostfedi neni modelovana jako staticka
pravdépodobnost, ale jako pravdépodobnostni funkce ¢asu, ktera je representovana ve
frekvenéni doméné. Vyse uvedeny princip umoziluje integrovat neomezend mnozstvi
dlouhodobych nepravidelnych pozorovani stavii daného prostfedi robotem do pamétove
nendro¢nych modelt, které efektivné reprezentuji zdkladni ¢asové charakteristiky po-
zorovanych zmén. Tyto representace umoziuji mobilnimu robotu pfedpovidat budouci
stavy prosttedi, coz v dlouhodobém ¢asovém horizontu zvysuje jeho efektivitu. V této
praci ukdZzeme, Ze pouZzitim vySe uvedené metody se pfi dlouhodobych nasazenich mo-
bilnich robott zlepsuje efektivita jejich lokalizace, planovani, rozvrhovéni, rozpoznavéni a
interakce s lidmi. Déle ukdZeme, Ze kombinace této metody s teorif informace vede vede
mobilni roboty k inteligentnimu prizkumu ménicich se prostiedi.






INTRODUCTION

As robots leave the well-structured worlds of factory assembly lines and enter natural
environments, new challenges appear. One of the main problems that mobile robots had to
solve was reliable navigation in unstructured and uncertain environments. This challenge
gave birth to the field of probabilistic mapping, which enabled the representation of
incomplete world knowledge obtained through noisy sensory measurements. The advances
of robotic mapping lead to methods that can represent large environments with high fidelity,
which resulted in the mobile robots” ability for reliable self-localization and autonomous
navigation. However, as robots became gradually able to operate autonomously for longer
periods of time, a new problem appeared — that the appearance and structure of natural
environments are subject to change [73].

This issue motivated research into methods that are able to suppress the effects of
appearance changes, which, in short term, is caused by varying outdoor illumination. One
of the popular methods [74] can produce illumination-invariant images captured outdoors
by exploiting the fact that the wavelength distribution of the main outdoor illuminant, the
sun, is known. This method was used to improve localization and navigation in outdoor
environments [75] 76| [77, [78].

However, appearance changes are not caused just by varying illumination, but also by
the fact that the environment structure changes over time. Valgren and Lilienthal [79]
addressed the question of environment change in visual-based localization by studying the
robustness of SIFT and SURF image features to seasonal variations. The paper indicated,
that as the robots are gradually becoming able to operate for longer and longer time
periods, their navigation systems will have to address the fact that environment itself, not
only the illumination, is subject to constant, albeit slow, changes.

Some approaches aimed at solving the problem by using long-term observations to
identify which environment features are more stable. Dayoub and Duckett [80] presented
a method that continuously adapted the environment model by identifying stable image
features and forgetting the unstable ones. Rosen et al. [81] used Bayesian-based survivability
analysis to predict which features will still be visible after some time and which features
are going to disappear. Carlevaris et al. [82] proposed to learn visual features that are
robust to the appearance changes and showed that the learned features outperform the
SIFT and SUREF feature extractors. Lowry et al. [83] used principal component analysis to
determine which aspects of a given location appearance are influenced by seasonal factors
and presented a method that can calculate ‘condition-invariant’ images.

Some researchers proposed to use multiple, condition-dependent representations of the
environment. For example, Churchill and Newman [84] clustered different observations of
the same place to form “experiences” that characterize the place appearance in particular
conditions. McManus et al. [85] used dead reckoning to predict which place the vehicle is
close to, loads a bank of Support Vector Machine classifiers associated with that place and
uses these to obtain a metric pose estimate.

Methods based on deep learning, which has had a big impact on the field of computer
vision, were also applied to the problem of persistent navigation. Neubert and Protzel [86]
showed that image descriptors based on Convolutional Neural Networks (CNN) outper-
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form the best holistic place recognition methods while being able to handle large viewpoint
changes. Stinderhauf [87] 88] also demonstrated impressive results with CNN-based meth-
ods. However, the relatively recent outcome of the Visual Place Recognition in Changing
Environments, or VPRICE Challenge [89] indicated that novel, yet classic-feature-based
approaches, such as [go] performed better than the CNN-based methods.

However, some of the researchers realized that rather than trying to suppress the effect
of environment changes, one can try to learn about the environment from the changes
observed and use the knowledge to improve the efficiency of robot operation. Thus, some
works use the long-term observations to build models that can predict the appearance of a
given location at a particular time. Among these, Lowry et al. [91] applied linear regression
techniques directly to the image space in order to predict the visual appearance of different
locations in various conditions. Stinderhauf and Neubert [92, 93] mined a dictionary of
superpixel-based visual-terms from long-term data and used this dictionary to translate
between the appearance of given locations across seasons.

Environment representations that explicitly model the environment dynamics have
shown their usefulness not only for the problem of visual-based localization. For example,
the authors of [94] demonstrated that representing variations of cells in occupancy grids
with hidden Markov models improves the robustness of laser-based localization as well.
‘Dynamic” or ‘temporal” occupancy grids that model the environment changes not only
improve long-term localization as shown by [95], but also allow to segment dynamic
objects [96], and predict their future paths [97]. The authors of [98] demonstrated that
reasoning about changes in 3D point clouds obtained over a period of several weeks allows
to separate movable objects and refine the static environment structure at the same time.

This thesis presents research that drew inspiration from the aforementioned works,
and was aimed at enabling reliable operation of mobile robots over long periods of time.
Influenced mainly by the work of [79], we studied the persistence of image features,
which resulted in trainable image features which are robust to environment variations. The
idea of learning from the observed changes, mentioned in [92, 94, [05] influenced the
development of the Frequency Map Enhancement, which can turn static environment models
into models that explicitly represent the environment changes over time. To have the
technology for experimental verification of the aforementioned approaches, we had to
develop and continuously improve a robust and reliable teach-and-repeat navigation system,
and computationally efficient and accurate marker-based localisation system.
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Figure 1: Overview of long-term autonomous systems research performed by the thesis
author from 2010 to 2018. Numbers conform to the works in the reference section.

The research presented in this thesis can be divided in three streams, each resulting in
a number of scientific articles. A schematic overview of the published works and their
relations is shown in Figure 1] Details on the individual research streams are presented in
the following chapters.
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VISUAL NAVIGATION FROM A LONG-TERM PERSPECTIVE

Our research aimed at long-term autonomy of mobile robots started with work presented
in [1]. Here, we introduced a monocular vision-based teach-and-repeat navigation system,
based on a novel mathematical model of robot position uncertainty evolution during
visual navigation. The model allowed to simplify visual teach-and-repeat navigation,
making it easy to implement, computationally efficient, and robust to camera imperfections
and odometry noise. While the navigation method proved to be reasonably robust to
illumination changes and seasonal appearance variations, it became clear that environment
appearance transitions between summer and winter cause serious problems. Furthermore,
the experiments clearly showed that using the same map for navigation during day and
night is not possible, because the environment looks in a completely different way.

S SEREE

(i) July 2010 (j) August 2010 (k) September 2010 (1) October 2010

Figure 2: An example of seasonal appearance changes from a robot perspective.

The problem of appearance changes was later studied in the thesis [2], where we
proposed to create new maps during autonomous navigation, and use these maps for later
autonomous traversals. Prior to an autonomous traversal, the robot calculated mutual
information between the current view and all the candidate maps, and selected a map with
the highest informative value. This approach was verified in several outdoor experiments
performed every month over the period of one year. Since it is not practical to store
all the maps from all autonomous runs, we used the dataset we gathered during the
aforementioned experiments and we investigated which map could be used at which
time. In the end, we came to a conclusion that storing two maps, representing winter
and summer environment appearance should be sufficient for outdoor, daylight visual
navigation [3].

The main result of the aforementioned papers was the Position Uncertainty Model for
Visual Teach And Repeat Navigation thoroughly described in [1], and datasets illustrated in
Figure|2| This model and datasets allowed us to evaluate the impact of method extensions
and improvements on the accuracy and reliability of visual teach and repeat navigation
under diverse conditions.
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ROBUST PERCEPTION AND NAVIGATION

This research stream aimed to improve the navigation robustness of mobile robots to appear-
ance changes through enhancements of the individual modules of the robots’ navigation
systems. The research was funded primarily through bilateral collaboration grants, and was
performed in close cooperation with our colleagues from the University of Buenos Aires.
Most of the works performed extend the teach-and-repeat navigation system introduced
in [1]. The first significant result of this research stream is a general model of robot position
uncertainty during teach-and-repeat navigation, which allows the prediction of navigation
system accuracy and reliability given the fidelity of the robot sensors and environment
characteristics along the robot path. The second result of this research stream are efficient
trainable image features robust to appearance changes.

IMPROVING POSITION ERROR MODEL

To improve the localisation accuracy at mission-critical locations, we proposed to take into
account the position uncertainty predicted by the aforementioned model. In particular, we
incorporated the position uncertainty model into a self-organizing map method, which then
could propose robot paths so that during autonomous navigation, the position uncertainty
at the desired locations would be minimized. This resulted in significant improvement of
the chance that a robot will visit a given location with a desired accuracy [].

The dependence of our navigation system on accurate dead reckoning was addressed
in [5], where an application of particle filter-based localisation allowed the system deploy-
ment on flying robots with imperfect velocity estimation.

Figure 3: Gradual convergence of the real robot trajectory (in red) to the learned path
(in blue). The convergence was predicted by the mathematical model devel-
oped in this research stream. See videos at https://youtu.be/M2krTZCbdaY and
athttps://youtu.be/1AThOFF48Ao|

To suppress the dependence of the navigation system on point-based visual features,
which seemed to be inherently unstable, we considered to employ segmentation techniques

17
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ROBUST PERCEPTION AND NAVIGATION

for path following [6]. To make the path detection robust to the effects of variable illu-
mination and shadows, we proposed to preprocess the camera images by a photometric
technique, which allows to calculate illumination invariant image by exploiting the fact that
the spectrum of the main outdoor illuminant, the Sun, conforms to the Planck’s law [7].

Finally, we simplified and generalised the mathematical model, so that it would encom-
pass a broader set of navigation techniques. This allowed combination of path-following [6]
and map-based navigations [1] into a single framework, introduced in [§]. The insights
learned during the development of the combined system allowed further simplification and
generalisation of the mathematical model of robot position uncertainty in teach-and-repeat
scenarios. This generalised model led to the improved teach-and-repeat navigation system,
capable of navigating arbitrary paths in adverse lighting conditions while utilising arbitrary
combinations of feature extractors [g].

TRAINABLE IMAGE FEATURES

In [10], we investigated the impact of using various feature extraction methods on the
robustness of the navigation to seasonal appearance variations. Much to our surprise, the
Binary Robust Independent Elementary Features (BRIEF) [g9] outperformed the favoured
Scale Invariant Feature Transform (SIFT) [100]. We speculated, that in teach-and-repeat
navigation, unlike in other applications, scale- rotation- and viewpoint- invariances are
only of a secondary importance. Learning about the BRIEF [gg] feature robustness was
exploited in our subsequent works related to visual localisation in long-term scenarios.

Figure 4: Examples of tentative matches of the developed ‘GRIEF image features across
seasonal changes, see a video at https://youtu.be/CEtGGO1z4GE

Further investigation of the reasons behind BRIEF’s performance resulted in an idea
of training the sequence of BRIEF binary comparisons for a specific scenario. In [11], we
propose a basic scheme for the training, and we compare the resulting feature, coined
GRIEF (Generated BRIEF) with the most popular feature detector/descriptor combinations.
Encouraged by the feedback on [11], we further improved the training scheme and per-
formed an exhaustive comparison of GRIEF’s performance to several detector/descriptor
combinations, including those based on convolutional neural networks (CNN). The re-
sulting investigation [12], performed on 5 different datasets gathered over the period of
one year, has indicated that while the GRIEF performance is comparable to CNN-based
features, while being faster by two orders of magnitude. The source code for the GRIEF
feature training was made public http://github.com/gestom/grief|and was integrated
into the navigation system described in [g].


https://youtu.be/CEtGG01z4GE
http://github.com/gestom/grief

3.3 RESEARCH OUTREACH

RESEARCH OUTREACH

The teach-and-repeat navigation methods developed in this research stream were integrated
into a user-friendly, robust navigation system [45} 46] that proved its reliability by its
repeated success in outdoor robotic contests [47, 148} 49]. The system was also integrated in
larger frameworks for field robots [50] as well as for robotic swarms [51]. The navigation
system was also extended to work with aerial vehicles [52, 53} [54] and the modules of this
UAV system were used by roboticists from top research institutes, including the JPL, KAIST
and EPFL. The system was extensively used in experiments that concerned coordination

0.10 0.02
-0.01 -0.05
’ A

Looking a

Figure 5: UAV-UGV team performing autonomous inspection. The ground robot is

guided by the navigation system described. See a video at https://youtu|

be/RPCUB6xjQTI

and cooperation of mixed UGV-UAV teams [55} [56| 57} 58, [59]. Furthermore, the map
building module of the navigation system was applied in agricultural robotics [60), [61].
Finally, the simplicity of the navigation method allowed its integration on a single chip,
which was performed by Jan Svab [62] and the most capable student that I supervised, Petr
Cizek [63].
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SPATIO-TEMPORAL REPRESENTATIONS TO MODEL AND
PREDICT ENVIRONMENT VARIATIONS

Unlike in the previous stream of research, where we wanted to achieve robustness to
environment change through improvement of the individual components of the localisation
and navigation systems, this research stream aimed at the data structures that represent the
environment itself. The core idea of this research is that many of the environment changes
are not random, but exhibit certain temporal and spatial properties of the hidden processes
that cause them. Through re-observation of the same spatial locations, the properties of
these processes can be identified, stored and re-used for long-term predictions. Since
many of the contemporary models used in robotics are composed of a set of independent
components with binary, but uncertain states (e.g. 2d and 3d grids with cells that are
occupied of free, maps with landmarks that are (in)visible, topological maps with edges that
are (non)traversable), representation of the temporal properties of the observed changes can
be achieved by modeling the uncertainty evolution of these elementary components over
time. In other words, instead of representing the uncertainty of the elementary states by a
value of probability, which is updated only through a direct observation, one can represent
the uncertainty as a probabilistic function of time, which reflects the temporal properties
obtained by past observations. In the approach presented, we assumed that in mid- to
long-term perspective, some of the environment variations are driven by natural day-night
or seasonal cycles, and thus, some of their properties are periodic. Thus, we modeled the
uncertainties of environment models” components as combinations of harmonic functions,
which were identified by means of spectral analysis.

scenario routines and robot
maintenance requirements

o
&% —
0@\-\0“60@% Task Definitions
\‘\d o

PN
Xo o

Task Executor

task order
and timings

topological goals,
nav statistics

Monitored Nav

topological goals/position,
recovery actions

. . ts log dat:
[ Topological Nav J«—»[ Continuous NavJ e o torm store.

2D nav goals, position

Figure 6: Software structure of the STRANDS system. Courtesy of [27].
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SPATIO —TEMPORAL REPRESENTATIONS TO MODEL AND PREDICT ENVIRONMENT VARIATIONS

This research stream was conducted primarily within the EU FP7 project Spatio-Temporal
Representations and Activities for Cognitive Control in Long-term Scenarios (STRANDS),
and the results would not have been achieved without the wonderful STRANDS team. The
STRANDS project aimed to create robots, that would be able to run for months in dynamic
human environments while understanding the 3D space and how it changes over time. The
core method developed for spatio-temporal modeling, called Frequency Map Enhancement
(FreMEn), processed data that the robot gathered in the past, created spatio-temporal
models and used these to provide predictions to the planning and localisation modules of
the robot navigation system, see Figure [l This endowed the STRANDS robots with the
ability to learn the long-term dynamics of the surrounding world and to use this knowledge
to improve the efficiency of their operation over time. A comprehensive summary of the
FreMEn approach with illustrative videos, links to papers and source code compatible with
the Robot Operating System (ROS) is available at http://fremen.uk.

SPECTRAL ROBOTIC MAPPING

The first version of the approach, called Spectral Robotic Mapping, was based on the ap-
plication of Fast Fourier Transform (FFT) over the binary states constituting the spatial
representations. The core idea is to process the past observations of a particular state
by FFT and select the most prominent spectral components, which correspond to the
cyclic behaviour of the state’s variations. By calculating an inverse FFT from the selected
spectral components, we obtain a function of time that not only represents the state’s past
history, but can also be used to predict its future with a given confidence, see Figure [7}
A presentation of the preliminary idea [13] was met with a positive feedback, which
influenced the later research. A complete formulation of the proposed technique, along
with an analysis of its ability to compress long-term observations and to predict future
environment states, was presented in [14] and in an invited talk [15]. The experiments
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Figure 7: Spectral Maps for visual localisation: The observations of image feature visibility
(centre,red) are transferred to the spectral domain (left). The most prominent com-
ponents of the model (left,green) constitute an analytic expression (centre,bottom)
that represents the probability of the feature being visible at a given time (green).
This is used to predict the feature visibility at a time when the robot performs
self-localisation (blue). See also https://youtu.be/QwikS_5zVwE

performed in [14] indicated that the use of FFT allows for efficient representation of the
temporal domain, achieving compression rates up to 1:100. By combining this temporal
modeling technique with an efficient, octree-based spatial model [101], we obtained a 4d
(3d + time) representation, called FROctomap [16]. The experiments presented in [16]
demonstrated that the FROctomap method was able to integrate week-long observations of
a small university office into an efficient spatio-temporal model, achieving compression
rates up to 1:10000. The experimental evaluations performed in the aforementioned works
indicated that the Spectral Robotic Mapping can represent long-term spatio-temporal dy-
namics with low memory requirements and provide accurate predictions of future states.
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4.1 SPECTRAL ROBOTIC MAPPING

However, aforementioned works were aimed solely at the spatio-temporal representation
itself and they did not investigate the impact of the method on the efficiency of mobile
robot operation.

Thus, in our next step, we have investigated the utility of the aforementioned spectral
representation for robot localisation [17], task planning [18] and activity recognition [[1g].
The work presented in concerns topological localisation of a mobile robot operating on a
24/7 basis in an open-plan office. Here, the robot uses a laser rangefinder-based navigation
stack to perform regular patrols capturing visual appearance of several designated locations
every 10 minutes for one week. Using the data gathered, the robot builds a temporal
model of image features’ visibilities at each location. Using these models, the robot can
predict which features are going to be visible at which location and time. In other words,
the robot can generate a time-specific map of the most likely visible features at each of
these locations. After one week and after three months, the robot was repeatedly placed
at the mapped locations at various times of the day and it was supposed to determine
its location. To do that, the robot matched the BRIEF [10] image features extracted from
its onboard camera image with the features predicted to be visible at that location and
time. The experimental results, presented in [17], demonstrate that the use of Spectral
Maps to predict the feature visibility resulted in significant reduction of the localisation
error. The summary of the approach is indicated in Figure [ and in a video accessible
through https://youtu.be/QwlkS_5zVwE.

To verify the utility of the approach for planning, we applied the concept to a robotic
search scenario [18]. In this scenario, a robot has to find a person in an apartment or an
office as quickly as possible. To do that efficiently, the robot has to take into account the
time it takes to navigate between various locations where the person can occur as well as the
probability of the person presence at these locations. The likelihood of the person presence
at different locations can be represented either as a static probability, neglecting the person
dynamics, or by Spectral Map concept which reflects the person’s daily and weekly routines.
To perform the experimental evaluation, we build two different simulated environments,
which were fed by real-world data from a continuously monitored apartment [102] and
a university office. Then, we let the robot perform repeated searches (over the simulated
period of several weeks) while using different temporal models predicting the person
presence. The experiments indicated that compared to other probabilistic models, the use
of the Spectral Maps reduced the time required to find the person by 25% to 65% [18].

Master bedroom Living room

T T T T
Measured occupancy —— Occupancy probability

Apartment
center

Figure 8: Simulation of the apartment used in [18,19,31,32,34]. 3D structure is left, topo-
logical layout and temporal models of the person presence are on the right. The
structure of the apartment and the behaviour of the person was obtained from
real-world data of the CASAS dataset [76].
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The data from the aforementioned two environments included not only the locations of
the people at particular times, but also their activities [19]. To investigate if the temporal
models could improve the robot’s ability to recognize the activity a person is performing,
we used these models as prior probabilities for an activity classifier used by the simulated
robot. Every time the robot classified an activity, it added the classification result to its
temporal model, which was then used as a prior probability for the classifier. Thus, as the
robot observed the people’s activities in the simulated environments over time, it learned
about the typical activity patterns and gradually reduced the classification error. In [19],
we performed comparison of several temporal models acting as priors for the classification,
concluding that the best performing models were based on Spectral Maps and Gaussian
Mixtures.

While the aforementioned experiments demonstrated that the Spectral Robotic Mapping
can result in improvement of the robot performance through explicit representation of
the environment dynamics, the approach has a major limitation. This limitation comes
from the fact that the method is based on the Fast Fourier Transform (FFT), which is
based on the assumption that the observations of the environment states can be performed
frequently and on a regular basis. However, regular sampling over long-time periods
is hard to achieve even in laboratory settings. Furthermore, the requirement of regular
observations means that prior to the robot deployment, it has to spend considerable time
learning the environment dynamics by re-observation of different individual locations on
a regular basis. Once this learning phase is over and the robot starts to perform its tasks
in an not-exactly regular manner, it cannot update its spatio-temporal models and thus
t cannot adapt to variations that were not present during the learning phase. Thus, the
predictive capability of its models will deteriorate over time, which will negatively affect
the efficiency of robot operation in long-term deployments. To allow the robot to cope with
the changing dynamics through life-long learning, we had to develop a method that can
build the spatio-temporal model incrementally from sparse and irregular observations.

FREMEN: FREQUENCY MAP ENHANCEMENT

To deal with the aforementioned problem, we have abandoned the use of the Fast Fourier
Transform and we have used the original definition of the Fourier Transform, which allows
to derive a set of formulas that can update the frequency spectrum incrementally from
irregularly-sampled data.

The core concept of the Frequency Map Enhancement (FreMEn) was first mentioned at the
Workshop of Visual Place Recognition for Changing Environments [20], where it received
significant attention that resulted in a series of talks at top robotics laboratories, including
MIT and Oxford. The feedback provided at these presentations allowed us to put this
research in a broader perspective and integrate it in a survey paper authored primarily by
members of the Oxford robotics group [21]. Further details of the method were introduced
in a keynote talk during the Workshop on Long-term Autonomy that took place during the
ICRA 2016 conference [22]. In this presentation, we wrapped up the research performed so
far, outlined the possible applications and introduced the concept of Information-based
Spatio-Temporal Exploration that is enabled by the FreMEn method.

In a subsequent paper, we integrated the FreMEn into a occupancy grid representation
that forms the core of the Robot Operating System (ROS) navigation stack. The ROS
navigation stack was changed so that the robot creates temporally local maps during
routine operation and integrates them into a global spatio-temporal representation. This
representation is then used to generate time-dependent occupancy grids that are essential
for robot localisation and path planning. Then, using data gathered over the period of
one week, we have evaluated the impact of the aforementioned FreMEn component on the
efficiency of the robot localisation and planning [23].



4.2 FREMEN: FREQUENCY MAP ENHANCEMENT

Finally, we integrated the final version of the FreMEn method as a general component into
the Robot Operating System (ROS). This finalised version, along with newly-gathered data,
was then used to significantly extend the initial evaluations described in [14} 16, [17, 23] and
present them in a coherent way in a research paper in one of the top robotics journals [24].

FreMEn for robot navigation in human-populated environments

To investigate the FreMEn ability to process data that were gathered in a highly irregular
manner, we applied it to the problem of topological navigation. Here, a robot has to
construct the most fail-safe path between two locations in a topological map, i.e. it has to
create a sequence of edges leading from a start to a goal node. Each edge of the topological
map is associated with data indicating the time of navigation failures or successes and
thus, one can use these past data to predict the future success of each edge traversal. This
allows to calculate the probability of success of every existing path in the topological map
and therefore, the mobile robot can construct a path that will maximise the likelihood
of reaching the desired goal location. However, the success of traversing a given edge is
influenced by the environment the edge leads through, e.g. an edge leading through a
door can be traversed only if the door is open and traversing an edge leading through a
corridor might be difficult during busy times. Since the environment states are influenced
by the current time, an edge traversal success is likely to be time-dependent as well. In [25],
we build temporal models of edge traversals from data gathered by a mobile robot over
the period of two months and let the method predict the navigation success of the robot.
The experiments indicated, that the Frequency Map Enhancement method identified the
temporal behaviour of the navigation success being influenced by time of the day and day
of the week [25]. Furthermore, the experiments have shown that by choosing the right time
to navigate to a certain location, the overall navigation success rate can be significantly
improved.

One of the challenging problems for a navigating robot are human crowds, which are
either stationary, or form ‘flows’, where most of the people move in a similar direction and
velocity. A robot that wants to co-exist with people in their natural environment, has to be
able to either avoid the crowded areas, or even better, plan its motion in a way that would
allow to naturally blend in the people movement flow [103]. However, representing human
crowds merely by their absence or presence is somewhat insufficient. Having the ability
to predict the number of people within a given area is more useful, which required the
extension of the model towards representation of Poisson, not only Bernoulli processes [26].
This way, the robot could predict the number of people in certain areas of interest.

The Frequency Map Enhancement was integrated into the STRANDS [27] system, which
controlled two autonomous robots in two human-populated environments (a care home
in Austria and a security office in UK). The component allowed both robots to gradually
learn the environment dynamics, leading to continuous improvement of their efficiency
over time [27]. In both scenarios, the robots were autonomously operating over the period
of several weeks.

The problem of predicting the movement of pedestrians by FreMEn was further investi-
gated in [28] 29], which take into account not only the presence of people but also their
most likely direction at a given time.

Information-based Spatio-Temporal Exploration

The ability of the FreMEn to deal with sparse and irregular data opened another interesting
question: How should a mobile robot gather its observations to build, maintain and refine
spatio-temporal models in an efficient way?

25



26

SPATIO —TEMPORAL REPRESENTATIONS TO MODEL AND PREDICT ENVIRONMENT VARIATIONS

The aforementioned problem of active building of environment models is, in the context
of mobile robotics, referred to as exploration. While the state-of-the-art exploration methods
consider the environment as being static, we have to take into account the world dynamics
as well. This adds an extra temporal dimension to the explored space and causes the
exploration to be never-ending data-gathering process that attempts to keep the robot’s
environment model up-to-date. While the static environment exploration methods are
primarily concerned with the problem of where to gather the next batch of data, spatio-
temporal exploration has to also reason about when to do it. To deal with this problem,
we applied information-theoretic exploration to FreMEn representations. The bulk of the
research on Spatio-Temporal Exploration was performed in close cooperation with Jodo
Santos, whom I had the privilege to supervise during his PhD studies.

An initial attempt to apply information-theoretic exploration to spatio-temporal models
was presented during the late-breaking research session of the ICRA conference [30]. While
the provided feedback was positive, it became that the there are two core questions to be
addressed: Which temporal model to use and what strategy to employ when scheduling the
robot observations? An initial insight into these two problems performed in revealed
that the most promising combination is the use of Monte-Carlo scheduling scheme over
entropy-based FreMEn model.

Since exploration is an active process, where the robot takes decisions on how, where
and when to perform observations, the data it gathers are different in every trial. Thus, one
cannot simply compare the different exploration strategies and spatio-temporal models on
datasets. On the other hand, it is important to ensure fair comparison and repeatability of
the evaluations performed. We addressed this problem by building a dynamic simulator,
which reflects the evolution of a real environment over the period of several weeks, obtained
by ambient sensors. This tool allows to replay the history of changes in a real environment,
while providing sensory inputs for a simulated exploring robot. The spatio-temporal model
that the robot build can be then compared with the simulation, providing a quantitative
evaluation of the exploration strategy [32].
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Figure 9: A 4d (3d space + time) occupancy grid created by the robot during one of the
exploration experiments. The green cells correspond to areas that are stationary
and the red cells relate to areas that exhibit changes occurring on a daily basis.
See also https://youtu.be/do0MpLEjNzw

The simulation was essential to build and evaluate a robotic system capable of creating,
maintaining and refining 4d (3d + time) spatio-temporal maps of the environment [33].
The spatio-temporal map created by the aforementioned system is shown on Figure [g]and
is available as a video at https://youtu.be/do0MpLEjNzw. Another work that builds on
the initial paper on spatio-temporal exploration [31], is presented in [34]. In particular,
provides a detailed insight into the efficiency of exploration methods based on various rep-
resentations and exploration strategies, including curiosity- and novelty-driven exploration
behaviours.


https://youtu.be/doOMpLEjNzw
https://youtu.be/doOMpLEjNzw

4.2 FREMEN: FREQUENCY MAP ENHANCEMENT

Exploration and exploitation of the spatio-temporal models

However, the aforementioned exploration papers were concerned only with the faithfulness
of the spatio-temporal models created by the different exploration methods. Typically,
the main task of a mobile robot is not to create an accurate representation of the outer
world, but to perform useful tasks that exploit the knowledge contained in these models.
Since the time a mobile robot spends with exploration cannot be spend with the task the
model was build for, the robot has to carefully balance model exploration and exploitation.
In the STRANDS project [27], one of the tasks the robot performed was an info-terminal
service. Here, the robot was provided with a set of locations, where it could act as an
interactive information stand. The robot had to determine when and where to provide
the info-terminal service in order to maximise its usefulness, measured by a number of
interactions. For that, the robot tied each of the predetermined location with a temporal
model representing the probability of an interaction at a given time. As indicated in [31],
building and maintaining these models requires that the robot visits these locations when
the probability of the interaction is around o.5, because that maximises the information
gain obtained by measuring if an interaction occurs. However, since the robot is trying to
maximise the number of interactions, it should visit these locations when the probability
of interaction is close to 1. This represents an exploration/exploitation problem over the
spatio-temporal space representing the likelihood of human/robot interaction.

To get an insight into the problem, we used the data gathered during one of the STRANDS
deployments to build a simulator of people interactions in one of the deployment sites.
Then, we performed several simulations, combining different exploration/exploitation
strategies, temporal models and planning horizons [35]. Based on the simulated results,
we have selected a number of promising strategies and integrated these into the STRANDS
system. The results have shown, that employment of these exploration/exploitation strate-
gies allowed the deployed robot to gradually increase the number of obtained interactions
over time [27, 36].

Warped hypertime

The original purpose of the FreMEn, i.e. to introduce the notion of dynamics into environ-
ment models that compose of independent binary states, became its fundamental limitation.
In a real robotic system, there are important non-binary variables that would be useful to
predict, such as the robot velocity or number of people within a given area. Furthermore,
considering the elements of fine-grained environment models, such as occupancy grids, as
independent results in inefficient use of memory and incorrect predictions. To deal with
this, we proposed yet another method for introducing time into discrete and continuous
spatial representations used in mobile robotics. Unlike FreMEn, the proposed method does
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Figure 10: Spatio-temporal model of people presence in a corridor of the University of
Lincoln, UK at various times of a day [38]. See a video at https://youtu.be/
43W4j7DDxXYE!
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not treat time and space separately, and its continuous nature respects both the temporal
and spatial continuity of the modeled phenomena. The method extends the given spatial
model with a set of wrapped ‘Hypertime’” dimensions that represent the periodicities of
observed changes identified by the FreMEn. By performing clustering over this extended
representation, we obtain a model that allows us to predict future states of both discrete
and continuous spatial representations. We applied the method to pedestrian data gathered
over several weeks and demonstrated that it efficiently predicts spatial distribution of peo-
ple within the monitored area [37]. Later on, we applied the Hypertime method to several
long-term datasets and demonstrated that it can predict future states of representations
with different dimensions, performing better or equal to FreMEn [3§].

OUTREACH

The main impact of this research stream is related to the STRANDS project, where the
FreMEn method became an important component of the software systems responsible for
robot planning and navigation. Therefore, many of the works published by the STRANDS
consortium during 2016-2017 benefited from the reliability of the robot, influenced by the
FreMEn methods. Furthermore, the simplicity and versatility of the spectral representations
attracted considerable attention, resulting in a number of invited talks. To facilitate the use
of the method by other researchers, we provide the method overview, most relevant papers,
link to datasets, and method source codes at http://fremen.ukl
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MARKER-BASED LOCALISATION

In our effort to achieve long-term autonomy of mobile robots, we often encountered
technical issues related to accuracy reliability and computational efficiency of mobile robot
localisation. Often, our robots had problems localising or navigating at specific locations,
or the accuracy and reliability of their standard navigation methods was not sufficient
for the task required (e.g. docking to a recharging station or passing through a narrow
corridor). While the aforementioned problems were not subject of our research, we still
had to make sure that all of these ‘technical” problems are resolved, so the robots could
reliably operate on their own. One of the standard practices to help a robot to operate
reliably is to augment the environment with elements that provide the robot with extra
information. For this purpose, we tried to use printable QR codes and data-matrices, but
the detection of these elements was somewhat unreliable and computationally costly.

Therefore, we developed a method for efficient detection and accurate localisation of
circular markers, which was used in a number of components throughout our projects.
This method was an enhancement of a previous system intended for efficient relative
localisation of robot swarms [64]. In [39], we have introduced the core method, and
provided experiments which indicated the method’s accuracy and computational efficiency.
This method became the core of an essential component of the STRANDS system providing
the robots with the ability to accurately and reliably dock to their charging stations. During
the STRANDS project, the robots used this method more than 100 ooo times — see an
example of docking at https://youtu.be/btYD1HJo8yA. Furthermore, we used the marker
detection as an external localisation system to evaluate the several experiments related
to localisation and navigation accuracy. The method was further improved by enhancing
the accuracy of the localisation, and its detailed description and mathematical model was
provided in [40]. Furthermore, we integrated the method into ROS, released its source
codes and advertised it in [41]. Compatibility with the ROS led to further usage of the
method in the STRANDS system, e.g. as special cards used for human-robot interaction,
see https://twitter.com/lindastrands,

It became clear that detection and location of the markers was not sufficient, and
that it’s highly desirable to extend the method so that it’s capable to distinguish the
individual markers from each other. After several attempts to introduce different types
of identification schemes based on slight alterations of the circular pattern shape, our
experimental evaluations indicated that the most suitable scheme to encode an ID into the
circular marker is through the use of “Necklace codes’ [104]. The use of the Necklace codes
allowed a smooth extension of the circular marker, while preserving its computational
efficiency, detection range and backward compatibility. Our work, that introduced this
novel marker [42], was awarded as the best paper at the Symposium on Applied Computing
in 2017. Later on, the marker was integrated into an platform that allows continuous,
perpetual operation of a robotic swarm and automated evaluation of the swarm behaviours
over long periods of time [43]. The work [44] extends [42] in several aspects that further
improve the accuracy of the detection and reliability of the identification.
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Figure 11: Examples of WhyCon localisation system applications. Top-left shows au-
tonomous charging in EU project STRANDS - note the tree 0’s in the ROBOT
STATION tag. Top-right shows fitness evaluation for self-evolving robots in
EU project SYMBRION. Centre and bottom-right shows relative localization of
UAV-UGYV formations in CZ-USA project COLOS. Bottom left shows energy
source localization in EU project REPLICATOR. Left part demonstrates multi-
robot localization used for the perpetual swarm platform capable of long-term
swarm experiments.

RESEARCH OUTREACH

The marker-based localisation method introduced in [40] became popular in the robotics
community, which is reflected in citations of the articles [40],[39] and . The system
was used in several works that required relative localisation of UAV and mixed UAV-
UGV formations in 559, 65| 66]. Its components were used in the multi-UAV
system, which achieved tremendous success at the Mohammed bin Zayed Robotic Interna-
tional Contest in 2017 . Furthermore, it was extensively used for micro-robot
swarms [51} [70], leading to a system capable of artificial pheromone simulation 72l



5.1 RESEARCH OUTREACH

Figure 12: Typical inhabitants of Lincolnshire using an interaction card to get a selfie by
the STRANDS robot.
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CONCLUSIONS

This thesis provides an overview of the research I had the luck to participate on during
the last 10 years. The purpose of the research was to bring robots closer to being really
useful by allowing their longer autonomous operation in natural environments. We tried
to achieve this goal by improvements of the methods that are essential for the task of
autonomous navigation and localisation. Our focus was to make these methods robust to
the effects of gradual environment changes that negatively affected contemporary robotic
systems. However, we realised that rather by trying to fight the change, robots should
embrace it, for change is the essential process of all existence [[105].

Thus, we developed a method that allows a mobile robot to have a basic understanding
of the environment changes from a long-term perspective. The method endows robots
with a basic comprehension of temporal structure of the world, which is partially driven
by naturally-cyclic processes. Understanding the world’s temporal structure allows the
robots to predict what is more likely to happen when and use this knowledge to their
advantage. In a series of experiments lasting several months, we demonstrated that the
method improves mobile robot mapping [14} 16, 24], localization [17, 20, 23} 24], path
planning [25], robotic search [18], activity recognition [1g], patrolling [31], exploration
[33} 34], task scheduling [35] and human-robot interaction [36]. Moreover, it allows for
temporal-context-based novelty and anomaly detection [14), 24]. The method outperformed
other temporal models (e.g. Gaussian processes) both in terms of prediction accuracy and
computational efficiency [18) [19} 26 31, 34, [38].

In the future, I would like to extend the spatio-temporal modeling approach so that it
would be able to take into account sensor noise in way similar to standard Bayesian update
applied to states with fixed probabilistic values. Furhermore, I would like to integrate
the spatiotemporal modeling technique into a continuously operating outdoor robot, thus
joining the research streams on robust visual navigation and spatio-temporal models.
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This article describes a simple monocular navigation system for a mobile robot based on the map-and-replay
technique. The presented method is robust and easy to implement and does not require sensor calibration or
structured environment, and its computational complexity is independent of the environment size. The method
can navigate a robot while sensing only one landmark at a time, making it more robust than other monocular
approaches. The aforementioned properties of the method allow even low-cost robots to effectively act in large
outdoor and indoor environments with natural landmarks only. The basic idea is to utilize a monocular vision
to correct only the robot’s heading, leaving distance measurements to the odometry. The heading correction
itself can suppress the odometric error and prevent the overall position error from diverging. The influence of
a map-based heading estimation and odometric errors on the overall position uncertainty is examined. A claim
is stated that for closed polygonal trajectories, the position error of this type of navigation does not diverge.
The claim is defended mathematically and experimentally. The method has been experimentally tested in a set
of indoor and outdoor experiments, during which the average position errors have been lower than 0.3 m for
paths more than 1 km long. © 2010 Wiley Periodicals, Inc.

1. INTRODUCTION

The fundamental problem of mobile robotics is to au-
tonomously navigate a mobile robot along a given path.
To fulfill this task efficiently, a robot should maintain some
knowledge about its surrounding environment, especially
its position relative to the path or desired destination. Such
knowledge may be represented in the form of a map, which
can be used to estimate the robot position as well as for mo-
tion planning. The map is either known a priori and the
robot performs localization or is created online and the mo-
bile robot performs so-called simultaneous localization and
mapping (SLAM).

The solid mathematical background of the Kalman
filter (Kalman, 1960) allowed the research community to
establish a sufficient theoretical framework for extended
Kalman filter (EKF)-based SLAM. Proof of EKF conver-
gence (Dissanayake, Newman, Clark, Durrant-Whyte, &
Csorba, 2001) and lower bounds (Gibbens, Dissanayake, &
Durrant-Whyte, 2000) on robot position uncertainty have
been formulated. Upper bounds are discussed in the pa-
per by Mourikis and Roumeliotis (2004), where the au-
thors emphasize the importance of robot heading precision
during the mapping process. To our knowledge, there is
no other paper concerning upper bounds of EKF position
estimation. Unfortunately, optimality of the Kalman filter
is proven only for linear systems and therefore the main

A multimedia file may be found in the online version of this article.

weakness of EKF methods lies in the linearization. The pa-
pers by Julier and Uhlmann (2001) and Martinelli, Tomatis,
and Siegwart (2005) indicate that due to errors introduced
in linearization, EKF methods might provide inconsistent
results. Although the linearization process poses a signifi-
cant threat to the consistency of the position estimation, it
can be elegantly avoided using the inverse depth represen-
tation (Civera, Davison, & Montiel, 2008; Montiel, Civera,
& Davison, 2006).

1.1. Vision-Based Navigation

The theoretical solutions of bearing-only SLAM have
gained importance as the computational power of today’s
computers allows real-time image processing. The nature
of visual information allows us to build sparse maps from
well-distinguishable landmarks (Lowe, 1999, 2004), which
are relatively easy to register. However, the range informa-
tion is not provided directly by standard cameras. Some
bearing-only methods use stereovision in order to obtain
immediate range information (Kidono, Miura, & Shirai,
2000). Other methods substitute stereovision by motion and
use a single monocular camera (Davison, Reid, Molton, &
Stasse, 2007; Holmes, Klein, & Murray, 2008; Montiel et al.,
2006).

Most monocular approaches are computationally com-
plex and achieve low operational speeds when mapping
large-scale environments. This problem can be solved by
dividing a large global map into smaller maps with mu-
tual position information (Bosse, Newman, Leonard, &

Journal of Field Robotics 27(5), 511-533 (2010) © 2010 Wiley Periodicals, Inc.
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Teller, 2004; Clemente, Davison, Reid, Neira, & Tardds,
2007; Estrada, Neira, & Tardés, 2005; Williams, Cummins,
Neira, Newman, Reid, et al., 2009).

A different approach is to build an environment
map in advance and then use the map for localization
(Blanc, Mezouar, & Martinet, 2005; Chen & Birchfield, 2009;
Matsumoto, Inaba, & Inoue, 1996; Royer, Lhuillier, Dhome,
& Lavest, 2007; Segvic, Remazeilles, Diosi, & Chaumette,
2007). In Royer et al. (2007), a monocular camera is car-
ried through an environment and a video is recorded. The
recorded video is then processed (in a matter of several
minutes) and subsequently used to guide a mobile robot
along the same trajectory. Chen and Birchfield (2006, 2009)
present an even simpler form of navigation in a learned
map. Their method utilizes a map consisting of salient im-
age features remembered during a teleoperated drive. The
map is divided into several conjoined segments, each asso-
ciated with a set of visual features detected along it and a
milestone image indicating the segment end. When a robot
navigates a segment, its steering commands are calculated
from positions of currently recognized and remembered
features. The robot using this method moves forward with
a constant speed and steers right or left with a constant ve-
locity or does not steer at all. In Chen and Birchfield (2006),
the segment end was detected by means of comparing the
milestone image with the current view. The improved ver-
sion (Chen & Birchfield, 2009) of the qualitative navigation
uses a more sophisticated method to determine the seg-
ment end. The method takes into account the odometry,
the current heading, and the similarity of the current and
the milestone images. Still, the authors mention some prob-
lems with detection of the segment end. We claim that the
segment end can be detected solely by the odometry and
the comparison with the milestone image is not always nec-
essary. Comparison with the milestone image increases ro-
bustness of the navigation method in cases of wheel slip-
page and other odometry errors.

The map-and-replay approach is closely related to vi-
sual servoing, in which the control of a robot is based on vi-
sual measurements (Chaumette & Hutchinson, 2006, 2007).
Control inputs are either computed directly by a compar-
ison of the current and reference images (Remazeilles &
Chaumette, 2007; Segvic, Remazeilles, Diosi, & Chaumette,
2009) or by a computation of camera coordinates in the
world reference frame (DeMenthon & Davis, 1992; Wilson,
Hulls, & Bell, 1996). Normally, the visual servoing relies on
a geometrical approach to calculate relations of map land-
marks to the current image salient points (Segvic et al.,
2009). These relations are used to calculate an interaction
matrix (Chaumette & Hutchinson, 2006), which links obser-
vations to control inputs of the robot. The robot’s control in-
put can be computed from the Jacobian (Burschka & Hager,
2001), which relates world and image points, or from ho-
mography or fundamental matrices (Guerrero, Martinez-
Cantin, & Sagiiés, 2005; Remazeilles & Chaumette, 2007),

which relate coordinates between actual and reference im-
ages. A strong reliance on the geometrical representation
requires either camera calibration (Burschka & Hager, 2001;
Remazeilles & Chaumette, 2007; Segvic et al., 2009) or struc-
tured environment (Guerrero et al.,, 2005; Remazeilles &
Chaumette, 2007). A more detailed overview of visual ser-
voing approaches related to the field of mobile robotics
is presented in Chen and Birchfield (2009) and Segvic
et al. (2009). Contrary to the visual servoing approach, our
method does not require a calibrated camera and does not
rely on the environment structure.

1.2. Motivation

The target of our efforts is to create a system that would be
able to reliably navigate a mobile robot in an unstructured
environment of any size. To achieve this challenging goal,
we have decided that the navigation system should have
the following properties:

® Scalability: Its computational complexity should be in-
dependent of the environment size.

® Simplicity: The method should be as simple as possi-
ble, because complex systems are more likely to contain
€rTors.

® Swiftness: It has to satisfy real-time constraints.

® Standardness: It should use off-the-shelf equipment.

® Stability: The position uncertainty should not diverge
with time.

The basic idea of the map-and-replay technique is sim-
ilar to that of the industrial practice of programming sta-
tionary robots. One of the basic methods to program a
stationary robot is by means of (tele)operation. A skilled
operator guides the tip of the robot arm in order to perform
a certain task (e.g., painting, welding). The robot records
signals from its built-in receptors—typically incremental
rotation sensors at its joints. During the robot operation,
the recorded sequences serve as inputs for the robot’s con-
trollers. Though well established and efficient, this method
is not applicable to mobile robots in unstructured environ-
ments due to the uncertainty in the robot—environment in-
teraction. A typical example would be the use of odometry
in a mobile robot localization—the uncertainty caused by
wheel slippages tends to accumulate, which does not make
odometry suitable for long-term localization and naviga-
tion. To effectively cope with the uncertainty in the robot’s
position, a mobile robot must use exteroreceptors to sense
the surrounding environment. A mobile robot position and
its heading can be estimated through measurements of the
surrounding environment.

Several authors of SLAM algorithms acknowledge the
fact that the uncertainty of robot heading is a crucial factor
affecting the quality of the map and subsequently the qual-
ity of position estimation in the localization step. The in-
fluence of the heading estimation has been evaluated both
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theoretically and practically (Frese, 2006). We extend the
idea of heading estimation importance and claim that for
long-term mobile robot localization it is sufficient to use ex-
teroceptive sensors for heading estimation and the Carte-
sian coordinate estimation can be based just on propriocep-
tive sensors.

1.3. Paper Overview

A minimalistic approach to monocular localization and
mapping is presented in this paper. We claim that for the
navigation in a known environment, a robot needs a map
just to estimate its heading and can measure its position
by odometry. Formulating this particular instance of the
navigation mathematically, we provide a formal proof of
this claim. Furthermore, several large outdoor experiments
confirm the expected system performance. We think that
the most important contribution of our paper is not the
presented method but the convergence proof presented in
Section 3. The proof would apply to several other methods
(Chen & Birchfield, 2009; Guerrero et al., 2005; Zhang &
Kleeman, 2009) that use vision to correct heading and lat-
eral position errors.

The rest of this paper is organized as follows. The
proposed minimalistic navigation method is described in
the next section. A mathematical model of this naviga-
tion method is outlined and its properties are examined
in Section 3. A theorem that claims that this method pre-
vents position uncertainty divergence is formulated and
proven in the same section. The theoretical analysis is fol-
lowed by a discussion on the practical issues of the navi-
gation method. Experimental results verifying whether the
system retains the expected properties are described in
Section 5. A conclusion briefly discusses the properties
of the proposed navigation method and outlines possible
future improvements.

2. NAVIGATION SYSTEM DESCRIPTION

The proposed navigation procedure is based on the map-
and-replay technique. The idea is simple: a robot is man-
ually driven through an environment and creates a map
of its surrounding environment. After that, the map is
used for autonomous navigation. A similar technique for
autonomous navigation based on computation of a robot
steering from positions of remembered features has been
described in Chen and Birchfield (2006), Royer et al. (2007),
and Zhang and Kleeman (2009). To minimize the robot sen-
sor equipment and to satisfy the “standardness” property
mentioned in Section 1.2, we consider the most available
sensors. The fundamental navigation property of a mobile
vehicle is the traveled distance, which can be estimated by
odometry. The odometric error is cumulative and therefore
can be considered precise only in the short term. Another
standard available sensor that does not require additional
infrastructure is a compass. A fusion of data from the com-
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pass and odometry can provide position estimation but is
still unsuitable for long-term navigation, because it lacks
sufficient feedback from the robot’s surrounding environ-
ment. To increase robot ability to sense the environment,
one of the most advantageous sensors is a camera, which
can provide lots of information.

Using these three main sensors, we have proposed the
following simple navigation strategy:

® The robot is navigated along a sequence of straight line
segments.

® At each segment start, the robot is turned to a direction
according to the compass value.

® The steering control along the straight segment is com-
puted from matched visual features providing a so-
called visual compass.

® The end of each segment is recognized according to the
traveled distance, which is measured by odometry.

The crucial component of the proposed navigation proce-
dure is a map, which is created by guiding the robot along
a path consisting of straight-line segments. Each segment
has its own landmark map L;, consisting of salient fea-
tures detected in images captured by the robot’s forward-
looking camera, the initial robot orientation « and the seg-
ment length s. Once the map is created, the robot can travel
autonomously within the mapped environment. During
the navigation along a segment, the robot establishes cor-
respondences of the currently seen and previously mapped
landmarks and computes differences in the expected and
recognized positions for each such correspondence. The
robot steers in a direction that reduces those differences
while moving straight at a constant speed until its odom-
etry indicates that the current segment has been traversed.
At the end of the segment, the robot switches to the next
learned segment, turns to a direction of the initial orienta-
tion of the segment, and traverses the segment while keep-
ing its direction according to matched features.

The next section describes the robot equipment and
image processing. The algorithm for the map creation dur-
ing the learning phase is described in Section 2.2, and the
navigation algorithm is depicted in Section 2.3.

2.1. Robot Equipment

The proposed method has been verified on the P3AT robot
with the Unibrain Fire-i601c camera, the TCM2 compass,
and the HP 8710p laptop; see Figure 1(a). At first, the cam-
era was equipped with a 7-mm objective with an electron-
ically driven iris to prevent sunlight dazzle. The objective
was replaced by a new one with a 4.5-mm focus length
in 2008. At the same time, the electronically driven iris
was substituted by a software exposure control. The lap-
top has Core2 Duo CPU running at 2.00 GHz and 1 GB
of memory. Image processing is computationally demand-
ing, and therefore the additional UPC70 battery had been
used for longer experiments. To increase the robot action
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(a) Robot configuration for experiments

Figure 1.

radius, the three original batteries (connected in parallel)
were replaced by one high-capacity battery and the robot’s
internal PC was disabled. The navigation system was im-
plemented in C/C++ as a stand-alone Linux application.

The image processing algorithm is a critical compo-
nent of the navigation system. The vision system must pro-
vide enough information to steer the robot in the right
direction. Furthermore, it should be robust to real-world
conditions, i.e., changing illumination, minor environment
changes, and partial occlusions, and of course its perfor-
mance should allow for a real-time response.

We have decided to use the speeded up robust features
(SURF) (Bay, Tuytelaars, & Van Gool, 2006) method to iden-
tify landmarks in the image. The algorithm provides im-
age coordinates of the salient features together with their
descriptions. The SURF method is reported to perform bet-
ter than most SIFT (Lowe, 1999) implementations in terms
of speed and robustness to viewpoint and illumination
changes. To achieve an additional speedup, the CPU imple-
mentation of the algorithm was adjusted to use both proces-
sor cores for parallel image processing. The captured image
is horizontally divided, and the parts are processed in par-
allel. Later, we switched to the GPU (Cornelis & Van Gool,
2008) version of the algorithm. The GPU version has better
real-time performance but is less distinctive than the CPU
implementation (Svab, Krajnik, Faigl, & Preucil, 2009). Nor-

_

(b) Image captured by robot camera and detected
SURF positions
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(c) Robot GUI with navigation phase data

Robot platform, detected features, and navigation graphical user interface (GUI).

mally, the recognition of a 1,024 x 768 grayscale image pro-
vides descriptors of 150-300 features and takes 100-500 ms.
The outdoor environment is usually richer in detected fea-
tures, and image processing tends to be slower than in-
doors. A typical outdoor processed image with highlighted
feature positions is shown in Figure 1(b).

2.2. Learning Phase

In the learning phase, the robot is manually guided through
an environment in a turn-move manner and creates a map
consisting of several straight segments. Each segment is de-
scribed by its length s, its azimuth «, and a set of detected
landmarks L. A landmark / € L is described by the tuple
(e,k,u,v, f, g), where e is the SURF descriptor and k in-
dicates the number of images in which the landmark was
detected. Vectors u and v denote positions of the landmark
in the captured image at the moment of its first and last de-
tection, and f and g are the distances of the robot from the
segment start in these moments.

The procedure that creates a map of one segment is
shown in Algorithm 1. Before the robot starts to learn a
segment, it reads compass data to establish the segment
azimuth o and resets its odometric counters. After that,
the robot starts to move forward, tracks detected features,
and inserts them to the set L until the operator requests
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Algorithm 1. Learn one segment

Input: o — an initial robot orientation (compass value)

Output: («, s, L) — the data associated to the segment, where s is the traveled distance and L is a set of landmarks, a landmark is the
tuple (k, e, u, v, f, g), where e is the SURF descriptor, & is a counter of feature detection,  and v are positions of the features
in the image (at the moment of their first, resp. last occurrence), f and g denote distance from the segment start according

to u, resp. v.
L<9¢ // a set of learned landmarks
T <9 // a set of tracked landmarks
a < compass value // a robot orientation at the beginning of segment learning
repeat

d < current distance from the segment start

foreach t; = (¢;, ki, u;, v;, fi, &) € T do
(U4, ;) < argmin{|le;, e(s)|| |s € S}

if ||(e;, el)] < [l(e;, €,)]] then
t; < (e, ki +1,u;, u,, fi,d)
‘ S <« S\ {(ug, e)}
else
T« T\(t)

foreach (u,¢e) € S do
| T <TU{e.1,u,u,d d)}

until operator terminates learning mode
s «—d
L« LUT

S < extracted features with associated image position, (u, e) € S, u position, e feature descriptor

// select the best matching descriptor from § to ¢
(y, €,) <— argminf|le;, e(s)|| |s € S\ {(u,, e,)}}// select the next best matching descriptor

// update matched landmark

// remove matched feature from the current set of detected features

// remove t; from the set of tracked landmarks
// add t; to the set of learned landmarks

// add new feature to the set of tracked landmarks

// the total traveled distance along the segment
// add the current tracked landmarks to the set of learned landmarks

to stop. Images are continuously captured and processed
during the movement. For each currently tracked landmark
t; (from the set T), two of the best matching features from
the set of new features are found. If these two pairs are
distinguishable enough (Bay et al., 2006), the best match-
ing feature is associated to the tracked landmark, which is
updated (values k, v, g). Each new feature is added to the
set of tracked landmarks 7, and its u and v are set to the
value of the current distance from the segment start and
the counter of the feature detection & is set to one. The seg-
ment description is saved at the end of the segment, and the
operator can turn the robot to another direction and initiate
mapping of a new segment. The format of the file, which
stores the segment description, is shown in Table I.

2.3. Autonomous Navigation Mode

In the autonomous navigation mode, an operator enters
a sequence of segments and indicates whether the robot
should travel repeatedly. The robot is placed at the start of
the first segment, loads the description of the segment, and
turns itself to the segment azimuth and starts moving for-
ward. The navigation procedure is shown in Algorithm 2.
The relevant landmarks for the current robot position (i.e.,
according to the distance from the segment start) are se-
lected from the set of the learned landmarks L. Correspon-
dences between the mapped and the currently detected
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landmarks are established in the same way as in the learn-
ing phase. A difference in horizontal image coordinates of
the features is computed for each such couple. A modus
of those differences is estimated by the histogram voting
method. The modus is converted to a correction value of the
movement direction, which is reported to the robot’s steer-
ing controller. After the robot travels a distance greater than
or equal to the length of the given segment, the next seg-
ment description is loaded and the procedure is repeated.
During the navigation, the robot displays the relevant states
(mapped and recognized landmarks, recognition success
ratio, etc.) on its graphical interface; see Figure 1(c).

An important aspect of this navigation algorithm is the
fact that it does not need to explicitly localize the robot or
to create a three-dimensional map of detected landmarks.
It should also be noted that the proposed method is able
to work in real time. Even though the camera readings are
utilized only to correct the robot direction and the distance
is measured by the imprecise odometry, the position un-
certainty does not accumulate if the robot changes direc-
tion often enough. The stability of the proposed navigation
method is discussed in the next section.

3. STABILITY OF BEARING-ONLY NAVIGATION

First, we describe in an informal way how the robot po-
sition uncertainty is changed as the robot travels a closed
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Table I. A part of a segment map in a text file.
Record Value Meaning
Initial azimuth and length 2.13,7.03 a,s
Landmark 0
First position 760.74, 163.29 uy,
Last position 894.58, 54.44 v,
Max visibility 128 ky,
First and last visible distance 0.00, 4.25 fio» &
Descriptor 1, 0.116727, —0.000254, 0.000499, 0.000352, ... e,
Landmark 1
First position 593.32, 381.17 uy,
Last position 689.89, 377.23 vy,
Max visibility 125 ki,
First and last visible distance 0.00, 6.73 S &
Descriptor —1, 0.070294, —0.006383, 0.012498, 0.006383, . .. ey

Algorithm 2. Traverse one segment

Input: (o, 5, L) — the data associated to the segment, where « is an initial angle of the robot orientation at the segment start, s is the
traveled distance and L is a set of landmarks, a landmark is the tuple (e, k, u, v, f, g), where e is a SURF descriptor, k is a
counter of feature detection, u and v are positions of feature in the image (at the moment of the first, resp. last, occurrence),
f and g denote distances from the segment start according to u, resp. v.

Output: ® — a steering speed

turn(o)

d < current distance from the segment start
whiled < s do
T <9

H <9

d < current distance from the segment start

foreach l; = (e;, k;, u;, v;, fi, &) € L do
if fi > d > g; then
| T« Tu{l}

while |T| > 0 do
(ei, kisui, vy, fi, g) < argmax, ;.
(U4, e,) < argmin{|le;, e(s)|| |s € S}
(up, €,) <= argmin|le;, e(s)|| |s € S\ {(ua, e,)}}
if ||(e;, el <K [l(e;, €,)]| then
P < (Ul _ux) (d - fx)/(gx - f1)+u1 —Uq
H <~ HU{p,}

L T < T\ {(e;, ki, ui, v, f;, 8}

® < modus(H)
report w to steering controller

// turn robot in the direction «

// a set of current tracked landmarks
// a set of differences (horizontal position in the image) of matched features

S <« extracted features with associated image position, (u, e) € S, u position, e feature descriptor

// add landmark to the tracked landmarks according to the traveled distance

k(t) // get landmark with maximal number of occurrences k
// select the best matching descriptor from S to ¢
// select the next best matching descriptor

// estimate angle to the matched landmark

// add horizontal difference to set of differences

// discard used landmark

// determine new robot steering velocity

path. This should help to interpret the mathematical for-
malism describing the robot position uncertainty in geo-
metrical terms and make the rest of this section more com-
prehensible. After that, we lay down a formal description
of the proposed navigation method and analyze its stabil-
ity. We outline a model of the robot movement and depict

equations allowing the computation of the robot position
uncertainty. Next, we use these equations to compute the
robot position uncertainty for a closed path. Finally, we ex-
amine the properties of the proposed model and establish
conditions ensuring that the robot position error does not
diverge.
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3.1. Geometrical Interpretation

Suppose that the learned path is a square and the robot has
to travel it repeatedly. The robot is placed at a random [two-
dimensional (2D) Gaussian distribution with zero mean]
position near the first segment start; see Figure 2. The ini-
tial position uncertainty can therefore be displayed as a cir-
cle in which the robot is found with 90% probability. The
navigation procedure is executed, and the robot starts to
move along the first segment. Because it senses landmarks
along the segment and corrects its heading, its lateral po-
sition deviation is decreased. However, owing to the odo-
metric error, the longitudinal position error increases. At
the end of the segment, the circle denoting position uncer-
tainty becomes an ellipse, with a shorter axis perpendicular
to the segment. Heading corrections are dependent on the
value of the lateral deviation (see Section 3.2): the greater
the deviation, the stronger the effect of heading corrections
and therefore the lateral error decreases by a factor 4 for
every traversed segment. The odometry error is indepen-
dent of the current position deviation and is affected only
by the length of the traversed segment, and therefore it can
be modeled as an additive error o.

After the segment is traversed, the robot turns by
90 deg and starts to move along the next segment. The
uncertainty changes again, but because of the direction
change, the longer ellipse axis shrinks and the shorter is
elongated due to the odometry error. This repeats for every
traversed segment; the size of the uncertainty ellipse con-
verges to a finite value. Because this particular trajectory
is symmetric, axis lengths a, b of the “final” ellipse can be

— Learned path

-7 Initial position uncertainty
< Position uncertainty

— — Robot trajectory example

[ A

Figure 2. Position uncertainty evolution for a simple symmet-
ric path.
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easily computed by the equations

a = hb,
¢))
b=a+o,

where £ is the coefficient of the lateral error reduction and
o is the odometric error. The position error for o = 1 and
h = 0.25 is shown in Figure 2. Though simple, this particu-
lar symmetric case gives us a basic insight into the problem.
Now we will derive a broader mathematical model of the
navigation, examine its properties, and show that the un-
certainty does not diverge for nonsymmetrical trajectories
as well.

3.2. Navigation

The proposed navigation method is based on the following
assumptions:

The robot moves in a plane.

® The map already exists in the form of a sequence of con-
joined linear segments with landmark description.

® At least two segments of the mapped path are not
collinear.

® The robot can recognize and associate a nonempty sub-
set of mapped landmarks and determine their bearing.

® The robot can (imprecisely) measure the traveled dis-
tance by odometry.

® The camera is aimed forward, i.e., in the direction of the
robot movement.

The path P consists of a sequence of linear segments p;. The
robot moves in a plane, i.e., its state vector is (x, y, ¢). The
robot we consider has a differential, nonholonomic drive,
and therefore x = v cos(¢) and y = vsin(g). For each seg-
ment p;, there exists a nonempty subset of landmarks and a
mapping between the robot position and the expected bear-
ing of each landmark is established. At the start of each
segment, the robot resets its odometry counter and turns
approximately toward the segment end to sense at least
one of the segment landmarks. The robot establishes corre-
spondences of seen and mapped landmarks and computes
differences in expected and recognized bearings. The robot
steers in a direction that reduces these differences while
moving forward until its odometry indicates that the cur-
rent segment has been traversed.

Definition 1 (Closed-path stability property). Assume
that a robot navigates a closed path several times. Furthermore the
robot is using an environment map only for heading corrections
and measuring the distance by odometry. Then a path for which
the robot position uncertainty does not diverge has the closed-
path stability property.

Theorem 1. A path consisting of several conjoined segments
retains the closed-path stability property if the assumptions in
Section 3.2 are satisfied.
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3.3. Movement along One Segment

First, let us examine how a robot moves along one segment.
We will focus on the position before and after traversing
one segment and establish mapping from the robot position
error at the segment start to the robot position error at the
segment end.

To keep the model simple, we assume that the robot
as well as the landmarks are positioned in a plane. We will
consider having a map consisting of a single segment of
length s with d landmarks, with positions represented as
vectors u;. Because the robot is equipped with a forward-
heading camera, learned landmark positions u; are not
assumed to be distributed uniformly along the path but
rather shifted in the direction of the robot movement by a
distance p. We can assume that p ~ % Z?:_ol uxi, where d
is the number of mapped landmarks. Let us place the seg-
ment start at the coordinate origin and the segment end at
the position [s, 0]7. We designate the robot position prior to
the segment traversal as a = [ay, ay]T and the final robot
position as b = [by, by]T ; see Figure 3. Let us assume that at
every moment during the segment traversal, the robot rec-
ognizes a nonempty subset W of previously learned land-
marks and the robot heads in a direction that minimizes the
horizontal deviation of expected and recognized landmark
positions. We denote the intersection of the robot heading
with the learned segment axis as w. At the beginning of
the segment traversal, this position equals approximately
[p, 017 (ie., w~ [p,0l"). As the robot traverses the seg-
ment, it loses sight of nearby landmarks and recognizes
new ones. As new, more distant landmarks appear in the
robot field of view and nearby landmarks disappear, the
set W changes and the point w moves along the segment.
It can be assumed that the point w moves approximately at
the speed of the robot and therefore it is always ahead of
the robot by the distance p.

Based on these premises, the robot position [x, y1T in
terms of y = f(x) can be established. The robot movement
can be characterized by the following differential equation:

dx 0

—_—= . 2)
dy -y

b - robot final position
S —segment end
Xx — mapped landmarks

a — robot start position
X — robot current position
>~ robot heading

Figure 3. Robot movement model for a single path segment.

Solving Eq. (2) gives us a trajectory along which the robot
moves:

y=ce X",

Considering a boundary condition ay = f(ay), the constant
c equals

- %

- e ax /p’

Considering that the range of the robot’s sensor is higher
than the robot position uncertainty and that the segment
length is higher than the robot lateral distance from the seg-
ment start (i.e., p > a,, s > |ay|), the constant ¢ equals ap-
proximately a, and the traveled distance is approximately
equal to the segment length. Therefore, we can estimate the
robot position after traveling a segment of length s by the
following equations:

by = ay + s,
3)

—S
by = aye /e

We can transform Egs. (3) to the matrix form

()6 ) C)-C) o

Equation (4) is valid for an error-free odometry. If the
odometry error is modeled as a multiplicative uncertainty,
the equation changes to

by _ 1 0 dy 1+v 5)
by ) “\o o) \ay )T 0 )

where v is a random variable drawn from the Gaussian dis-
tribution with the zero mean and the variance €. Account-
ing for the heading sensor noise, Eq. (5) changes to

by _ 1 0 ay s+ sv ©)
by ) “\o e \ay )T e )

where & is a random variable of the Gaussian distribu-
tion with the zero mean and the variance t. Consolidating
Eq. (6), we can state

b =Ma +s.

The aforementioned movement model holds for a segment
aligned with the x axis. For a segment with an arbitrary
orientation «, the movement model becomes

b = RTMRa + RTs, @)
where
cosa sina 1 0 1 0
R = . , M= = .
—sina cosa 0 es/p 0 m

Equation (7) corresponds to aligning the segment with the
x axis, applying M, adding the odometric and the sensor
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noise, and rotating the segment back to the direction .
In the following text, we use N = RTMR, which shortens
Eq. (7) to

b = Na+RTs. (€)]

All the aforementioned assumptions about the surrounding
environment (landmark shift equal to p, p > ay, etc.) can be
relaxed as long asm < 1 fors > 0.

3.4. Position Uncertainty

Now, the dependence of the robot position uncertainty at
the segment end to its uncertainty at the segment start can
be examined. Consider that the robot position a before the
segment traversal is a random variable drawn from a 2D
normal distribution with the mean a and the covariance
matrix A. To compute the robot position uncertainty after
the segment traversal, we apply Eq. (8) to a. Because the
robot movement model in Eq. (8) has only linear and ab-
solute terms, the robot position uncertainty after the seg-
ment traversal will constitute a normal distribution with
the mean b and the covariance matrix B.

We denote a = 4 + 3, where 4 is the mean of a and a
is a random variable of a normal distribution with the zero
mean and the covariance A. Similarly, we can denote b =
b +b. Thus, we can rewrite Eq. (7) as follows:

b = RTMRi: + RTs.
We can claim that
bbT = (R"TMRi + RT8)(RTMRi + RT5)T.
Because § and a are independent and do not correlate,
bbT = RTMRaa"R"™M'R + RTs5™R,
which rewritten in terms of covariance matrices is

B = RTMRAR™MTR + RTSR, )

s2¢2 0
S_< 0 12)"

Equation (9) allows us to compute the robot position uncer-
tainty after traversing one segment.

where

3.5. Traversing Multiple Segments

Let us consider a path consisting of n chained segments de-
noted by i € {0, ..., n — 1} with the end of the last segment
equal to the start of the first segment, i.e., the considered
path is closed. We denote length and orientation of the ith
segment as s; and «;. The robot position before and after
traversing the ith segment is noted as a; and b;. Because the
robot position at the end of the ith segment equals its start
position at the segment i + 1, we can state that aj;1 = b;.
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The movement model (9) for the ith traveled segment
is

Aii1 = B; = RITMiRA;RTMIR; + RTS;R;.  (10)

Considering N; = RiTMiRi and defining T; = RiTSiRi, we
can rewrite Eq. (10) as

A1 = N;ANT 4T3

One can compute the robot position uncertainty in terms
of the covariance matrix after traversing i path segments in
the following terms:

0 i-1
Ai=| ] Ny | Ao | ]NS
j=i-1 j=0
i-1 j 4 i1
-1 T T
+ [T N | N (Nj) [INE
j=0 | \k=i-1 k=j

1

To examine how the robot position uncertainty changes af-
ter the robot travels the entire learned path i times, we de-
fine C; = Ajp (e.g., C1 = Ap). Moreover, we denote

0

N= ] N
j=

n—1
and
n—-1

j _ -1
T=> [T N N]flTi (N]T) ! Ii_[NE (12)
: e

j=0 k=n—-1
and rewrite Eq. (11) as
Ciy1 = NGNT + 1. (13)

By proving that C; converges to a finite matrix as i grows
to infinity, we prove Theorem 1.

3.6. Convergence Conditions

Expression (13) is the Lyapunov discrete equation
(Lyapunov, 1992). If all eigenvalues of N lie within a
unit circle and T is symmetric, then lim;_, o, C; is finite
and equal to Cw,, which can be obtained by solution of the
algebraic equation

Coo = NCoNT + T, (14)

Because the matrix S; is symmetric, T; = R;rSiRi is also
symmetric. The product XT;XT is symmetric for any X and
therefore all addends in Eq. (12) are symmetric. Addition
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preserves symmetry and therefore the matrix
n-1 j

=2 {11

j=0 -

k=n-1
is symmetric.

To prove that the eigenvalues of N lie within a unit
circle, we exploit the positiveness of the matrices M; and
R;. Because M; is positive, N; = RiTMiRi is also positive.
Moreover, as every Nj equals RiTMiRi, its eigenvalues are
the same as those of M; and eigenvectors are columns of
R;. The eigenvalues of N; therefore correspond to one and
e~%i/Pi Because the product XY of a positive definite matrix
X and a symmetric positive definite matrix Y is positive def-
inite, the matrix N is positive definite as well. Moreover, the
dominant (maximal) eigenvalue of the product XY is lower
than or equal to xy, where x and y are dominant eigenval-
ues of X and Y. Because the dominant eigenvalue of every
N;j is one, all eigenvalues of N are smaller than or equal
to one. The dominant eigenvalue of N is equal to one if
and only if the dominant eigenvalue of the product Nj1Nj
equals 1 for all i. Conditions satisfying that the eigenval-
ues of a product Nj;1Nj are lower than one ensure the ex-
istence of a finite solution of Eq. (14). Therefore, we have
to find those conditions to support the closed-path stability

property.

_1 [n?
Nic | Ny Ty (N]T) 1!_[ NI
=]

3.7. Convergence Proof

We will exploit the fact that a product of matrix eigenvalues
equals the matrix determinant and the sum of eigenvalues
equals matrix trace. Let us denote eigenvalues of the matrix
product Nj1Nj as A9 1 and the smaller eigenvalue of N;j as
n; (nj = e~5i/P). For our convenience, we denote j =i + 1.
Therefore

det (N;Nj) = detNjdetN; = Agh1 = nin;. (15)
If 0.1 € (0, 1), we can state that
1 =200 —=21) >0, (16)
and therefore
AA1 —Aog—A1+1>0. (17)
Combining Eq. (15) and inequality (17), we obtain
1+nin; > i+ A1

Considering that the sum of eigenvalues equals matrix
trace, we get

trace (RTMjRRTMiR;) =<1+ nin;. (18)

Because trace(AB) is equal to trace(BA), we can rewrite in-
equality (18) as

trace(M; (RiRT) "MiRiRT) <1+ nin;. (19)

Both matrices R; and R; represent rotations. The matrix R;
denotes rotation by the angle «;, and R; denotes rotation

by the angle «;. Their product RiR].T denotes rotation by
a; —aj. If we denote § = o; — aj and Rg = RiR}r, inequal-
ity (19) is changed to

trace (MjREMiR,g> <1+nin;. (20)

By expanding matrices M; RT, we obtain
cos —nj sin
MR} = ( ponjsinp
sin  njcosp
cos 8

. n; sin 8
6= —sinf njcosB)’

Inequality (20) can be rewritten to

and

1+ nin_/)coszﬁ + (n; + n_,-)sinz B<1+ nin;
and further reduced to

1—|—ninj —(1—n; —nj +ninj)sin2f3 < 1+ninj.

Finally, we get
T —np1 - nj)sinzﬁ > 0. 1)

Because n; = e /P n; € (0,1) and nj € (0, 1), and inequal-
ity (21) is strict for sin 8 # 0. This fact implies that inequal-
ity (16) is strict as well, which means that both Ay and A;
are lower than one. Therefore both eigenvalues of the ma-
trix product (N;Nj) are smaller than one if 8 # nx|n € N.
The matrix N has both eigenvalues smaller than one if and
only if at least two conjoined segments of the path form an
angle different from 0 or .

Because all eigenvalues of N lie within a unit circle
and Tis symmetric, the covariance matrix Co, denoting the
robot position uncertainty at the start of the first path seg-
ment is finite and obtainable by a solution of the algebraic
equation

Coo = NCooNT + T.

3.8. Convergence Proof Overview

We have established Eqs. (7) describing the movement of
a robot using a navigation method, which is described in
Section 2. Equation (10) allowed us to examine the robot
position uncertainty evolution as the robot travels through
a known environment. Modifying Eq. (10) to closed trajec-
tories, we could rewrite it as Eq. (13). By examining the con-
ditions under which Eq. (13) has a finite solution, we have
proven Theorem 1 for closed paths that have at least two
noncollinear segments. The existence of a finite solution of
Eq. (13) means that if a mobile robot traverses repeatedly a
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closed polygonal path using our method, its position error
at every point of the traversed trajectory will stabilize at a
certain value.

4. PRACTICAL ISSUES

The theoretical proof of convergence stands on several as-
sumptions, which might not always be met. In this section,
we will outline possible issues that might arise from incor-
rect assumptions and discuss their impact on navigation
stability and accuracy. Moreover, we will discuss method
requirements in terms of computational power, memory,
and disk storage.

4.1. Convergence Proof from an Engineer’s
Point of View

Though elegant and useful, mathematical models and for-
mal proofs are often based on a simplification of reality. A
good mathematical model picks out the essence of the mod-
eled problem and concentrates on an examination of the
model properties. Some properties of the real system are
not included in the model and therefore are not considered.
An experienced engineer must be aware of these properties
and realize the difference between math and reality. This
applies to the proof presented in Section 3 as well.

In practice, extremely elongated (imagine a rectangle
with sides 1,000 and 0.001 m long) paths will not retain the
closed-path stability property because the movement along
the shorter side will not compensate odometry errors ac-
cumulated over the long side. Moreover, the model does
not cover the probability that the robot will not establish
enough correct correspondences because its position error
would grow too high. This might easily happen in case the
robot has to avoid large obstacles as well as for paths with
very long segments.

Moreover, the fact that the position error does not di-
verge might not be really useful in real robotic systems. In
practice, the real precision is more important. The precision
can be estimated using Eq. (13) if the learned path shape,
landmark distribution p, camera noise t, and odometry
noise € are known. Using p = 20 (i.e., most of the sensed
landmarks are 20 m in front of the robot), the sensor noise
7 = 0.1, and the odometry noise ¢ = 0.0005 for a square, 1-
km-long path, the predicted navigation repeatability (i.e.,
computed from eigenvalues of Cy,) is 0.15 m. This value is
in good accordance with the experimental results presented
in Section 5, where the measured repeatability in outdoor
scenarios was 0.14 m.

4.2. Reliance on Odometry

Odometry is regarded as unsuitable for long-term local-
ization due to cumulative errors. Its error model is usu-
ally multiplicative with a precision around 1%. The error
of the odometric pose estimation is caused mainly by the
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fact that the robot heading cannot be properly determined.
On the other side, odometry can be very precise for trav-
eled distance measurements. Moreover, an odometric error
is usually systematic, which can be solved by precise cali-
bration. Our experience with the P3AT robot shows that re-
peatability of its odometric measurements of the traveled
distance on paved roads is better than 0.1%. This means
that in the case of precise heading estimation, the robot
would be able to travel 1 km with a position error lower
than 1 m.

Our approach relies on the fact that the robot changes
direction often enough. If the robot would travel in a
straight direction for a long distance, its position error
might grow beyond an acceptable level. This might be
avoided either by forcing the robot to change directions
during the learning phase or by complementing the dis-
tance measurement by methods without a long-term drift.
An example of such a method might be global positioning
system or a vision-based localization used in methods in
Chen and Birchfield (2009), Royer et al. (2007), and Zhang
and Kleeman (2009).

4.3. False Correspondences

The most troublesome issue is that correct correspondences
might not be established. However, our algorithm works
even in cases of a large number of outliers. Consider a situ-
ation in which the system is navigating and all of its estab-
lished correspondences are false. The horizontal position
deviation of detected and mapped features would be basi-
cally a random variable. Therefore a histogram H, which is
built in order to establish the robot turning speed, will have
its bins (approximately) equally filled. The robot turning
speed will therefore be random. Now consider that there
are a few correctly established correspondences. Each cor-
rectly established correspondence increases the value of the
bin, which corresponds to the robot’s true heading devi-
ation. Therefore the probability that the correct bin has a
maximal value increases with each correct correspondence.

This is different from the work presented in Chen and
Birchfield (2009) and Segvic et al. (2007), where the au-
thors choose a mean of horizontal differences instead of the
modus. The modus is more invariant to the incorrect corre-
spondences than the mean, which makes our method more
precise and robust.

In reality, we get 80%—90% correctly established corre-
spondences if the navigation phase follows mapping im-
mediately. As the map gets older, the ratio of correct cor-
respondences tends to drop. The rate of “map decay”
depends on the environment and is caused mainly by two
factors: short-term lighting changes caused by a change in
the position of the sun and the current weather conditions
and long-term environment changes caused by seasonal
factors. Both illumination and long-term changes are not so
significant in indoor environments, because lighting is typ-
ically artificial and seasonal changes do not happen. So it
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is expected that illuminations and seasonal changes would
play an important role in outdoor environments.

To evaluate the system robustness to lighting changes,
we made an all-day experiment in which the robot tra-
versed a 1-km-long path in an outdoor environment; see
Section 5.5. To evaluate our system robustness to seasonal
environment changes, we mapped a 50-m-long path in a
park. The path was autonomously navigated and then re-
learned one month later. This was done in five consecutive
months; see Section 5.4. The results of both experiments
show that the system is robust to both long-term and short-
term environment changes.

Dynamic objects and occlusions cause only a tempo-
rary and slight decrease in the ratio of correctly established
correspondences. During the experiments, we did not no-
tice any problems with moving objects in the robot field of
view.

4.4. Obstacle Avoidance

The proposed navigation method itself does not include
obstacle avoidance. However, it can be complemented by
a collision avoidance module, which takes control of the
robot whenever an obstacle in the robot’s course is de-
tected. Such a module guides the robot around the obsta-
cle until the area between the robot and its path is clear
again. After that, the visual-based navigation takes control
and guides the robot by Algorithm 2.

Because obstacles have finite dimensions, the robot po-
sition error will grow by a finite value every time it passes
an obstacle. From the theoretical point of view, random ob-
stacles in the robot path can be modeled by the addition
of a random vector with a zero mean to s in Eq. (8). Al-
though the addition will increase the matrix S in Eq. (9), the
symmetry of S will be preserved. Obstacles would there-
fore increase the matrix T in Egs. (13) and (14), but because
T remains symmetric, Eq. (14) will have a unique solu-
tion. However, the robot position uncertainty, represented
by the matrix Ce, will increase. Therefore, obstacle avoid-
ance would decrease the precision of the robot navigation,
but it should remain stable. This assumption is experimen-
tally verified in Section 5.3.

It is clear that there exists a size of obstacles for which
the algorithm will fail, because after circumnavigating the
obstacle, the robot will not find previously mapped fea-
tures.

4,5, Systematic Errors

Because the navigation algorithm relies on two sensors,
there are two sources of systematic errors in our algorithm:
the odometry and the camera.

The systematic error of the odometry means that if the
robot traverses the distance d, it will report that the trav-
eled distance is d(1 + 7). Let us consider that the robot has
900% odometric error, i.e., n = 9. During mapping phases,

the error will cause the segment lengths s and landmark
data f and g to be 10 times higher in the map than in real-
ity. However, in the navigation phases, the odometry error
will give 10 times higher values of the robot distance from
the segment start, and therefore errors in the map and robot
position error will suppress each other.

The systematic error of the camera might be caused by
the misalignment of the camera optical axis and the robot
body. This causes the positions of landmarks u, v in the
map to be different from a case with an ideal camera. How-
ever, when the robot encounters the same location, detected
landmark positions will be shifted the same way as in the
learning phase. The systematic error will therefore cancel
out as in the previous case.

A different case would be a change of the odometric
error n or the camera angle 6 between the learning and
navigation phases. From a theoretical point of view, this
would cause a change of the vector s. Unlike in the pre-
vious case, the vector s will not be modified by a random
vector but a fixed one. This means that § will remain the
same and matrix T will preserve symmetricity. Systematic
errors would cause the robot to traverse a trajectory slightly
different from the learned one but should not affect naviga-
tion stability. However, the algorithm will fail to establish
correct correspondences between the mapped and detected
features if the systematic errors are too high.

The experimental evaluation of the influence of sys-
tematic errors on the navigation stability is described in
Section 5.2. Even though the systematic errors were set to
high values during the experimental evaluation, the navi-
gation stability was preserved.

4.6. Necessity of a Compass

Relying on only a compass for heading estimation was
shown to be a weak point during experiments performed in
2008 and 2009. During learning phases, the compass noise
caused an incorrect azimuth estimation of some segments.

Therefore, we considered replacing the absolute az-
imuth measurements by relative ones. So, instead of record-
ing «; for the ith segment in the learning phase, the az-
imuth relative to the previous segment (i.e., A; = o; — ;1)
is recorded in the map. The relative azimuth A; can be es-
timated either by odometry or by tracking of the features
during transitions to the next segment. This approach is
applicable in cases in which a robot is taught a path that
is supposed to be traversed later. However, sometimes it
is necessary to create a more complex, graph-like map; see
Section 5.7.

In more complex cases, the robot creates a map of the
large environment in several mapping runs and traverses
the given sequence of segments in an order different from
the mapped sequence. In this case, sole knowledge of the
relative segment azimuths is not sufficient, because angles
between nonconsecutive segments are not known to us. Of
course an angle between the ith and (i 4 j)th segments can
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be estimated by summing all relative angles between seg-
ments i and i 4 j, but because every A; contains a small
error, the error of the sum is too large for high ;.

To deal with these more complex cases, we have im-
plemented a simple Kalman filter, which fuses data from
odometry and compass. The filter suppresses the compass
noise and causes the absolute heading measurements to be
more reliable. However, the filter was implemented at the
end of 2009, so in the previous experiments the compass
noise caused trouble.

4,7. Computational and Storage Requirements

To estimate computational and storage requirements,
we have used data from the experiment described in
Section 5.5.

We evaluated the computational requirements in terms
of required computational time spent in various stages of
the algorithm. The most computationally intensive stage of
the algorithm is the feature extraction, which takes 260 ms
on average. About 30 ms is taken by establishing proper
correspondences. The histogram voting time is less than
1 ms. During experiments, the camera image and addi-
tional parameters of the algorithm were displayed for de-
bugging purposes. Drawing these data on a computer
screen takes about 60 ms. Thus, the entire control loop takes
about 350 ms.

The average landmark density is about 140 landmarks
per meter of the path. The map is stored on the hard drive
in a text format (see Table I), and one landmark occupies
about 800 bytes. Therefore, the disk storage needed for 1 km
of path is about 112 MB. Once loaded to the computer mem-
ory, a landmark is represented in binary and occupies less
than 300 bytes. Thus, a segment 1 km long would take
42 MB of computer memory.

5. EXPERIMENTS

The assumptions formed in Sections 3 and 4 were verified
in several real-world experiments. The experimental eval-
uation was performed in seven different scenarios examin-
ing the following;:

1. Convergence for two types of paths—with and without
the closed-path stability property

2. The impact of systematic errors to the navigation preci-
sion

3. Feasibility of complementing the method by the colli-
sion avoidance module

4. Robustness to environment changes and variable light-
ing conditions

5. Performance in environments with landmark deficiency

6. Navigation efficiency for long paths in an outdoor envi-
ronment with diverse terrain

7. Real deployment of the navigation procedure in Robo-
Tour 2008 and RoboTour 2009 contests (ISa & Dlouhy,
2010)
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During these scenarios, the robot autonomously traversed
more than 3 km of indoor and more than 25 km of outdoor
paths. The P3AT platform with the configuration described
in Section 2 was used in all testing scenarios.

The robot learned different closed paths and was re-
quested to navigate these paths several times in the first six
scenarios. The relative position ¢; of the robot to the path
start was measured every time the robot completed the ith
path loop. To evaluate the quality of the navigation algo-
rithm, accuracy and repeatability values as in Chen and
Birchfield (2009) were used. The accuracy &acc and the re-
peatability erep are computed as the rms of the Euclidean
distance or the standard deviation of the robot’s final posi-
tions from the path start:

1 & 1 &
— > lail? eep= | —— >l — ul?
n_Ji:j n_Ji:j

(22)

€acc =

where ¢; is the robot position relative to the path start
after completing the ith loop and 1 =3 /_; ¢i/(n — j). In
most scenarios, the initial robot position was intentionally
changed to be 1.5 m apart from the learned path start. In
these cases, we do not set j to 1 but wait five loops until
the initial position error diminishes. Thus, the repeatability
and the accuracy are computed for j =5, n = 20 in the first
four scenarios.

5.1. Stability of Robot Position for Different
Types of Paths

The scenario examines Theorem 1 for paths with and
without the closed-path stability property. The conclusions
made in Section 3 indicate that paths with all collinear
segments do not retain the closed-path stability property,
whereas other paths do. The following paths have been
considered: a path with only two collinear segments (i.e.,
a “back and forth” line path) and a square path. At first,
the robot was taught these closed paths in an indoor hall.
After that, the robot was placed either directly at the path
start or 1.5 m away and requested to navigate along the
learned path 20 times. The robot position ¢; was measured
after each completed loop.

The first (degenerate) path was formed of two
collinear, 5-m-long, segments. The square path was com-
posed of four segments, each 5 m long, with the end of the
last segment identical to the segment at the start of the path.
The distance of the robot from the path start after each loop
(i.e., llcill) is shown in Figure 4.

The values indicate that for square trajectories, the
robot was able to correct the position error that was in-
troduced at the beginning of navigation along the learned
path. Only was the error in the y coordinate (i.e., the co-
ordinate axis normal to path segments) partially corrected
for collinear trajectories, while the x coordinate remained
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Figure 4. The position error for paths without and with the stability property.
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uncorrected. These experimental results confirm the the-
oretical assumptions described in Section 3.8, stating that
the navigation is unstable for paths with only collinear seg-
ments.

The robot traversed more than 1.8 km in this scenario.

Both the accuracy and the repeatability for the 20-m-long
square paths were 0.10 m.

5.2. Effect of Systematic Errors

The effect of the systematic errors on navigation precision
was evaluated in this scenario. Two sources of systematic
errors were considered: the camera and the odometry. An
error of the camera can be caused by its optical axis devi-
ation, and an odometric error can be caused by a tire pres-
sure change. To show the effect of the parameter change, it
is necessary to modify these parameters between the learn-
ing and the navigation phases; otherwise a path is learned

Systematic errors effect: the position error for different types of systematic errors.

with the systematic errors, and therefore the errors do not
have an effect.

The following experiments were performed to verify
that small-scale systematic errors do not affect navigation
stability. At first, the robot camera was panned by 10 deg,
and the robot was requested to traverse the square path
learned during scenario 5.1 20 times. Then, a 10% sys-
tematic odometry error was introduced.! Finally, the robot
was requested to traverse the path 20 times with both 10%
odometry and 10-deg camera bias. As in the previous cases,
the robot position ¢; was measured each time the robot
reached the learned path start. The measured distances
from the path start are shown in Figure 5.

!This was done in software—a distance of the robot from the seg-
ment start measured by odometry was multiplied by a factor of 1.1
before it was passed to the navigation algorithm.
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Figure 6. Obstacle avoidance experiment: the position errors with and without obstacles.

The results show that the odometric and the camera
biases cause errors in robot positioning but the error does
not diverge. After a few loops, the position error does
not grow anymore and the system reaches a steady state.
The overall accuracy is lower than without the system-
atic errors, but repeatability remains similar to the previous
scenarios.

The robot traversed more than 1.2 km in this scenario.
The average accuracy with the camera bias was 0.58 m, and
the odometry bias caused the accuracy to change to 0.34 m.
When both the odometry and the camera were biased, the
accuracy was 0.55 m. The average repeatability was lower
than in the previous scenario, i.e., 0.06 m.

5.3. Obstacle Avoidance

A simple collision avoidance module (based on the robot
sonars) was activated in this scenario. The collision avoid-
ance is based on the Tangent Bug algorithm with a finite
range sensor (Choset, Lynch, Hutchinson, Kantor, Burgard,
et al.,, 2005). When the robot detects an obstacle on its
course, the visual-based navigation is suppressed and the
robot starts to circumnavigate the detected obstacle. Dur-
ing the circumnavigation, odometry is used to determine
the robot position and the sonar data are used to estimate
the obstacle position. The visual navigation algorithm is re-
sumed when the path between the robot and the end of the
current segment is clear.

The robot was taught a square path similar to the one
used in scenario 5.1. After that, one obstacle? was placed
on each path segment, and the robot navigated the path 20
times. The robot autonomously navigated approximately
0.4 km with an accuracy of 0.16 m and a repeatability

2Obstacle dimensions were approximately half of the robot size.
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of 0.08 m. It is clear that the position precision was affected
but did not diverge. See Figure 6.

5.4. Environment and Lighting Changes

The effects of variable lighting conditions and long-term
environment changes were examined in this scenario. At
first, the robot was taught a closed, 50-m-long path consist-
ing of five segments in the Stromovka park located in the
city of Prague. One month later, the robot was placed 1.5 m
away from the path start and was requested to navigate the
path 20 times. This procedure was repeated five times, i.e.,
the test was done every month from November 2009 un-
til April 2010. In each experiment, the robot used a map
created in a previous month. The measured distances are
shown in Figure 7.

Not only did the lighting conditions differ every time
but also the environment went through seasonal changes.
To document these changes, a picture from the onboard
camera was stored every time the mapping was initiated;
see Figure 8. There were considerably fewer correct corre-
spondences between recognized and learned features. With
a map created just before the navigation, the robot usually
correctly recognizes 70%-90% of learned landmarks. Using
a 1-month-old map, the ratio of the correctly recognized
landmarks drops to 10%—40%. Nevertheless, the robot was
able to correct its initial position error and was able to tra-
verse the path faultlessly in all cases.

The robot autonomously navigated more than 6 km
with an average accuracy of 0.24 m in this scenario. Un-
like in previous scenarios, we did not measure the robot
position ¢; after completion of each loop; we recorded the
robot distance only from the path start, i.e., ||cj|. Therefore,
the repeatability cannot be calculated by Eqs. (22). Except
for winter months, pedestrians regularly crossed the robot
path and moved into the robot’s field of view.
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Figure 7. The position errors in different months of the long-term experiment.

(b) January 2010

5.5. One-Day Outdoor Experiment

The system performance for long paths was evaluated in
a realistic outdoor environment. The experiment was per-
formed around the Probostov pond3 in Probostov, Czech
Republic, at the end of March 2010. The robot was taught a
1-km-long path around the pond in the morning. The path
went through a variable nonflat terrain with asphalt paths,
dirt roads, footpaths, and grass terrain in an approximately
equal ratio (see Figure 9). After the path was taught, the

350°39'58.716"N, 13°50'18.35"E.

(d) February 2010
Figure 8. Long-term experiment: the view from the robot’s camera at the path start in different months.

S
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DA e

(f) March 2010

robot was placed 1.5 m away from the path start and re-
quested to traverse it repeatedly. Every time it reached the
path start, its position was measured and its batteries re-
placed (the robot was not moved during the battery ex-
change). It took approximately 1 h for the robot to tra-
verse the learned path, and the battery replacement took
15 min. The weather changed from cloudy/light rain to
partly cloudy/sunny during the experiment. In the after-
noon, a lot of pedestrians showed up and either entered the
robot’s field of view or crossed its path.

Nevertheless, the robot was able to complete the
learned path six times before nightfall. The robot traversed
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Figure 9.

One-day experiment: the path around Probostov pond and the dirt road terrain example.
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Figure 10. The position errors of the one-day experiment.

6 km with an accuracy? of 0.26 m and a repeatability
of 0.14 m. The experiment was repeated (without the learn-
ing phase) 1 week later, and the robot traversed the path
six times with an accuracy of 0.31 m and a repeatability
of 0.20 m. The measured distances are shown in Figure 10.

5.6. Landmark Deficiency Experiment

We have claimed that the system is able to operate in an
environment that contains a low number of landmarks. To
verify this assumption, we taught the robot an outdoor
path during night and let it navigate using only street-
lamp lights. The robot was taught a 0.3-km-long path on
paved roads in a residential area. The onboard camera iris
was fully opened, and the camera exposure time was set
to 0.37 s. The path was taught at midnight, so more than

*In this case, &, and &, were computed with j =3 and n = 6 in
Egs. (22).
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90% of the mapped landmarks were streetlamps and illu-
minated windows.

After the path was learned, the robot was placed 1.5 m
from the path start and requested to traverse it 10 times. As
opposed to in the daytime experiments, in which the robot
detected typically 150-300 landmarks, during the night-
time, the typical number of landmarks was 3. The robot tra-
versed 3 km with an accuracy® of 0.32 m and a repeatability
of 0.16 m. See Figure 11.

5.7. The RoboTour Outdoor Delivery Challenge

The RoboTour contest (Dlouhy & Winkler, 2009; I$a &
Dlouhy, 2010) is an international autonomous robot deliv-
ery challenge organized by robotika.cz. The participating

*In this case, &,c and &, were computed with j =3 and n = 10 in
Egs. (22).
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Figure 12. RoboTour 2008/2009 pathway maps.

teams are mostly from Czech and Slovak universities. The
competition is a perfect event for an independent verifica-
tion of system functions and comparison with other naviga-
tion methods. However, not only are the navigation meth-
ods evaluated, but also the complete systems including all
hardware parts are tested.

Fully autonomous robots have to travel a random path
in a park, stay on the pavements, and detect randomly
placed obstacles in this challenge. A map of the park with
its pathways (designated by letters) is given to the teams in
advance. The competition consists of several rounds, each
with a different path. Thirty minutes before each round, ref-
erees choose a random closed path and announce it as a se-
quence of letters. Competing teams place their robots at the
starting positions and execute their autonomous navigation
algorithms. Robots must travel without leaving the path-

way and without colliding with any random obstacles. The
robot score is determined according to its traveled distance.
In 2008, the competition was held in Stromovka park® in
Prague, Czech Republic. One year later, the contest moved
to park Luiénky7 in Brno, Czech Republic.

The Stromovka park pathways were mapped 2 days
prior to the competition. The competition had five rounds
with different pathways; see Table II and Figure 12(a). The
robot completed the required path four times of these five
attempts. During two of these attempts, the robot did not
leave the pathway at all, and during two others, the robot
had partially left (i.e., with two side wheels) the pathway. In

50°6"18.778”N, 14°25'33.395"E.
749°12'25.516"N, 16°36'29.81"E.
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Table ll. RoboTour 2008 and 2009 paths.
Pathway sequence length (m)

RoboTour 2008 RoboTour 2009
ABCW 250 ALKOJIR 800
ORQPMK]JIH 850 BESQDGH]J0Y 1,050
ABCHGFDCW 500 34PWTMLA 750
HGFEAWOUVW 600 O0YR34SFH] 600
UTSROCDEBCW 700
Total 2,900 Total 2,200

cases when the robot left the pathway partially, it was left to
continue moving (without additional scores) and reached
the goal area. One failed attempt was caused by a battery
failure.

The competition in Luzanky park was performed in
a larger part of the environment; hence the mapping took
3 days. The total length of the mapped pathways was 8 km;
the map consisted of approximately one million landmarks,
which took 834 MB of disk space. The competition had four
rounds; see Table II and Figure 12(b). The robot was able to
complete the required paths two times. One attempt failed
due to a wrong compass reading during the path learning,
but after a manual correction of the robot heading, the robot
caught up and reached the goal area. The other failed at-
tempt was caused by a human factor.

Although the performance was not perfect, the robot
was able to travel the required trajectory, and our team
reached the first rank for both events in 2008 and 2009.

5.8. Experiment Summary

The results of the aforementioned experiments not only
confirm theoretical assumptions stated in Section 3, but
they also show that our method is feasible for use in real-
world conditions. The proposed method is able to cope
with diverse terrain, dynamic objects, obstacles, systematic
errors, variable lighting conditions, and seasonal environ-
ment changes. The summary of experiments in Table III
indicates that the localization precision of our method is
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slightly worse than in closely related methods presented in
Royer et al. (2007) and Zhang and Kleeman (2009). Lower
precision is probably caused by heavy reliance on odome-
try and suboptimal use of visual information.

Compared to the similar method presented in Chen
and Birchfield (2009), our method accuracy and repeata-
bility is better in outdoor environments. A probable rea-
son for this is that we used a modus to determine robot
heading. Chen and Birchfield (2009) use a mean of hori-
zontal deviations, which is less robust to data association
errors.

6. CONCLUSION

A simple navigation method based on bearing-only sensors
and odometry was presented. In this method, a robot navi-
gating a known environment uses a map of the environ-
ment and a camera input to establish its heading, while
measuring the traveled distance by odometry. We claim
that this kind of navigation is sufficient to keep the robot
position error limited. This claim is formulated as a closed-
path stability property and proved for polygonal paths
with at least two noncollinear segments. The property al-
lows us to estimate the robot position uncertainty based on
the landmark density, robot odometry precision, and path
shape.

The proposed method was experimentally verified by
a mobile robot with a monocular camera. The robot builds
a SURF-based (Bay et al., 2006; Cornelis & Van Gool, 2008)
landmark map in a guided tour. After that, it uses the
aforementioned method to autonomously navigate in the
mapped environment.

We conducted experiments indicating that theoretical
results and assumed conditions are sound.

The proposed navigation method has surprising prop-
erties different from the properties of other navigation and
localization methods, mainly the following:

® The robot can perform 2D localization by heading esti-
mation, which is a one-degree-of-freedom method.

® If the robot travels between two points, it is better to use
a “zigzag” trajectory rather than a straight one.

® Traveling a closed trajectory might reduce the robot po-
sition uncertainty.

Table lll. Proposed method accuracy and repeatability in various scenarios.
Indoor Outdoor
Clear Obstacles Long term 1 day Night
Accuracy (m) 0.10 0.16 0.24 0.25 0.32
Repeatability (m) 0.10 0.08 N/A 0.14 0.16
Loop length (m) 20 20 50 1,040 330
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We believe that the convergence proof does not apply only
to our system but is valid for many other algorithms. The
proof suggests that any algorithm that decreases the lateral
position error of a robot is stable for closed polygonal tra-
jectories. This might be the case for even simpler and faster
methods, such as the one presented in Zhang and Kleeman
(2009). However, this is merely a hypothesis, which needs
to be thoroughly examined.

The fundamental limitation of our method is its re-
liance on odometric measurements. Other visual-based
navigation methods use odometry only as an auxiliary
measurement or do not require odometry at all. There-
fore, these methods would perform better in scenarios
in which wheel slippages have to be taken into account.
Although our method is limited in application and its
precision is lower compared to methods presented in
Royer et al. (2007) and Zhang and Kleeman (2009), we
believe that it is interesting from an academic point of
view.

In the future, we would like to test our algorithm
with robots that have only imprecise odometry or inac-
curate dead reckoning. The preliminary tests conducted
with the AR-Drone quadrotor helicopter, which esti-
mates the traveled distance by accelerometers, seem to be
promising.

7. APPENDIX A: INDEX TO MULTIMEDIA
EXTENSIONS

The video is available as Supporting Information in the on-
line version of this article.

Extension Media type Description

1 Video Algorithm 1 implemented on a UAV

8. APPENDIX B

This Appendix presents values measured during experi-
ments.

8.1. Stability of Robot Position for Different Types
of Paths

Table B.I contains data measured during the first experi-
mental scenario presented in Section 5.1. It shows the mea-
sured positions for the paths that do and do not retain the
stability property. Note that line (degenerate) paths do not
correct the longitudal position deviation, which is in accor-
dance with the convergence proof presented in Section 3.

Table B.l. Convergence for degenerate and normal paths: indoors.
Position relative to start (m)

Line (degenerate) path Square (normal) path
Loop do,o do,15 dis,0 do,o do,15 di50
00 0.00, 0.00 0.00, 1.50 1.50, 0.00 0.00, 0.00 0.00, 1.50 1.50, 0.00
01 —0.02, 0.00 0.05,0.55 1.46, —0.24 0.08, —0.02 0.12,0.58 0.32, —-0.06
02 —0.03, —0.04 —0.03,0.27 1.49, —-0.30 0.02, 0.04 0.02,0.23 0.05, —0.02
03 —0.03, —0.02 —0.06, 0.14 1.53, —0.32 —0.02,0.11 0.04, 0.06 0.10,0.12
04 —0.05,0.03 —0.03,0.13 1.53, —0.25 0.10, 0.07 —0.07, —0.03 0.05,0.15
05 —0.05, 0.00 —0.03,0.10 1.56, —0.27 0.10,0.11 —0.01, 0.00 0.05, 0.09
06 —0.04, 0.03 —0.03,0.10 1.55, —0.25 0.08, 0.00 —0.02,0.02 0.00, —0.16
07 —0.05, 0.04 —0.05,0.16 1.53, —0.22 0.01,0.07 0.04, —0.12 —0.03, 0.00
08 —0.05, 0.06 —0.05, 0.00 1.54, —0.25 0.00, —0.01 0.05,0.11 0.07,0.04
09 —0.04, 0.05 —0.06, 0.02 153, —0.15 —0.01,0.02 0.05, —0.05 0.07, 0.06
10 —0.04, 0.08 —0.05,0.13 153, —0.21 0.00, —0.04 —0.08, —0.16 0.09,0.13
11 —0.06, —0.09 —0.04,0.16 1.54, —0.25 —0.04, —0.14 0.02, -0.11 0.12,0.02
12 —0.05,0.01 —0.04, —0.07 1.54, —0.31 0.02, —0.02 0.05, 0.02 0.02, —0.11
13 —0.05, 0.04 —0.08, 0.06 1.55, —0.27 0.03, —0.06 0.00, 0.06 —-0.01, —0.12
14 —0.04, 0.05 —0.06, 0.02 1.53, —0.31 0.06, 0.04 —0.09, —0.10 0.02, —0.09
15 —0.05, —0.04 —0.06, 0.06 1.55, —0.21 —0.01, -0.15 —0.01,0.09 0.01, 0.00
16 —0.04, 0.00 —0.05, —0.03 1.54, —0.24 —0.02, —0.12 —0.05,0.01 0.01, 0.05
17 —0.03,0.10 —0.07,0.02 1.52, —0.21 —0.03, —0.19 0.07,0.08 0.05, —0.06
18 —0.04, 0.04 —0.09, —0.05 1.55, —0.24 0.02, —0.22 0.09, 0.05 0.01,0.03
19 —0.03, 0.09 —0.11, 0.05 1.56, —0.10 —0.02, —0.10 0.08, 0.04 0.07,0.09
20 —0.04, 0.08 —0.07,0.02 1.54, —0.07 0.01, —0.15 0.02,0.07 0.04, —0.11
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Table B.l. Effect of systematic errors on navigation
convergence.

Position relative to start (m)
Systematic error (bias)

Loop None Camera Odom. Both

00 0.00, 0.00 0.00,0.00  0.00, 0.00 0.00, 0.00
01 0.08, -0.02 -0.30,0.37 0.08,0.09 —0.16,0.28
02 0.02, 0.04 -0.28,039 0.09,013 —0.15,0.38
03 —0.02, 0.11 —0.35,044 013,024 —0.16,0.46
04 0.10, 0.07 -0.29,038 0.15,030 —0.15,0.50
05 0.10,0.11 -0.31,050 0.17,035 —0.03,0.53
06 0.08, 0.00 -0.33,052 013,032 —0.24,0.49
07 0.01, 0.07 —-0.34,049 0.19,030 —0.14,0.52
08 0.00, -0.01 -0.32,046 0.13,031 —0.18,0.49
09 —0.01, 0.02 -0.33,049 0.12,030 —0.13,0.50
10 0.00, -0.04 —-0.36,049 0.10,0.26 —0.14,0.49
1 -0.04, -0.14 -0.35,0.50 0.13,0.39 —0.33,047
12 0.02,-0.02 -0.32,050 0.18,044 —-0.39,0.49
13 0.03, -0.06 —0.35,045 0.13,031 —0.38,0.48
14 0.06, 0.04 —-033,049 0.14,0.34 —0.18,0.49
15 -0.01,-0.15 -0.32,045 0.14,029 —0.13,0.50
16 -0.02,-0.12 -0.31,0.40 0.11,0.25 —0.12,0.49
17 -0.03,-0.19 —-0.36,0.44 0.11,0.29 —-0.16,0.51
18 0.02,-0.22 -0.31,046 0.11,0.24 —0.15,0.54
19 -0.02, -0.10 —-0.35,042 0.12,0.26 —0.21,0.53
20 0.01,-0.15 -0.32,044 0.13,0.27 -0.12,0.53

8.2. Effect of Systematic Errors

Table B.II contains data from the experimental scenario in
Section 5.2, in which effects of the camera and the odometry
bias were measured.

8.3. Obstacle Avoidance

Table B.III contains data from the experiment scenario de-
scribed in Section 5.3, in which we verified the methods
ability to deal with obstacles.

8.4. Environment and Lighting Changes

Table B.IV contains data from the experiment scenario de-
scribed in Section 5.4, in which the algorithm was tested
in an outdoor environment with long-term environment
changes.

8.5. One-Day Outdoor Experiment

Table B.V contains data from experiment scenario 5.5, in
which the algorithm was tested in an outdoor environment
with variable terrain.

Journal of Field Robotics DOI 10.1002 /rob

Krajnik et al.: Simple Yet Stable Bearing-Only Navigation

Table B.III.

531

Positioning errors with and without obstacles.

Position relative to start (m)

Loop Clear path Obstacles
00 0.00, 0.00 0.00, 0.00
01 0.08, —0.02 0.24,0.22
02 0.02,0.04 0.12,0.06
03 —0.02,0.11 0.17,0.08
04 0.10, 0.07 0.11, —0.08
05 0.10,0.11 0.15, —0.08
06 0.08, 0.00 —0.05, —0.07
07 0.01,0.07 0.14, -0.12
08 0.00, —0.01 0.15, —0.12
09 —0.01,0.02 0.02, —-0.12
10 0.00, —0.04 0.14, —-0.07
11 —0.04, -0.14 0.17, -0.13
12 0.02, —0.02 0.20, —0.04
13 0.03, —0.06 0.08, —0.06
14 0.06, 0.04 0.19, —0.03
15 —-0.01, -0.15 0.14, —0.03
16 -0.02, -0.12 0.13, 0.04
17 —0.03, -0.19 0.15, —-0.03
18 0.02, —0.22 0.02, —0.13
19 —0.02, —-0.10 0.17, —0.06
20 0.01, -0.15 0.14, —0.01
Table B.IV. Long-term algorithm reliability.
Distance to path start (m)

Loop Nov Dec Jan Feb Mar Apr
00 1.50 1.50 1.50 1.50 1.50 1.50
01 0.70 0.92 0.90 0.87 0.83 115
02 0.30 0.55 0.60 0.50 0.62 0.83
03 0.13 0.38 0.45 0.22 0.28 0.41
04 0.12 0.33 0.38 0.12 0.15 0.39
05 0.03 0.27 0.28 0.18 0.14 0.33
06 0.18 0.20 0.27 0.21 0.09 0.12
07 0.06 0.28 0.22 0.23 0.19 0.07
08 0.09 0.24 0.26 0.24 0.28 0.26
09 0.10 0.29 0.24 0.22 0.23 0.40
10 0.02 0.27 0.28 0.21 0.26 0.38
11 0.23 0.20 0.24 0.22 0.29 0.32
12 0.08 0.20 0.20 0.23 0.23 0.37
13 0.22 0.28 0.20 0.29 0.27 0.27
14 0.14 0.29 0.25 0.27 0.26 0.29
15 0.24 0.29 0.21 0.27 0.11 0.46
16 0.40 0.27 0.24 0.27 0.31 0.28
17 0.42 0.22 0.24 0.22 0.23 0.23
18 0.43 0.23 0.27 0.23 0.15 0.29
19 0.48 0.23 0.23 0.28 0.19 0.35
20 0.45 0.20 0.21 0.28 0.24 0.36
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Table B.Y. One-day outdoor experiments.

Position relative to start (m)

by map age
Loop Up to date 1 week
00 0.00, 1.50 0.00, 1.50
01 —0.07,0.03 0.63,0.15
02 —0.21,0.18 0.59,0.11
03 —0.34,0.15 0.53,0.17
04 —0.05, —0.14 0.32,0.19
05 0.34,0.05 —0.09,0.22
06 —0.25,0.06 0.15,0.20
Table B.Vl. Landmark deficiency experiment.
Loop Position relative to start (m)
00 0.00, 1.50
01 —0.13, —0.29
02 0.21, —0.43
03 —0.09, —0.34
04 —0.32, —0.20
05 0.12, —0.14
06 —0.08, —0.32
07 —0.05, —0.13
08 —0.29, —0.24
09 —-0.09, —0.33
10 —0.10, —0.36

8.6. Landmark Deficiency Experiment

Table B.VI contains data from the experiment scenario de-
scribed in Section 5.6, in which the algorithm was tested
during night in low-visibility conditions.
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Navigation without localisation: reliable teach and repeat based on the
convergence theorem

Tomas Krajnik, Filip Majer, Lucie Halodovd, Tom4a§ Vintr

Abstract— We present a novel concept for teach-and-repeat
visual navigation. The proposed concept is based on a mathe-
matical model, which indicates that in teach-and-repeat navi-
gation scenarios, mobile robots do not need to perform explicit
localisation. Rather than that, a mobile robot which repeats
a previously taught path can simply ‘“replay” the learned
velocities, while using its camera information only to correct
its heading relatively to the intended path. To support our
claim, we establish a position error model of a robot, which
traverses a taught path by only correcting its heading. Then,
we outline a mathematical proof which shows that this position
error does not diverge over time. Based on the insights from
the model, we present a simple monocular teach-and-repeat
navigation method. The method is computationally efficient,
it does not require camera calibration and it can learn and
autonomously traverse arbitrarily-shaped paths. In a series of
experiments, we demonstrate that the method can reliably guide
mobile robots in realistic indoor and outdoor conditions, and
can cope with imperfect odometry, landmark deficiency, illumi-
nation variations and naturally-occurring environment changes.
Furthermore, we provide the navigation system and the datasets
gathered at www.github.com/gestom/stroll_bearnav.

I. INTRODUCTION

A considerable progress in visual-based systems capable
of autonomous navigation of long routes was achieved during
the last decade. According to [1], [2], vision-based navigation
systems can be divided in map-less, map-based, and map-
building based. Map-less navigation systems such as [3],
[4], [5] aim to recognise traversable structures (e.g. roads,
pathways, field rows, etc.) and use these to directly calcu-
late motion commands. Map-based navigation systems rely
on environment models that are known apriori [6]. Map-
building-based systems rely on maps for localisation and
navigation as well, but they can build these maps themselves.
Some of these vision-based methods can build maps and
localise the robot at the same time and — these are referred to
as visual SLAM (Simultaneous Localisation and Mapping).

One of the most known visual SLAM systems,
Monoslam [7], processes an image stream from an
unconstrained-motion monocular camera in real-time, obtain-
ing the trajectory of the camera and a 3D map of salient
visual features [7]. Another method, the ORB-SLAM [8],
[9], allows exploiting stereo and depth information to build
both sparse and dense maps of the environment while esti-
mating the camera motion in 6D. Unlike the aforementioned
systems, LSD-SLLAM [10] and DSO [11] do not rely on
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image feature extraction but create dense, large-scale maps
by directly processing the intensities of the image pixels. A
recent, comprehensive review of SLAM systems is presented
in [12]. While being an important component of many
navigation systems, SLAM by itself does not control the
mobile robot motion, and thus it does not navigate robots
per se. Rather than that, it provides an environment map and
a robot position estimate to the motion planning modules,
which then guide the robot towards the desired goal.

Thus, one of the typical use of SLAM methods in practice
is ‘teach-and-repeat’, where a robot uses SLAM during a
teleoperated drive, creating a map of the environment and use
this map later on to repeat the taught path [13], [14], [15].
This technique is analogous to a popular practice in industrial
robotics, where an operator teaches a robot to perform some
task simply by guiding its arm along the desired path. The
systems that use SLAM methods within the teach-and-repeat
paradigm were extended by techniques like experience-
based localisation [16], feature selection [17] or intrinsic
image [18], enabling their long-term deployment in environ-
ments that are challenging due to appearance changes [19],
[20], [21] or difficult illumination conditions [22].

In the long-term deployments, it’s assumed that the robots
start and end their forays at their recharging stations with
a known position, and occasional loss of localisation is
solved by request for human intervention [27]. Thus, teach-
and-repeat methods employed in long-term scenarios do not
typically address the kidnapped robot problem.

Some of the teach-and-repeat systems do not rely on
SLAM-build 3D maps of the environment. For example [23]
creates a visual path, which is a set of images along the
human-guided route, and then employs visual servoing to
guide the robot across the locations these images were
captured at. Similarly, [24] represents the path as consecutive
nodes, each containing a set of salient visual features, and
uses local feature tracking to determine the robot steering
to guide it to the next node. The authors of [25] extract
salient features from the video feed on-the-fly and associate
these with different segments of the teleoperated path. When
navigating a given segment, their robot moves forward and
steers left or right based on the positions of the currently
recognised and already mapped features. The segment end
is detected by means of comparing the mapped segment’s last
image with the current view. The same navigation principle
was recently deployed on micro aerial vehicles in [26].

At the time when the original SLAM-based teach-and-
repeat framework was published [14], another article [28§]
mathematically proved that (while being useful) explicit
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localisation is not necessary for teach-and-repeat scenarios.
The results of [28] indicate that to repeat a taught path,
camera input needs to be used only to correct the robot
heading, leaving the position estimation to odometry. The
mathematical proof showed, that for polygonal paths, the
heading corrections suppress odometric errors, preventing
the overall position error of the robot to diverge. The proof
was supported by several long-term experiments [28], [29],
where a robot repeatedly traversed long paths in natural
environments over the period of one year. Thus, this SLAM-
less method showed good robustness to environment changes
even without using experience-based or feature-preselection
techniques [29]. However, the mathematical proof in [28]
was limited to paths consisting of straight segments. Thus,
the system based on [28] could be taught only polygonal
paths in a turn-move manner, and even a slight change of
the movement direction during the teaching phase required
to stop and turn the robot, which made the teaching tedious
and deployment of the system rather impractical.

In this paper, we reformulate the problem presented in [28]
in a continuous rather than a discrete domain. This allows us
to simplify and extend the mathematical proof of [28] to any
continuous trajectory, not only polygonal paths as in [28].
A navigation system based on this extended formulation
can thus be taught smooth, curved paths, which makes its
teaching faster and navigation more efficient.

The main contribution of this paper is the aforementioned
mathematical proof which indicates that in teach-and-repeat
scenarios, a robot can use its camera information only to
correct its heading and it does not have to build metric maps
or perform explicit localisation. Based on this principle, we
implement a teach-and-repeat navigation system and use it to
verify the aforementioned hypothesis in realistic conditions.
In a series of experiments, we compare the behaviour of the
system with the proposed mathematical model and demon-
strate the system’s ability to reliably guide robots along
the taught paths in adverse illumination conditions including
night. Furthermore, we present the system as an open-source,
ROS-based package and accompany the software with the
datasets gathered during the experiments performed [30].

II. NAVIGATION STABILITY

In this section, we analyse how heading correction influ-
ences the overall position error of a robot as it travels along
a taught path. At first, we establish a model of the robot
movement along the desired path and we outline a model of
the robot position error. Then, we examine conditions under
which the robot position error does not diverge.

A. Paths with non-zero curvature

Let us assume that a human operator placed a robot at an
initial position x,(0),y,(0) and then she drove the robot by
controlling its forward v and angular @ velocities. Let the
robot record its v and @ velocities together with the features
detected in its camera image and let the robot index the
features and velocities by the distance travelled. Thus, the
taught path & is defined by the initial point x,(0),y,(0),

velocity functions v(d), and ®(d), where d represents the
length of the path from x,(0),y,(0) to the current position.
Some locations (again indexed by d) on the trajectory are
also associated with image coordinates and descriptors of
the image features detected in the robot camera image.

Then, assume that a robot is placed at a position
x+(0),y,-(0) and it is supposed to traverse the path &?. The
robot, having no information about its position or orientation,
has to assume that it is at the start of the taught path,
and thus its position estimate is x,(0),y,(0). Therefore, the
robot sets its forward and angular velocity to v(0) and w(0),
respectively. The robot also retrieves the image features it
saw at d = 0, matches them to the features in its current
view and adjust its angular velocity in a way, which would
decrease the horizontal distances (in the image coordinates)
of the matched feature pairs. As the robot moves forwards,
it calculates the distance travelled d and sets its forward
velocity to v(d) and angular velocity to ®(d) — ak, where K
is the most frequent horizontal displacement of the matched
feature pairs.

x4£d).y {d)

Fig. 1: Robot position error chart. The robot at a position
X,y uses a local feature map of the taught path & at the
position x,(d),y,(d).

Since the robot camera was facing in the direction of the
robot movement during the teaching phase, each feature that
is in the current map lies in the vicinity of the tangent to
the path at some finite distance, see Figure 1. Assuming
that the robot is able to turn fast enough to keep k low
(i.e., it is able to turn so that the horizontal distances of the
mapped/detected feature pairs are low), the direction of its
current movement intersects the aforementioned tangent at
a certain distance [. The distance / is given by the spatial
distribution of the features in the traversed environment —
low [ is typical for cluttered environments and high [/ occurs
mostly in large open areas.

Figure 1 illustrates that the error of the robot position
estimate x(¢),y(¢) can be defined as its position in a local
coordinate frame defined by the location and orientation
of the local map, which the robot uses to determine its
velocities. In other words, the robot position error x(¢),y(¢) is
defined by its position (x,(r),y.(t)) relatively to x,(d),y,(d).
In order to analyse the evolution of the position error
during the robot navigation, we form a differential equation
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describing (% = dx(t)/dt,y = dy(r)/dt):

X = 4+ oy — v, + v + sy
y = — Ox — wyl™! o+ sy,

(1)

where the terms @y, @x and —v, are caused by the rotation
and translation of the local coordinate system as the point
x,(d),y,(d) moves along the intended path, the term +v is
the movement of the robot along the path, vyl_1 reflects
the influence of the visual-based heading correction, and s,
and s, represent perturbations caused by image processing
imperfections, odometric errors and control system inac-
curacies. Since the errors s, and s, directly influence the
velocities X, y of the robot in our model, they encompass
not only additive errors, such as occational wheel slippage
or imperfect image feature localisation, but also systematic
errors, such as miscalibration of the odometry causing the
v, and v to be different, or camera misalignment causing an
offset in robot heading corrections. Assuming that v, and v
are almost identical, and that their difference is included in
the perturbance s,, we can rewrite (1) in a matrix form:

(3)-(0 22)(3)(5) @

which is a system of linear differential equations.

In general, a linear continuous system X = AX+s is stable,
i.e., the x does not diverge, if the real components of all
eigenvalues of the matrix A are smaller than 0. Thus, the
robot position error x,y does not diverge if the matrix A
from (2) has all real components of its eigenvalues negative.
Eigenvalues of a 2x2 matrix are obtainable by solving a
quadratic equation

AA+v/I)+a*=0, 3)
_ \/ﬁ
My — v/l+ (;/l) 40 ‘ @
In cases when (v/1)? < 4w?, the expression \/(v/l)? — 4>

is an imaginary number, and A4, are complex conjugates
with the real component equal to —v/(2). Since v and [ are
always positive, —v/(21) is always negative, which ensures
the system stability and non-divergence of the robot position
error Xx,y.

In the case of v/l > 4®?, the result of the square root is
positive and the real part of the A, eigenvalue

Ao = —v/l— (;/l)2 —4w?

is always negative. The eigenvalue A;, which is calculated
as
—v/l+/(v/1)? — 40>
=" (2/ ) : (6)

is non-negative only if w equals to 0. This means, that if the
robot does not move along a straight line, both eigenvalues
of A are lower than 0, and therefore, both longitudinal (x)
and lateral (y) components of the robot position error do not
diverge even if the robot uses its exteroceptive sensors only
to correct its heading. O

®)

B. Paths containing straight segments

According to (1) and (2), if a robot travels along a straight
line, its longitudinal position error, represented by x in our
model, gradually grows due to the perturbances s,, which
are caused primarily by odometric drift. Let assume that
the taught path consists of straight segments conjoined by
segments with non-zero curvature. Let assume that a robot
started to traverse a straight segment at time 7y and ended
its traversal at #;. Its error after the segment traversal is
obtainable by integrating (2) over time as:

x(r)) N _ (1 0 x(to) bxo
() )=(o crna ) (50 )+ (o )
(7
Now, let assume that from the time #; to the time #,, the robot
traverses a segment with non-zero curvature. Regardless of

the segment shape and curvature, the magnitude of x and y
decreases (see (2)), and thus we can state that

G )= )+ (o) o

where the eigenvalues of the matrix Nj are lower than one.
Rewriting (7) in a compact form as x; = Ngxg + by, and (8)
as xp = N1xq + by, and substituting (7) into (8) results in:

x2 = Np (NoXo + bo) +b1 = N1Noxo + (Nlbo + bl). 9)

Equation 9 represents a discrete system, which allows to
estimate the robot position error after traversing a straight
segment followed by a curved one. Since the largest eigen-
value of Ny equals to 1 (see (7)) and both eigenvalues of Ny
are smaller than 1, the eigenvalues of their product NyNy are
also smaller than 1. This means that the discrete system (9)
is stable. Thus, position error of a robot, which repeatedly
traverses a path formed of conjoined straight and curved
segments does not diverge even if it is using its exteroceptive
sensors only to correct its heading.l]

C. Convergence basin

The model that we established assumes that during the
repeat phase, the robot perceives at least some image features
that it saw during the teaching. Thus, if the robot’s initial
position in the repeat phase is too far from the origin of
the teaching step, or if the robot deviates from the path too
much, the mapped features will not be in its field of view and
the navigation will fail. The actual position error that would
cause the navigation to fail depends on robot’s camera, path
shape and feature distance. In our experiments, we started
the repeat phase with an initial position error exceeding 1 m,
which is approximatelly an order of magnitude higher than
the accuracy of the navigation, see Figures 5, 7, and 9. Thus,
the typical navigation inaccurracy caused by s, and s, in (2)
is very unlikely to deviate from its path beyond the point
where it can correct its position error. In practice, a robot can
monitor the consistency of the feature matching and when
there are not enough correspondences, it can request human
intervention.
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III. NAVIGATION METHOD DESCRIPTION

The considered navigation system works in two steps:
teach and repeat. In the teaching phase, a robot is guided
by an operator along a path, which is the robot supposed
to autonomously navigate in the repeat phase. During the
teaching, the robot extracts salient features from its onboard
camera image and stores its current travelled distance and
velocity. During the autonomous navigation, the robot sets its
velocity according to the travelled distance and compares the
image coordinates of the currently detected and previously
mapped features to correct its heading.

A. Image processing

The feature extraction method which detects salient ob-
jects in the onboard camera image is a critical component
of the navigation system because it is the only mechanism
which the robot employs to reduce its position error. Based
on the results from our previous work on image feature
stability in changing outdoor environments [31], we decided
to use the Speeded Up Robust Features (SURF) [32] and a
combination of the AGAST [33] and BRIEF [34] methods.

The feature extraction is composed of two steps, detection
of keypoints and description of their vicinity. The keypoint
detection indicates points in the image, which have sufficient
contrast that makes them easy to localise and track. In
the case of SURF, the keypoint detection is based on the
approximation of Hessian matrix determinant [32], while
AGAST [33] uses an optimised pixel brightness testing
scheme around the keypoint candidate. To form the descrip-
tion of a particular keypoint, BRIEF [34] calculates a binary
descriptor by comparing brightnesses of randomly-chosen
pixel pairs around the keypoint. The advantage of this de-
scriptor is an efficient calculation, low memory requirements,
and rapid matching. The SURF-based descriptor is based on
image intensity gradients near the keypoint [32]. While being
slower to calculate and match, it is more resistant to large
viewpoint changes.

Once the keypoints are detected and described, they can be
matched to the keypoints stored in a map and the associations
can be used to correct the robot heading. The quality of
the features depends on the quality of the input image
stream, which, in outdoor environments, suffers from varying
illumination. To compensate the illumination instability, we
select the exposure and brightness of the robot camera based
on the results from [35].

B. Teaching (mapping) phase

During the phase, the robot is driven through the en-
vironment by a human operator. The robot continuously
measures the distance it travelled and whenever the operator
changes the forward or angular velocity, the robot saves the
current distance and the updated velocity values — we refer
to this sequence as to a “path profile”. Additionally, the robot
continuously extracts image features from its onboard camera
image and every 0.2 m, it saves the currently detected image
features in a local map, which is indexed by the current
distance the robot travelled.

C. Repeat (navigation) phase

At the start of this phase, the robot loads the path profile
and creates a distance-indexed list of the local maps contain-
ing the image features. Then, it sets its forward and angular
velocities according to the first entry of the path profile and it
loads the first local map containing data about image features
visible at the start of the path. As the robot moves forwards,
it extracts image features from its onboard camera image
and matches them to the ones loaded from the local map.
The differences of the horizontal image coordinates of the
matched feature pairs (i.e., the positions of the features in the
camera image relative to the positions of the features in the
preloaded map) are processed by a histogram voting method.
The maximum of the histogram indicates the most frequent
difference in the horizontal positions of the features, which
corresponds to the shift of the image that was acquired during
the mapping phase relative to the image that is currently
visible from the onboard camera. This difference is used to
calculate a corrective steering speed, which is added to the
speed from the velocity profile.

If the histogram voting results are inconclusive due to the
low number of features extracted, e.g., when the robot faces a
featureless wall, the camera image is over- or under-exposed,
etc., the corrective angular speed is not added to the one from
the velocity profile. In a case the visual information is not
sufficient to determine the heading, the robot simply steers
according to the path profile data. As the robot proceeds
forwards along the taught path, it loads local maps and
path profile data that correspond to the distance travelled
and repeats the steps described above. Thus, the path profile
allows the robot to steer approximately in the same way as
during the teaching phase, and the image matching corrects
the robot heading whenever it deviates from the intended
path.

The principal advantage of the system is its robustness
to feature deficiency and uneven feature distribution in the
camera image. This makes the system robust to environment
appearance changes and adverse lighting conditions. The
histogram voting-based heading corrections are demonstrated
in videos at [30].

D. System implementation

The navigation system was implemented in the Robotic
Operating System (ROS), in particular the version Kinetic.
The system structure is shown in Figure 2. The feature ex-
traction node extracts image features from the robot camera
and passes them to the mapper and navigator nodes. The
odometry monitor node receives data from robot odometry
and measures travelled distance. It also sends special mes-
sages every time the robot passes a given distance (e.g.,
0.2 m) , which is used by the mapper node, see Section III-
B. The mapper node receives features from the feature
extraction node and saves them into the local map when
it receives the aforementioned message from the odometry
monitor node. It also saves the path profile. The map
preprocessor node loads all local maps and path profile, and
then sends them to the navigator node based on the travelled
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Fig. 2: Software structure of the presented system

distance received from the odometry monitor. The navigator
node receives the velocity profile and local feature maps and
it matches the features from the maps to the currently visible
features from the feature extraction node. It performs the
histogram voting described in Section III-C, calculates the
robot velocities and steers it along the path.

All the aforementioned modules were implemented as
ROS action servers with dynamically reconfigurable pa-
rameters. Therefore, the robot operator can change their
parameters during runtime or activate and deactivate the
modules in case they are not necessary to run during the
teaching or replay phase. Action servers also provide the
operator with feedback that shows the current state of the
system. Thus, the operator can see the currently used map,
path profile data, number of visible image features, results
of the histogram voting method etc. All the aforementioned
modules are available as C++ open source code at [30].

IV. EXPERIMENTAL EVALUATION

The experimental evaluation of the proposed navigation
system consists of 3 different experiments performed with 2
different robotic platforms. The aim of the first experiment
was to demonstrate that without the visual feedback or path
profile information, the robot is not able to repeat the taught
path. The second experiment, which is performed under
controlled conditions and an external localisation system,
demonstrates the accuracy of the motion model established in
Section II and the ability of a minimalistic robotic platform
to converge to the taught trajectory during multiple traversals
of the intended path. The third experiment demonstrates
the trajectory convergence in challenging outdoor conditions
including night.

A. Platforms

For indoor experiments, we used a lightweight robot based
on an MMP-5 platform made by TheMachineLab 3. Its base
dimensions are 0.3x0.3x0.1 m, its mass is 2.2 kg, and it
can carry additional 2 kg payload while achieving speeds
over 1.2 ms~!. The robot has a four-wheel differential drive
with a control unit which allows setting PWM signal duty
on individual motors by a simple serial protocol. Since the

platform does does not provide any odometric information,
we estimate the travelled distance simply by the time and
motors’ PWM duty. Its vision system is based on a single

Fig. 3: MMP-5 and Cameleon ECA used in our experiments.

USB camera, which provides 320x240 color images with
a 45°x35° field of view. The computer is based on an
AT3IONT-I miniATX board with an Intel Atom 330 CPU
running at 1.6GHz with a 2GB RAM. Due to its compu-
tational constraints, this robot is using the AGAST/BRIEF
features.

For outdoor experiments, we used a heavy duty, tracked
platform, called CAMELEON ECA, which is equipped with
onboard PC and two cameras as primary sensors. Unfor-
tunately, the cameras are positioned very low low, which
causes problems in grassy terrains and the onboard PC is
too slow. Thus, we equipped the robot with a superstructure
with several equipment mounts, where we placed the TARA
USB stereo camera (we use only the left camera image in
our experiments), Intel i3 laptop with 8GB RAM and the
Fenix 4000 Iumen torch, see Figure 3.

B. Experiment I: Proof-of-concept

To evaluate the system’s ability to repeat the taught path
and to correct position errors that might arise during the nav-
igation, we have taught the CAMELEON platform a closed,
approximately 25 m long path in the outdoor environment
in the Czech Technical University campus. The shape of
the trajectory is a closed, smooth, oval-shaped curve. After
mapping, we let the robot to drive along the taught path
repeatedly. Every time the robot completed a path loop, we
measured its distance relative to the path end/start. In this
way, we quantitatively assess the robot’s ability to adhere to
the path it has been taught. The experiments were performed
during the evening, and therefore, the lighting conditions
changed from high to low illumination, which made the
image-based navigation particularly difficult. Facing changes
in environment and lighting conditions is inevitable for long-
term navigation, that is why we chose this particular setup.

To demonstrate the interplay between the path profile
velocity setting and vision-based heading correction, we let
the robot to drive the path autonomously using only the
velocities remembered from the teaching phase (i.e. path
profile), then only using visual information and then the
combination of these. In the first test, we have deactivated
the vision-based heading corrections and we let the robot
move according to the path profile only — this corresponds
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to the term vy/~! in (2) being equal to 0. The model ( 2)
predicts that the errors of s, and s, will gradually accumulate,
drifting the robot off the taught path. As predicted by the
model, during this trial the robot slowly diverged from the
path because of the inaccurate odometry.

During the second trial, we have let the robot run with the
method described in [28]. Thus, the robot did not use the path
profile information, but it moved forward with a constant
speed and steered its heading according to the results of
the image feature matching and histogram voting. In this
case, the robot diverged from the taught path as soon as it
was supposed to perform a sharper turn, because the visual
heading correction by itself could not perform sharp turns.

The final trial used both path profile and visual feedback
as described in Section III. To verify if the robot can
correct position errors that arise during navigation, we have
started the autonomous navigation, not at the path start, but
1.2 m away. The reason for the robot displacement is to
demonstrate that unlike in the previous two cases, where
the position error diverged, a combination of the vision and
path profile information would allow the robot to suppress
the error and adhere to the taught trajectory. As expected,
each time the robot completed the taught path, its position
error decreased, which confirms the assumptions stated in
Section II.

C. Experiment II: Position error model verification

The indoor experiments were meant to compare the real
system behaviour with the model of the robot movement.
In these experimental trials, we used the MMP-5 robot
platform equipped with a circular marker, which allows for
an accurate tracking of the robot position. In the first trial,
we guided the robot along a 10 m long oval-shaped path
consisting of two half-circle segments connected with two
straight lines, see Figure 4. Then, we displaced the robot
1 m away from the path start and let it traverse along the
path autonomously 20 times while recording its position with
the external localisation system [36].

Figure 4 shows the robot trajectory during the autonomous
traversals, which slowly converges to the mapped path. Each
time the robot finished one path traversal, we measured its
position relative to the path start. Fig. 5 shows that the
position error diminished after two loops, stabilising at 7 cm.

The convergence of the robot position during the au-
tonomous travels is visible in Figure 4 and the robot position
error evolution along the first path traversal in Figure 5. The
error evolution confirms the mathematical model presented
in Section II — one can observe that during the first 5 meters,
where the path is curved, the position error diminished
rapidly. Once the robot starts to traverse the straight segment,
the position error stabilises and it starts to diminish once
again when the robot starts to traverse the second semi-
circular path segment. Since the robot is nonholonomic, skid-
steer drive, the convergence of the position error implies that
its orientation conforms to the model (1).

For review only.
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In the second trial, we guided the robot along a 17 m long
eight-shaped path consisting of four half-circle segments
connected with three straight ones and let it traverse the path
19 times, see Figure 6. This trial was performed in a larger
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Fig. 6: Indoor trial II: Robot path during teach and repeat.

hall than the previous one, and therefore, the average distance
of landmarks is bigger than in the previous case, causing

Preprint submitted to 2018 IEEE/RSJ International Conference
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slower convergence of the robot trajectory, see Figure 7.
Furthermore, the start and end of the taught path are about
0.15 m apart, which causes the robot to start with 0.15 m
error during subsequent path traversals, which is notable
in Figure 6, where the first part of the repeated path is
slightly displaced from the taught one. Similarly to the

Robot position error vs. travelled distance and traversed loops
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Fig. 7: Indoor trial II: Robot position error during the
first autonomous path traversal (left) and during the 19
autonomous path repeats (right).

previous case, the error evolution shown in the left part of
Figure 6 conforms with the mathematical model presented in
Section II — the error reduction is slower during traversal of
the straight segments of the taught path. In these experiments,
a robot without any odometric system, equipped with a low
resolution, uncalibrated camera which suffered from motion
blur (see [30]) reliably traversed over 700 m, reducing the
initial ~1 m position errors below ~0.1 m.

D. Experiment III: System robustness

The purpose of final outdoor experiments is to demonstrate
the ability of the system to cope with uneven terrain and
variable illumination. The first trial was performed during a
day, where a robot was supposed to traverse a 60 m long path
at the Hostibejk hill in Kralupy nad Vltavou, see Figure 3.
The second and third trials were performed at night at the
same location. During the first trial, we created the map in a
clear sky weather and let the robot traverse the path 7 times
one month later during a cloudy day.

In the second trial, which was performed at night, we
attached a 4000 lumen searchlight to the robot’s superstruc-
ture. The location of the trial was free of any artificial light
sources; so, the most of the robot path, it saw only parts
of the scene, which it illuminated itself, see Figure 8. After
creating the local map, we displaced the robot by 1.5 m and
let it traverse the path 7 times (the number of traversals is
limited by the capacity of the searchlight batteries).

The third trial was performed at the same location, which
at this time was partially illuminated, because three of the
local street lamps were repaired in the meantime. Again,
after teaching the robot a 60 m long path, we displaced the
robot by 1.5 m and let it traverse the path 7 times. During
these trials, we initiated the autonomous run 1.5 m from the
taught path start and then measured the robot displacement
from the path start every time it completed the taught
path. Figure 9 shows that the initial position error quickly
diminished to values around 0.2—0.3 m. In these experiments,

Fig. 8: Outdoor experiment: Hostibejk site at night and day
from the robot perspective.
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a tracked robot with imperfect odometry, equipped with
an uncalibrated camera working in low-visibility conditions
(see [30]) reliably traversed over 1.2 km, reducing the initial
~1.5 m position errors to ~0.2-0.3 m. Furthermore, we did
10 days of additional tests at the same site over a period of
one month. In these tests, the robot successfully traversed the
taught path 66 times, 21 during the day, 25 during the night
and 20 during the sunset and covered distance over 4 km.

To compare the system’s robustness to the state-of-the-art
SLAM-based methods, we processed the data gathered dur-
ing these trials by the ORB-SLAM [8], which we modified
to take info account odometric information when initialising
camera position estimation. To do so, we had to calibrate
the camera and process the gathered data (in the form of
ROSbags) by the ORB-SLAM. In our tests, we had to replay
the ROSbags from the day trial 2.5x slower than in the
original experiment several times because of occasional loss
of tracking and subsequent breakdown of the ORB-SLAM
method. Despite trying several settings of ORB-SLAM, we
could not build a consistent map from the night data due to
feature deficiency and motion blur. This comparison indicates
the proposed method’s robustness to difficult illumination
conditions.

V. CONCLUSION

We formulated a mathematical proof which indicates that
in teach-and-repeat scenarios, explicit localisation of a mo-
bile robot along the taught route is not necessary. Rather, a
robot navigating through a known environment can use an
environment map and visual feed to correct only its heading,
while measuring the travelled distance only by its odometry.
Based on this principle, we designed and implemented a
simple teach-and-repeat navigation system and evaluated
its performance in a series of experimental trials. These

Preprint submitted to 2018 IEEE/RSJ International Conference
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experiments confirmed the validity of the aforementioned
proof, showing that this kind of simple navigation is suf-
ficient to keep the position error of the robot limited. The
requirement to establish only the robot heading simplifies
the visual processing and makes it particularly robust to
situations, where the detected and mapped features cannot be
associated reliably. This makes our system prone to difficult
lighting conditions and environmental changes, which is
demonstrated by its comparison to ORB-SLAM?2. Compared
to the previous work [28], the mathematical proof of bearing-
only navigation presented here is simpler, shorter and is not
limited to polygonal routes only. Thus, unlike in [28], where
the robot could only learn polygonal routes in a turn move
manner, our navigation system allows to learn arbitrarily-
shaped routes, making its real-world deployment more fea-
sible. Furthermore, we show that the robot position error
is asymptotically stable, whereas in our previous work [28]
we only proved its Lyapunov stability. In future, we aim to
extend the system by its ability to improve its performance
by exploiting the experience gathered during autonomous
traversals.
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1. Introduction

Cameras are becoming a de-facto standard in sensory equip-
ment for mobile robotic systems including field robots. While
being affordable, small and light, they can provide high resolution
data in real time and virtually unlimited measurement ranges.
Moreover, they are passive and do not pose any interference
problems even when deployed in the same environment in large
numbers. Most importantly, the computational requirements of
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most machine vision techniques are no longer a significant issue
due to the availability of powerful computational hardware. Hence,
on-board cameras are often used as the primary sensors to gather
information about the robot’s surroundings.

Many visual robot navigation and visual SLAM methods rely on
local image features [1] that allow to create quantitatively sparse,
but information-rich image descriptions. These methods consist
of a detection and a description step, which extract salient points
from the captured images and describe the local neighborhood
of the detected points. Local features are meant to be detected
repeatedly in a sequence of images and matched using their
descriptors, despite variations in the viewpoint or illumination.
Regarding the quality of feature extractors, a key paper of Miko-
lajczyk and Schmid [2] introduced a methodology for evaluation of
feature invariance to image scale, rotation, exposure and camera
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Fig. 1. Examples of tentative matches of the GRIEF image features across seasonal
changes.

viewpoint changes. Mukherjee et al. [3] evaluated a wide range of
image feature detectors and descriptors, confirming the superior
performance of the SIFT algorithm [4]. Other comparisons were
aimed at the quality of features for visual odometry [5] or visual
Simultaneous Localization and Mapping (SLAM) [G]. Unlike the
aforementioned works, we focus our evaluation on navigational
aspects, especially to achieve long-term autonomy under seasonal
changes.

Although the problem of long-term autonomy in changing en-
vironments has received considerable attention during the last few
years [7], the main efforts were aimed at place recognition [8] and
metric localization [9]. Unlike these works, we focus on the image
processing aspect of long-term navigation in the context of teach-
and-repeat systems [ 10], where a key issue is robust estimation of
the robot heading [11,12].

Let us consider a scenario where a mobile robot navigates
along a previously mapped path using vision as the main sensory
modality. Typically, the robot would keep close to the previously
learned path and it will not be necessary to use image features that
are highly invariant to significant viewpoint changes. One can also
assume that the surface in the path vicinity will be locally planar,
which means that rotational invariance of the image features is not
important either. On the other hand, the appearance of outdoor
environments changes over time due to illumination variations,
weather conditions and seasonal factors [ 13]. After some time, the
environment appearance might differ significantly from its pre-
recorded map, making long-term map-based visual navigation a
difficult problem (see Fig. 1).

We hypothesize that for the purpose of teach-and-repeat visual
navigation, the invariance of the image features to scale, rotation
and viewpoint change is less important than their robustness to
seasonal and illumination variations. These considerations moti-
vate us to analyze available feature detector and descriptor algo-
rithms in terms of their long-term performance in autonomous
navigation based on a teach-and-repeat principle, e.g., as used in
[10-12,14].

In this work, we present an image feature evaluation method-
ology which is tailored for teach-and-repeat navigation in long-
term scenarios. We show the results achieved using combinations
of open-source feature detectors and descriptors such as BRIEF
[15], (root)-SIFT [4], ORB [16] and BRISK [17]. Moreover, we eval-
uate a feature based on a Convolutional Neural Network (CNN)
descriptor and a Superpixel Grid detector (SpG) [18]. We also pro-
pose a trainable feature descriptor based on evolutionary methods
and binary comparison tests and show that this algorithm, called
GRIEF (Generated BRIEF), and the SpG/CNN feature outperform the
engineered image feature extractors in their ability to deal with
naturally-occurring seasonal changes and lighting variations [19].

This adaptive approach allows to automatically generate visual
feature descriptors that are more robust to environment changes
than standard hand-designed features.

The work presented here broadens our previously-published
analysis [19] by including new datasets (‘Nordland’ [18]), image
features (SpG/CNN) and feature training schemes. In particular, we
separate the influence of the detector and descriptor phases on
the robustness of the feature extractors to appearance changes and
demonstrate that combination of detection and description phases
of different features can result in feature extractors that are more
robust to seasonal variations. Moreover, we perform a comparative
analysis of training schemes, leading to computationally-efficient
image features that can deal with naturally-occurring environment
changes. We apply our evaluation on a new dataset, which became
available only recently [20]. Finally, we provide the aforemen-
tioned benchmarking framework and the GRIEF training method
as a documented, open-source software package [21].

2. Visual navigation in changing environments

The problem of vision-based localization and mapping has re-
ceived considerable attention during the last decades and nowa-
days robots can create precise maps of very large environments
and use these maps to determine their position with high accuracy.
Localization itself was typically studied in the context of Simulta-
neous Localization and Mapping (SLAM), where the position esti-
mate was based on a map that was built on-the-fly and, therefore,
the effects of environment changes had only marginal importance.
However, as the operation time of the robots increased, they have
to face the problem that cameras are inherently passive and their
perception of the environment is heavily influenced by illumina-
tion factors which tend to change throughout the day.

This issue motivated research into methods that are able to
suppress the effects of naturally-changing outdoor illumination.
One of the popular methods [22] calculates illumination-invariant
images by exploiting the fact that the wavelength distribution of
the main outdoor illuminant, the sun, is known. This method im-
proves robot localization and navigation in outdoor environments
[23-26], but can cope only with changes caused by varying outdoor
illumination during the day. A recent work by Mount and Milford
also reported that low-light cameras [27] can provide images that
allow reliable day/night localization.

However, appearance changes are not caused just by varying il-
lumination, but also by the fact that the environment itself changes
over time. Valgren and Lilienthal [13] addressed the question of
environment change in vision-based localization by studying the
robustness of SIFT and SURF image features to seasonal variations.
The paper indicated that as robots are gradually becoming able
to operate for longer and longer time periods, their navigation
systems will have to address the fact that environment itself, not
only the illumination, is subject to constant, albeit typically slow,
changes.

Some approaches aimed at solving the problem by using long-
term observations to identify which environment features are
more stable. Dayoub and Duckett [28] presented a method that
continuously adapts the environment model by identifying stable
image features and forgetting the unstable ones. Rosen et al. [29]
used Bayesian-based survivability analysis to predict which fea-
tures will still be visible after some time and which features will
disappear. Carlevaris et al. [30] proposed to learn visual features
that are robust to the appearance changes and showed that the
learned features outperform the SIFT and SURF feature extractors.
Lowry et al. [31] used principal component analysis to determine
which aspects of a given location appearance are influenced by sea-
sonal factors and presented a method that can calculate ‘condition-
invariant’ images. Cieslewski et al. [32] show that a sparse 3D
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(a) December 2009.

(b) April 2010.

[

(c) October 2010.

Fig. 2. Examples of the seasonal variations at location II of the Planetarium dataset.

(b) Planetarium—location III.

oo

(c) Planetarium—location V.

Fig. 3. View from the robot camera at three different locations of the Planetarium dataset.

(b) June 2010.

(c) October 2012.

Fig. 5. Examples of the seasonal variations at location II of the Michigan dataset.

environment description obtained through structure-from-motion
approaches is robust to seasonal changes as well.

Some works use the long-term observations to build models
that can predict the appearance of a given location at a particular
time. Lowry et al. [33] applied linear regression techniques directly
to the image space in order to predict the visual appearance of
different locations in various conditions. Stinderhauf and Neubert
[34,35] mined a dictionary of superpixel-based visual-terms from
long-term data and used this dictionary to translate between the
appearance of given locations across seasons. Krajnik et al. [36]
used Fourier analysis to identify the cyclical changes of the en-
vironment states and showed that predicting these states for a
particular time improves long-term localization [37].

Another group of approaches proposes to use multiple,
condition-dependent representations of the environment. For ex-
ample, Churchill and Newman [9] clustered different observations
of the same place to form “experiences” that characterize the place
appearance in particular conditions. McManus et al. [38] used dead
reckoning to predict which place the vehicle is close to, loaded a
bank of Support Vector Machine classifiers associated with that
place and used these to obtain a metric pose estimate. Krajnik et
al. [39] proposed to maintain maps gathered over an entire year
and select the most relevant map based on its mutual information
with the current observation.

Methods based on deep learning, which has had a big impact
on the field of computer vision, were also applied to the prob-
lem of persistent navigation. Neubert and Protzel [18] showed
that image descriptors based on Convolutional Neural Networks
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(CNN) outperformed the best holistic place recognition methods
while being able to handle large viewpoint changes. Siinderhauf
et al. [8,40] also demonstrated impressive results with CNN-based
methods. However, the recent outcome of the Visual Place Recog-
nition in Changing Environments, or VPRICE Challenge [41] indi-
cated that novel, yet classic-feature-based approaches, such as [42]
performed better than the CNN-based methods.

Most of the aforementioned approaches were aimed at place
recognition [7] and metric localization [9]. Unlike these works, we
focus on the image processing aspect of long-term navigation in
the context of teach-and-repeat systems [10], where a key issue is
robust estimation of the robot heading [11,12].

3. Local image feature extractors

Local image features provide a sparse, but distinctive repre-
sentation of images so that these can be retrieved, matched or
registered efficiently. The feature extraction process consists of
two successive phases: feature detection and feature description.
The detector identifies a salient area in an image, e.g. a corner, blob
or edge, which is treated as a keypoint. The descriptor creates a
vector that characterizes the neighborhood of the detected key-
point, typically in a scale-affine invariant way. Typical descriptors
capture various properties of the image region like texture, edges,
intensity gradients, etc.

The features are meant to be repeatably extracted from differ-
ent images of the same scene even under conditions of unstable
illumination or changing viewpoints. In this paper, we evaluate
several image feature extraction algorithms for the purpose of
long-term robot navigation. Most of these algorithms are included
in the Open Source Computer Vision (OpenCV) software library
(version 2.4.3), which was used to generate the results presented
in this paper.

3.1. Feature detectors

3.1.1. LoG/DoG (SIFT)

The SIFT feature [4] uses a Difference-of-Gaussians detector
to find scale-invariant keypoint locations. The feature detection
process first generates a scale space of the image by convolving
it with Gaussian kernels of different sizes. The DoG detector then
searches for local extrema in the images obtained by the difference
of two adjacent scales in the Gaussian image pyramid. This gives an
approximation of the Laplacian of Gaussian (LoG) function where
local extrema correspond to the locations of blob-like structures.
A local extremum is found by comparing the DoG values of each
point with its 8 pixel neighborhood and 9 other neighbors in the
two adjacent scale levels. This type of keypoint localization allows
to detect blobs at multiple scales, resulting in scale invariance of
the features. To achieve rotation invariance, SIFT assigns a domi-
nant orientation to the detected keypoint obtained by binning the
gradient orientations of its neighborhood pixels.

3.1.2. Hessian-Laplace region (SURF)

The Hessian keypoint detector finds interest points that vary in
the two orthogonal directions [43]. It computes the second deriva-
tives for each image location and finds the points for which the de-
terminant of the Hessian matrix is maximal. The Hessian-Laplace
detector combines the Hessian detector that returns corner-like
structures along with a LoG detector. The Hessian detector returns
interest points at each scale in the scale space and the Laplacian of
Gaussian (LoG) detector searches for the extremum on these inter-
est locations. The SURF detection scheme speeds up the process by
approximating the Gaussian scale pyramid using box filters.

3.1.3. Maximally Stable Extremal Regions—MSER

The MSER method finds regions that remain invariant under
varying conditions of image transformations [44]. The algorithm
applies a watershed segmentation algorithm with a large number
of thresholds and finds the regions that remain stable across these
thresholds. These regions are affine-covariant and can be reliably
extracted from an image irrespective of large viewpoint or affine
transformations. Since segmentation is used, the regions can have
different contours or an elliptical contour can be fitted to the
region.

3.1.4. Features from Accelerated Segment Test—FAST

The FAST detector compares intensities of pixels lying on a 7-
pixel diameter circle to the brightness of the circle’s central pixel
[45]. The 16 pixels of the circle are first marked as bright, neutral or
dark depending on their brightness relative to the central pixel. The
central pixel is considered as a keypoint if the circle contains a con-
tiguous sequence of at least n bright or dark pixels (a typical value
of nis 12). In order to quickly reject candidate edges, the detector
uses an iterative scheme to sample the circle’s pixels. For example,
the first two examined pixels are the top and bottom one—if they
do not have the same brightness, a contiguous sequence of 12
pixels cannot exist and the candidate edge is rejected. This fast
rejection scheme causes the FAST detector to be computationally
efficient.

3.1.5. Oriented FAST and Rotated BRIEF—ORB

The ORB feature extractor combines a FAST detector with an
orientation component (called oFAST) [16]. The keypoints are
identified by the FAST detector and ordered by the Harris corner
measure, then the best N keypoints are chosen. The original FAST
detector is not scale invariant, hence the ORB detector uses a
scale space to identify interest points. Then, the orientation of the
feature is calculated using the intensity centroid. The direction of
the vector between the intensity centroid and the corner’s center
gives the orientation of the point.

3.1.6. Binary robust invariant scalable keypoints—BRISK

The BRISK feature detector is scale and rotation invariant [17].
To identify the keypoint locations, BRISK uses the AGAST [46]
feature detector, which is an accelerated variant of FAST. The scale
invariance of BRISK is achieved by detecting keypoints on a scale
pyramid [17]. The points are chosen by ordering them according to
the FAST scores for saliency.

3.1.7. Center surround extremas—STAR

The STAR feature detector is a variant of the Center Surround
Extrema (CenSurE) detector [47]. The authors of CenSurE argue
that the keypoint localization precision of the multi-scale detec-
tors like SIFT and SURF becomes low because of the interpolation
used at higher levels of the scale space. The CenSurE detector
circumvents this issue as it searches for keypoints as extrema
of the center surround filters at multiple scales. Thus, the scale
space is generated by using masks of different sizes rather than
interpolation, which has a negative impact on detection precision.
While CenSurE uses polygons to approximate the circular filter
mask, the STAR feature approximates it by using two square masks
(one upright and one rotated at 45 degrees). Similarly to SURF,
this scheme allows for efficient box filter response calculation at
multiple scales, resulting in the computational efficiency of STAR.
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3.1.8. Superpixel-Grids—SpG

The above detectors are designed to extract a sparse set of
salient image locations from the image. In contrast, the recently
published Superpixel-Grid detector (SpG) [48] provides a dense set
of local regions based on superpixel segmentations. A superpixel
segmentation is an oversegmentation of an image. To obtain SpG
regions, the image is segmented at multiple scales and neighboring
segments are combined to create a set of overlapping regions.
These SpG regions are better adapted to the image content than
fixed patches and were successfully used in combination with Con-
vNet descriptors for place recognition in changing environments.
Since there is only a tentative Matlab implementation available
[48], we include only a partial evaluation in the experiments sec-
tion, where we extract around 100, 240 or 740 regions per image.

3.2. Feature descriptors

3.2.1. Scale Invariant Feature Transform—SIFT

The Scale Invariant Feature Transform (SIFT) is probably the
most popular local feature extractor [4] due to its scale and rotation
invariance and robustness to lighting and viewpoint variations. The
SIFT descriptor is based on gradient orientation histograms. It is
formed by sampling the image gradient magnitudes and orienta-
tions of the region around the keypoint while taking into account
the scale and rotation calculated in the previous steps. The interest
region is sampled around a keypoint, at a given scale, at 16 x 16
pixels. This region is divided into 4 x 4 grid of pixels and the gra-
dient orientations and magnitudes are calculated. Each grid is ac-
cumulated into an 8-bin histogram of gradient orientations, which
is weighted by the gradient magnitude of given pixel. It results in a
high-dimensional vector of size 128, which contributes to the dis-
tinctiveness of the descriptor. Further steps include normalization
of the resulting feature vector and clipping of the feature values to
0.2.This provides robustness against illumination variations. While
being precise, distinctive and repeatable, calculation of the SIFT
feature extractor is computationally demanding. Arandjelovi¢ and
Zisserman [49] showed that simple normalization (called Root-
SIFT) improves SIFT performance in object retrieval scenarios.

3.2.2. Speeded Up Robust Features—SURF

Inspired by SIFT, the Speeded Up Robust Feature (SURF) extrac-
tor was first introduced by Bay et al. [50]. The main advantage
of SURF is its speed—the experiments presented in [50] show
that it is significantly faster than SIFT, with no considerable per-
formance drop in terms of invariance to viewpoint, rotation and
scale changes. The speedup is achieved through the use of integral
images that allow to calculate the response of arbitrarily-sized
2D box filters in constant time. The box filters are used both in
the detection step and the description phase for spatial binning,
similarly to SIFT. The (rather inefficient) rotation estimation step
can be omitted from the SURF algorithm, resulting in ‘Upright
SURF’, which is not rotation invariant. This might be beneficial in
some applications, for example, Valgren and Lilienthal [ 13] showed
that U-SURF outperforms SURF in long-term outdoor localization.

3.2.3. Binary robust independent elementary features—BRIEF

The BRIEF feature descriptor uses binary strings as features,
which makes its construction, matching and storage highly effi-
cient [15]. The binary string is computed by using pairwise com-
parisons between pixel intensities in an image patch that is first
smoothed by a Gaussian kernel to suppress noise. In particular, the
value of the ith bit in the string is set to 1 if the intensity value of a
pixel in position x;, y; is greater than the intensity of a pixel at po-
sition x}, y}. Since the sequence of test locations of the comparisons
8 = (xi,yi, X}, ¥;) can be chosen arbitrarily, Calonder et al. [15]
compared several schemes for generating §; and determined the

best distribution to draw §; from. The binary strings are matched
using Hamming distance, which is faster than using the Euclidean
distance as in SIFT or SURF. In [15], the authors consider binary
string sizes of 128, 256 and 512 referred to as BRIEF-16, BRIEF-32,
BRIEF-64 respectively.

3.2.4. Oriented FAST and Rotated BRIEF—ORB

The ORB feature extractor combines the FAST detector with ori-
entation component (called oFAST) and the steered BRIEF (rBRIEF)
descriptor [16]. The goal of ORB is to obtain robust, fast and
rotation-invariant image features meant for object recognition and
structure-from-motion applications. ORB uses a rotated/steered
variant of BRIEF features where the coordinates of the pair of points
for comparison are rotated according to the orientation computed
for each keypoint. The comparisons are then performed. However,
the rotation invariance introduced in ORB has a negative impact
on its distinctiveness. Thus, the authors of ORB employed machine
learning techniques to generate the comparison points so that the
variance of the comparisons are maximized and their correlation
minimized.

3.2.5. Binary robust invariant scalable keypoints—BRISK

The descriptor of BRISK is a binary string that is based on binary
point-wise brightness comparisons similar to BRIEF [17]. Unlike
BRIEF or ORB, which use a random or learned comparison pattern,
BRISK’s comparison pattern is centrally symmetric. The sample
points are distributed over concentric circles surrounding the fea-
ture point and Gaussian smoothing with a standard deviation pro-
portional to the distance between the points is applied. While the
outermost points of the comparison pattern are used to determine
the feature orientation, the comparisons of the inner points form
the BRISK binary descriptor. The orientation is computed using
the local gradients between the long distance pairs and the short
distance comparisons are rotated based on this orientation. The
BRISK descriptor is formed by taking the binary comparisons of the
rotated short distance pairs with a feature length of 512.

3.2.6. Fast Retina Keypoint—FREAK

FREAK is a binary descriptor similar to BRIEF, BRISK and ORB,
which uses a sampling pattern inspired by the human retina [51].
FREAK also uses a circular pattern for sampling points, although the
density of the points is higher towards the center of the pattern,
similar to the human retina. It uses different Gaussian kernels that
overlap for smoothing the points following the distribution of the
receptive fields in the retina. FREAK uses a coarse-to-fine approach
for the comparisons to form the final binary string descriptor.

3.2.7. Convolutional Neural Networks—CNN

In recent years, Deep Learning methods were successfully ap-
plied to many computer vision tasks. This inspired the applica-
tion of descriptors computed from the output of general purpose
Convolutional Neural Networks (CNN) for place recognition in
changing environments [8,18,40]. CNNs are a class of feed-forward
artificial (neural) networks whose lower convolutional layers were
shown to be robust against environmental changes like different
seasons, illumination, or weather conditions. In our experiments
we follow [18] and use the conv3-layer of the VGG-M network
[52]. Due to the high computational efforts for computing the CNN
descriptor, we evaluated its CPU and GPU implementations.

4. GRIEF: Generated BRIEF sequence

The standard BRIEF descriptor is a binary string that is cal-
culated by 256 intensity comparisons of pixels in a 48 x48 im-
age region surrounding the keypoint provided by a detector. In
principle, the locations of the pixel pairs to be compared can be
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chosen arbitrarily, but have to remain static after this choice has
been made. Realizing that the choice of the comparison locations
determines the descriptor performance, the authors of BRIEF and
ORB attempted to find the best comparison sequences. While the
authors of the original BRIEF algorithm proposed to select the se-
quences randomly from a two-dimensional Gaussian distribution,
the authors of ORB chose the locations so that the variance of the
comparisons is high, but their correlation is low.

We propose a simple method that allows to adapt the BRIEF
comparison sequence for a given dataset. The proposed method
exploits the fact that the similarity of the BRIEF features are cal-
culated by means of Hamming distance of the binary descriptors
and, therefore, the contribution of each comparison pair to the
descriptor distinctiveness can be evaluated separately. This allows
to rate the individual comparison locations that constitute the
BRIEF descriptor.

Given an image I, a BRIEF descriptor b(I, ¢, ¢,) of an interest
point ¢y, ¢, (detected by the STAR algorithm) is a vector consisting
of 256 binary numbers b;(I, ¢y, ¢,) calculated as

bi(1, ¢y, ¢y) = 1(X;i + cx, i + ¢y) > Li(X] + v, Vi + ). (1)

Since the position ¢, ¢, is provided by the feature detector, the
BRIEF descriptor calculation is defined by a sequence A of 256
vectors & = (i, i, X}, y;) that define pixel positions for the
individual comparisons. Thus, the BRIEF method calculates the
dissimilarity of interest point a with coordinates (ay, a,) in image
I, and interest point b with coordinates (by, b,) in image I;, by the
Hamming distance of their binary descriptor vectors b(l,, a, ay)
and b(Ip, by, by). Formally, the dissimilarity d(a, b) between points
aandbis
255

da,b) = d(a,b), )
i=0

where d;(a, b) are the differences of the individual comparisons §;
calculated as

di(a, b) = |bi(Ia, ax, ay) — bi(Ip, by, by)|~ (3)

Let us assume that the BRIEF method has been used to establish
tentative correspondences of points in two images, producing a set
‘P of point pairs px = (ak, bi). Now, let us assume that the tentative
correspondences were marked as either ‘correct’ or ‘false’, e.g.
by RANSAC-based geometrical verification [53], or by histogram
voting scheme [11]. This allows to split 7 into a set of correct cor-
respondence pairs P¢ and a set of incorrectly established pairs Pr.
This allows to calculate the fitness f(8;, Pc, Pr) of each individual
comparison §; as

fi,Pe, Py =) (1—-2d(p)+ Y _(2di(p)— 1). 4)

P<Pc PPk

The first term of Eq. (4) penalizes the comparisons §; that increase
the Hamming distance of correctly established correspondences
and increases the fitness of comparisons that do not contribute to
the Hamming distance. The second term of Eq. (4) improves the
fitness of comparisons that indicate the differences of incorrectly
established correspondences, while penalizing those comparisons
that do not increase the Hamming distance. The fitness function
f(8;) allows to rank the comparisons according to their contribution
to the descriptor’s distinctiveness.

The sets Pc and P, which serve as positive and negative
training samples, can contain correspondences from several image
pairs, which allows to calculate the fitness f(8;) for larger datasets.
The fitness evaluation of the individual components (comparisons)
of the descriptor allows to train GRIEF for a given dataset through
an iterative procedure that repeatedly evaluates the contribution

of the individual comparisons §; to the feature’s distinctiveness
and substitutes the ‘weak’ comparisons by random vectors, see
Algorithm 1.

At first, the training method extracts positions of the interest
points of all training images, calculates the descriptors of these
keypoints using the latest comparison sequence A and establishes
tentative correspondences between the features of relevant image
pairs. Then, a histogram of horizontal (in pixels) distances of the
corresponding points is built for each image pair from the same lo-
cation. The highest bin of this histogram contains correspondences
consistent with the relative rotation of the robot when capturing
the two images -these correspondences are added to the set P,
while the rest of the tentative correspondences are added to set
Pr. After that, Eq. (4) is used to rank the individual pixel-wise com-
parisons §;. Then, the algorithm discards the 10 comparisons with
the lowest fitness and generates new ones by drawing (x;, yi, X}, y;)
from a uniform distribution. The aforementioned procedure is
repeated several (ng) times. The resulting comparison sequence A
is better tuned for the given dataset. Except for the locations of
pixels to be compared, the working principle of the GRIEF feature
is identical to BRIEF and the time required for computation and
matching is the same.

Algorithm 1: GRIEF comparison sequence training
Input: 7 - a set of images for GRIEF training,
Ag - initial comparison sequence — BRIEF
ng — number of iterations

Output: A - improved compar. sequence — GRIEF

// calculate keypoints in all images
foreachl € Zdo
| Cr<— STAR(I)
// start GRIEF training
while n < n; do
// extract GRIEF features
foreachl € 7 do
By < ?
foreach (¢, ¢y) € ¢ do
| B «<{BiUGRIEF(I, ¢, ¢,)}

// clear descriptor set

// generate training samples
Pc,Pr <0 // initialize sample sets
foreachl,]J € Zdo
// calculate correspondences
if I # J then
// tentative correspondences
P <« match{B;, Bj}
// geometric constraints
(P, P) < histogram voting (P)
// add results to sample sets
Pc < {Pc U P}
| Pr <« {'PF U PI/:}

// establish fitness of 8 by (4)
fori € 0..255do
| f(8) < 2p (1 =2di()) + X, 24i(.) — 1)

// increment iteration number

n<n+1

// replace 10 least-fit comparisons

fori € 0.9do
8y < argminse(f(4)) // least fit §
A< {AN\ S} // gets replaced

A <« {AUrandom §;} // by a random §
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5. Evaluation datasets

The feature evaluation was performed on five different datasets
collected by mobile vehicles over the course of several months. The
Planetarium dataset was gathered on a monthly basis in a small
forest area near Prague’s planetarium in the Czech Republic during
the years of 2009 and 2010 [11]. The Stromovka dataset comprises
of 1000 images captured during two 1.3 km long tele-operated
runs in the Stromovka forest park in Prague during summer and
winter 2011 [54]. The third and fourth datasets, called ‘Michi-
gan’ and ‘North Campus’, were gathered around the University of
Michigan North Campus during 2012 and 2013 [20]. Similarly to
the datasets gathered in Prague, the Michigan set covers seasonal
changes in a few locations over one year and the North Campus
dataset consists of two challenging image sequences captured in
winter and summer. The fifth dataset, called ‘Nordland’, consists
of more than 1000 images organized in two sequences gathered
during winter and summer on a ~20 km long train ride in northern
Norway [18]. The datasets that we used for our evaluation are
publicly available at [21].

5.1. The planetarium dataset

The Planetarium dataset was obtained by a P3-AT mobile robot
with a Unibrain Fire-i601c color camera. At first, the mobile robot
was manually driven through a 50 m long path and created a
topological-landmark map, where each topological edge was as-
sociated with a local map consisting of image features. On the
following month, the robot used a robust navigation technique
[11] to repeat the same path using the map from the previous
month. During each autonomous run, the robot recorded images
from its on-board camera and created a new map. Data collection
was repeated every month from September 2009 until the end of
2010, resulting in 16 different image sequences [54].

Although the path started at an identical location every time,
the imprecision of the autonomous navigation system caused
slight variations in the robot position when traversing the path.
Therefore, the first image of each traversed path is taken from
exactly the same position, while the positions of the other pictures
may vary by up to +0.8 m.

Although the original data contains thousands of images, we
have selected imagery only from 5 different locations in 12 differ-
ent months, see Figs. 2 and 3.

Six independent persons were asked to register the images and
to establish their relative horizontal displacement, which corre-
sponds to the relative robot orientation at the times the images
were taken. The resulting displacements were checked for outliers
(these were removed) and the averaged estimations were used as
ground truth.

5.2. The stromovka dataset

The Stromovka dataset was gathered by the same robot as the
Planetarium dataset. It consists of four image sequences captured
in different seasons along a 1.3 km long path through diverse
terrain of the Stromovka park in Prague. The appearance of the en-
vironment between the two sequences changes significantly (see
Fig. 4), which makes the Stromovka dataset especially challenging.
The magnitude of the appearance change should allow for better
evaluation of the feature extractors’ robustness to environment
variations. Unlike the Planetarium dataset, where the robot used
a precise navigation technique, the Stromovka data collection was
tele-operated and the recorded trajectories are sometimes more
than 2 m apart. The Stromovka dataset exhibits not only seasonal
variations, but also permanent changes, e.g. some trees were cut
down, see Fig. 4.

5.3. The Michigan dataset

The Michigan Dataset was collected by a research team at
the University of Michigan for their work on image features for
dynamic lighting conditions [30]. The dataset was gathered during
27 data-collection sessions performed over 15 months around the
North University Campus in Ann Arbor, comprising 1232 x 1616
color images captured from 5 different locations.

Since this dataset was not captured on an exactly regular basis
and some months were missing, we selected 12 images of each
place in a way that would favor their uniform distribution through-
out a year. Then, we removed the uppermost and bottom parts of
the images that contain ground plane or sky and resized the rest
to 1024 x 386 pixels while maintaining the same aspect ratio, see
Figs. 5 and 6. The resulting dataset has the same format as the
Planetarium one and was evaluated in exactly the same way.

However, the Michigan dataset was gathered around a uni-
versity campus and it contains less foliage and more buildings
than the Planetarium and Stromovka datasets. Moreover, seasonal
weather variations in Ann Arbor are less extreme than the ones in
Prague. Therefore, the appearance of the environment captured in
the Michigan dataset is less influenced by the naturally occurring
seasonal changes.

5.4. The North Campus dataset

The team of the Michigan university carried on with their
data collection efforts and made their ‘North Campus Long-Term
Dataset’ publicly available [20]. This large-scale, long-term dataset
consists of omnidirectional imagery, 3D lidar, planar lidar, and pro-
prioceptive sensory data and ground truth poses, which makes it a
very useful dataset for research regarding long-term autonomous
navigation. The dataset’s 27 sessions, which are spread over 15
months, capture the university campus, both indoors and outdoors,
on varying trajectories, and at different times of the day across
all four seasons. We selected two outdoor sequences captured
by the robot’s front camera during February and August 2012
and processed them in exactly the same way as the images from
the Michigan dataset. Thus, we obtained two challenging image
sequences in a format similar to the Stromovka dataset, see Fig. 7.

5.5. The Nordland dataset

Similarly to the North Campus and Stromovka, the ‘Nordland’
dataset consists of two challenging sequences captured during
winter and summer. However, this dataset was not gathered by
a mobile robot, but by a train-mounted camera that recorded
the spectacular landscape between Trondheim and Bodg in four
different seasons. Since the original footage contains four ten-hour
videos with more than 3 million images captured from the same
viewpoint and angle, we had to adapt the dataset for our purposes.
First, we selected 1000 images covering 20 km of the train ride in
winter and summer. To emulate camera viewpoint variation, we
shifted and cropped the winter images, so that the winter/summer
image pairs would overlap only by ~85%, see Fig. 8. Unlike in [18],
where the images are shifted by a fixed number of pixels, we used
a variable shift in both horizontal and vertical directions.

6. Evaluation

The goal of our evaluation is to test the suitability of various
image features for long-term visual teach-and-repeat in changing
environments. Our evaluation assumes that the robot’s navigation
is based on a teach-and-repeat method that uses the visual data
to correct the robot’s orientation in order to keep it on the path
it has been taught previously [10-12,14]. Since these methods
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(a) Michigan—Ilocation I.

Fig. 6. View from the robot camera at different locations of the Michigan dataset.

Fig. 7. View from the robot camera at two locations of the North Campus dataset.

Fig. 8. Example images from the Nordland dataset. Notice the horizontal shift between the winter/summer image pairs.

do not require full six degree-of-freedom global localization, we
evaluate the feature extraction and matching algorithms in terms
of their ability to establish the correct orientation of the robot
under environment and lighting variations. Since the proposed
evaluation is based on a measure of the feature extractor’s ability
to establish the robot heading, we calculate its ‘error rate’ as the
ratio of incorrect to total heading estimates. In our evaluation, we
select image pairs from the same locations but different times,
extract and match their features and estimate the (relative) robot
orientation from the established correspondences. We consider an
orientation estimate as correct if it does not differ from the ground
truth by more than 35 pixels, which roughly corresponds to 1
degree.

To determine the best features for the considered scenario, we
evaluate not only their invariance to seasonal changes, but also

their computational complexity. Moreover, our evaluation also
requires to select the other components of the processing pipeline,
which estimates the robot heading based on the input images. In
particular, we need to choose how to match the currently per-
ceived features to the mapped ones, how to determine the robot
orientation based on these matches and what training scheme to
use for the GRIEF feature.

6.1. Feature matching schemes

To determine the best strategy for feature matching, we com-
pared the performance of two different matching schemes, which
attempt to establish pairs between the feature sets A and B ex-
tracted from the two images. The first scheme, called a ‘ratio test’,
searches the descriptor space for two nearest neighbors by p, € B
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Performance of different GRIEF training schemes
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Fig. 9. The performance of different training schemes of GRIEF: Evolution of position estimation errors on the Stromovka and Planetarium datasets (smoothed).

of a given feature ag € .A. A match is considered correct if |ag — byg|
< r|a — byq|, where r is typically chosen between 0.5 and 0.9 [4].
The second scheme, called a ‘symmetric match’, considers ag and
bg a pair if by is the nearest neighbor of ag in the set B and vice
versa [55]. In our experiments, we evaluated the performance of
the ‘ratio test’ matching with the r coefficient set to 10 different
values between 0.5 and 1.0. However, the ‘symmetric match’ per-
formed better and thus, the following results presented use the
‘symmetric’ matching strategy.

6.2. Heading estimation

We also considered two different methods for determining the
relative rotation of the camera. The first method closely follows the
classical approach used in computer vision where known camera
parameters and correspondences between extracted and mapped
features are used to calculate the essential matrix, which is fac-
tored to obtain the robot rotation. An alternative method used in
[12,11] calculates a histogram of horizontal (in image coordinates)
distances of the tentative correspondences and calculates the robot
orientation from the highest-counted bin. In other words, the robot
orientation is established from the mode of horizontal distances of
the corresponding pairs by means of histogram voting. The latter
method is less general, because it cannot cope with large viewpoint
changes, but was reported to perform better than the essential-
matrix-based method in teach-and-repeat scenarios [56]. Our ob-
servations confirm the findings presented in [56], and thus we
chose to use the histogram voting method in our evaluations.

We hypothesize that better performance of the histogram vot-
ing method is caused by the fact that unlike the essential-matrix-
based estimation, it does not assume rigid scenes. Thus, it is more
robust to object deformations caused by snow, temperature varia-
tions or vegetation growth.

6.3. GRIEF feature training

Before the actual evaluations, we tested four different train-
ing schemes for the GRIEF feature. We evaluated how much a
GRIEF feature trained on a specific location improves its perfor-
mance across locations in different environments and how many
iterations of the training Algorithm 1 are required. Four training
schemes were considered:

Unsupervised, where the matched pairs are divided into posi-
tive P¢ and negative Pr training samples (see Algorithm 1) by
histogram voting, i.e. the pairs that belong in the highest-rated
bin constitute the set P¢ and the others go to Pc.

Supervised, where the division into P¢ and P is based on the
ground-truth provided with the dataset.

Hard-negative, which performs the GRIEF training only on the
image pairs that were registered incorrectly, i.e. the results of
the histogram voting method do not match the ground truth.

Reinforced, where the incorrectly-matched image pairs influ-
ence the evaluation of the individual comparisons 10x more
strongly than correctly-registered image pairs.

The advantage of the first training scheme is that it only needs
to know which images were taken at the same locations, while the
latter three schemes require the dataset to be ground-truthed. We
performed 10 000 iterations of each training scheme on the Plane-
tarium dataset and evaluated the performance of each generation
on the Stromovka datasets. The results shown in Fig. 9 indicate
that at first, the ‘supervised’ and ‘hard-negative’ training schemes
outperform the ‘unsupervised’ one on the training dataset, but the
situation is reversed when the trained feature is tested on images
from another environment. Moreover, we can see that although
the heading estimation error rate decreases quickly during the
first ~500 training iterations, further training improves the feature
performance at a slower rate.

We trained the GRIEF feature by running 10 000 iterations of
the ‘unsupervised’ training scheme on the Planetarium dataset and
validating its performance on 50 images of the Stromovka dataset.
Based on this validation we selected the 8612th GRIEF generation
for the rest of our experiments. The evolution of the GRIEF fitness
and its performance improvement (i.e. heading estimation error
relative to the BRIEF feature) are shown in Fig. 10. One iteration
of the training algorithm on the Planetarium dataset takes approx-
imately 10 s on an i7 machine. Thus, training the GRIEF sequence
by iterating the algorithm 10 000 times took approximately one
day.

6.4. Evaluation procedure

First, the feature correspondences between each pair of images
from the same location were established by the ‘symmetric match’
scheme. Then, the corresponding feature pairs with significantly
different vertical image coordinates were removed. After that, we
build a histogram of horizontal distances of the corresponding
pairs and find the most prominent bin. The average distance of all
pairs that belong to this bin are used as an estimate of the relative
orientations of the robot at the time instants when the particular
images were captured. These estimates are then compared with
the ground truth and the overall error is calculated as the ratio of
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GRIEF fitness and heading estimation error per generation
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Fig. 10. GRIEF training process: GRIEF fitness and position estimation error improvement on the Stromovka and Planetarium dataset. The error is calculated relatively to the
heading estimation error of the BRIEF feature that is used to initialize the positions of the binary comparisons of the GRIEF. Error rates are smoothed by sliding average.

(b) GRIEF comparisons.

Fig. 11. A sample of the initial (BRIEF) and trained (GRIEF) comparison pairs. The
GRIEF comparisons favor shorter distances.

incorrect heading estimations to the total number of image pairs
compared (see Fig. 11).

The Michigan and Planetarium datasets contain 5 different lo-
cations with 12 images per location, which means that there are
12 x 11 x 5/2 = 330 image pairs. The evaluation of the Stromovka
dataset is based on 1000 (winter/summer) images arranged in two
image sequences that cover a path of approximately 1.3 km, which
means that the dataset contains 500 image pairs. The number of
images in the North Campus and Nordland datasets is only slightly
higher than in the Stromovka one, but their structure is the same,
i.e. two long image sequences from winter and summer.

6.5. Number of features

The error rate for estimating the correct heading is depen-
dent on the number of extracted features, which depends on the
setting of the ‘peak threshold’ of a particular feature detector.
Our benchmarking software allows to select the detector peak
thresholds in such a way that the detection method extracts a
given number of features per image. To show the dependence of
the heading estimation error on the number of features extracted,
we evaluated the performance of the most popular image features
set to extract {100, 200, ..., 1600} features per dataset image. The
results shown in Fig. 12 demonstrate how the number of extracted
features influences the ability of the method to correctly estimate
the robot heading. Fig. 12 also indicates that in some cases, it
is not possible to reach a desired number of detected features
(see the dashed lines). This is because the STAR detector does
not extract enough features even if its peak threshold is set to
the minimal value and the SpG detector was evaluated in three
settings with 100, 220 and 740 features. The figure indicates that
the lowest heading estimation error rates were achieved using the
STAR/GRIEF and SpG/CNN image features.

Fig. 12 also shows that the performance of the features varies
more for the North Campus and Stromovka datasets. This is caused
by the fact that these datasets do not match images gathered
on a monthly basis, but only from two opposite seasons, where
the appearance changes are more prominent and the images are
more difficult to register. To confirm this hypothesis, we divided
the images of the Planetarium and Michigan datasets into two
groups: ‘winter’ images, where the trees lack foliage and ‘summer’
images, where tree foliage is present. Then, we calculated the inter-
and intra-season registration error rates of the upright-root-SIFT
and STAR/GRIEF features. When matching images from the same
season, both upright-root-SIFT and STAR-GRIEF methods achieved
error rates below 3%. However, matching images across seasons by
upright-root-SIFT resulted in approximately 24% error, while the
STAR-GRIEF error rate was around 2%. This indicates that the error
rate improvement is caused by ability of the STAR-GRIEF to register
images with large perceptual changes.

6.6. Combining different detectors and descriptors

The performance of the image features is influenced by both the
detector and descriptor phases. Although in some cases, the de-
tection and description algorithms share the same data structures,
which allows to speed up the feature’s calculation (such as the
integral image in SURF), there is no reason why the detection and
description phases of different algorithms could not be combined
in order to obtain features with desired properties. For example,
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Fig. 12. The dependence of heading estimation error rate on the number of features extracted. Dashed lines indicate that the given detector was unable to extract the number

of keypoints required.

Table 1

Error rates of various detector/descriptor combinations in the Planetarium dataset, assuming
1600 features per image.

GRIEF ~ BRIEF  rSIFT  SIFT  SURF BRISK FREAK ORB CNN
SpG! 33 5.2 5.2 42 142 5.8 148 103 0.0
STAR 0.6 3.0 1.2 09 376 9.1 348 76 2.1
BRISK 0.3 2.4 0.9 09 345 8.5 264 73 -
uSIFT 2.4 9.1 7.9 97 470 182 367 100 -
SIFT 2.4 9.1 200 252 470 315 367 185 -
uSURF 0.3 24 3.0 2.1 164 0.9 173 5.2 -
SURF 0.3 24 3.0 24 164 145 173 203 -
ORB 2.1 9.1 6.1 6.1 133 6.1 294 97 -
FAST 2.4 4.2 2.1 2.1 436 112 312 76 -
MSER 39 115 100 64 306 103 345 182 -
GFTT 2.7 5.8 9.1 112 521 121 300 115 -
Table 2
Error rates of various detector/descriptor combinations in the Michigan dataset, assuming
1600 features per image.
GRIEF  BRIEF  rSIFT  SIFT SURF BRISK FREAK ORB CNN
SpG* 15 45 6.1 7.9 9.4 15 33 79 03
STAR 1.8 4.5 6.1 6.7 239 9.1 139 39 1.8
BRISK 15 3.0 39 5.5 142 3.0 121 42 -
uSIFT 85 9.7 9.4 106 352 130 279 115 -
SIFT 8.5 9.7 130 158 352 167 279 7.6 -
uSURF 1.5 2.4 7.3 8.5 8.8 2.1 33 58 -
SURF 15 24 39 5.5 8.8 5.8 33 82 -
ORB 155 200 248 285 258 188 242 209 -
FAST 7.3 8.8 8.5 9.1 209 6.1 152 94 -
MSER 161 218 136 155 276 145 324 218 -
GFTT 9.4 9.1 7.6 103 364 9.7 221 142 -
¢ The Superpixel Grid detector (SpG) used 740 keypoints.
Table 3
Error rates of various detector/descriptor combinations in the Stromovka dataset, assuming
1600 features per image.
GRIEF  BRIEF  rSIFT  SIFT SURF BRISK  FREAK ORB CNN
SpG! 164 260 9.8 102 360 184 288 340 5.2
STAR 5.0 130 112 94 642 346 602 300 86
BRISK 8.6 150 7.2 7.0 602 258 458 326 -
uSIFT 162 234 240 258 684 442 654 302 -
SIFT 162 234 408 454 684 588 654 454 -
uSURF 9.2 128 8.0 7.8 428 128 362 298 -
SURF 9.0 128 152 136 428 422 362 578 -
ORB 214 288 118 122 276 206 438 232 -
FAST 9.6 128 172 140 632 308 544 262 -
MSER 234 396 266 218 638 356 592 516 -
GFTT 104 196 250 246 658 366 594 272 -




138 T. Krajnik et al. / Robotics and Autonomous Systems 88 (2017) 127-141

Table 4

Error rates of various detector/descriptor combinations in North Campus dataset, assuming

1600 features per image.

GRIEF  BRIEF  rSIFT  SIFT

SURF  BRISK  FREAK ORB  CNN

SpG* 9.5 117 9.1 106
STAR 5.8 102 8.0 8.9
BRISK 6.1 8.0 6.1 6.7
uSIFT 167 252 271 304
SIFT 167 252 403 425
uSURF 6.3 7.6 8.2 9.5
SURF 6.1 7.6 119 132
ORB 258 349 312 319
FAST 156 187 202 219
MSER 273 362 230 243
GFTT 197 258 289 317

199 9.1 217 178 44
373 132 37.7 147 43
284 108 328 132 -
544 291 484 278 -

544 390 484 364 -
212 6.1 171 83 -
212 206 17.1 174 -
456 276 534 312 -
516 260 475 250 -
462 260 484 373 -
633 325 538 321 -

2 The Superpixel Grid detector (SpG) used 740 keypoints.

Tabl
E?rI:)rersates of various detector/descriptor combinations in Nordland dataset, assuming 1600 features per image.
GRIEF BRIEF rSIFT SIFT SURF BRISK FREAK ORB CNN

SpG*? 5.1 6.7 13 15 6.7 5.5 8.6 219 0.9
STAR 04 1.7 1.7 1.3 187 2.5 9.0 7.8 1.3
BRISK 0.6 0.6 0.8 1.0 139 1.0 1.9 4.6 -
uSIFT 13 0.6 1.3 1.0 288 29 44 29 -
SIFT 13 0.6 2.9 2.9 288 6.9 44 2.5 -
uSURF 0.4 1.0 1.1 0.8 29 0.4 1.9 5.0 -
SURF 0.4 1.0 2.1 1.7 29 2.3 19 8.0 -
ORB 5.7 4.0 4.4 42 34 4.0 116 5.9 -
FAST 0.6 0.6 1.1 1.1 116 1.1 2.5 2.1 -
MSER 459 503 255 242 518 472 602 581 -
GFTT 2.1 2.1 1.7 2.3 335 2.7 3.2 5.0 -

2 The Superpixel Grid detector (SpG) used 740 keypoints.

Matusiak and Skulimowski [57] report that the combination of
the FAST detector and SIFT descriptor results in a computation-
ally more efficient feature with similar robustness to the original
SIFT. This lead us to test other detector/descriptor combinations
of the features that we use. Tables 1-5 contain the error rates of
the feature extractor algorithms obtained by combining different
detectors and descriptors.

The results summarized in Tables 1-5 confirm the high robust-
ness of the STAR/GRIEF and SpG/CNN combinations to seasonal
changes. Moreover, the results also indicate that the default detec-
tor/descriptor combinations are often not the best ones and one
should consider alternative combinations. For example, exchang-
ing the detector phase of the root-SIFT algorithm with the BRISK
method dramatically improves invariance to seasonal changes.
Due to the high computational costs of the CNN descriptor, we
evaluated it only with the STAR and SpG detectors, since the first
showed the best results with the other descriptors and the latter is
aregion detector particularly developed for combination with rich
descriptors like CNN-based ones.

6.7. Computational efficiency

An important property of an image feature is the amount of
processing time required for its extraction from an image and the
amount of time it takes to match it to the map. In our evaluations,
we calculated the times it takes to detect, describe and match
the given features and normalized this time per 1000 features
extracted. The estimate is only coarse because the time required for
feature detection is more dependent on the image size than on the
number of features and the feature matching speed can be boosted
by techniques like approximate nearest neighbor [58]. Moreover,

detectors and descriptors of the same features often share data
structures, which means that if used together, the time for their
extraction is lower then the sum of the detection and descrip-
tion times indicated in Table 6. However, the statistics shown in
Table 6 are still useful to rank the algorithms according to their
computational efficiency. The Table 6 shows the times to extract
and match the conventional image features on an i7 processor
and the CNN features on an NVidia Titan X GPU. We omitted the
upright variants of SIFT and SURF as well as root SIFT, because their
computational time is the same. The computational complexity of
the GRIEF descriptor is the same as the BRIEF one, which is not
surprising because these two algorithms differ only in the choice
of pixel positions used for brightness comparisons. Table 6 shows
that the combination of the STAR detector and (G)BRIEF descriptor
is computationally inexpensive not only for the extraction itself,
but also for matching. It also indicates that the CNN descriptor
is computationally expensive—calculation of a single descriptor
takes 3ms on a GPU, which is three orders of magnitude longer
than BRIEF. Moreover, matching 1000 CNN descriptors takes more
than a second, which is also significantly slower compared to
the classic features. However, matching could be speeded up by
techniques tailored for high-dimensional descriptors, e.g. binary
locality-sensitive hashing [59].

6.8. Discussion

The results presented in Sections 6.5-6.7 indicate that the CNN-
based descriptors in combination with the Superpixel Grid detec-
tor achieve low error rates even with a low number of detected
features. When using a large number of keypoints, the performance
of the SpG/CNN and STAR/GRIEF features evens out, and they both



T. Krajnik et al. / Robotics and Autonomous Systems 88 (2017) 127-141 139

Table 6
Time required to detect, describe and match 1000 features by the feature extractors
used in our evaluation.

Method Time [ms] required to

Detect Describe Match
SIFT 200 64 85
SURF 99 63 93
BRISK 63 5 64
ORB 8 6 58
BRIEF - 3 63
GRIEF - 3 60
FREAK - 15 58
CNN-CPU - 33000 1650
CNN-GPU - 3100 1650
MSER 75 - -
GFTT 16 - -
STAR 16 - -
FAST 9 - -
SPGrid 49 - -

achieve low heading estimation error rates. While the SpG/CNN
performs better on the Michigan, North Campus and Planetarium
datasets, which contain a higher number of man-made struc-
tures, the STAR/GRIEF achieves lower errors on the Stromovka and
Nordland datasets, which contain a larger amount of foliage that
exhibits significant appearance changes due to seasonal factors.
Compared to the CNN features, the GRIEF is much faster to calculate
even on an ordinary CPU.

Our analysis assumes a teach-and-repeat scenario, where a
robot moves along a previously-taught path and thus, the visual
navigation method does not have to be robust to large viewpoint
changes. In a realistic scenario, a robot might have to deviate from
the taught path, e.g. due to an obstacle. In order to deal with these
situations, the image features used should still be able to handle
small-scale viewpoint changes. Experiments with ground [56] and
aerial [60] robots have shown that teach-and-repeat systems based
on the STAR/BRIEF feature routinely deal with position deviations
of up to 1 meter.

Unlike SpG/CNN, which is designed for general use, the
STAR/GRIEF combination is not meant to handle large viewpoint
changes and one should be cautious when applying it for general
long-term navigation and localization. For example, [61] evalu-
ated the performance of several image features in a scenario of
lakeshore monitoring, where the on-board camera aims perpen-
dicularly to the vehicle movement and thus, the viewpoint changes
are significant. The authors of [61] concluded that in their scenario,
the ORB feature, which is based on BRIEF, slightly outperformed the
other features.

7. Conclusion

We report our results on the evaluation of image feature extrac-
tors to mid- and long-term environment changes caused by vari-
able illumination and seasonal factors. Our evaluation was taken
from the navigational point of view—it was based on the feature
extractors’ ability to correctly establish the robot’s orientation, and
hence, keep it on the intended trajectory. The datasets used for
evaluation capture seasonal appearance changes of three outdoor
environments from two different continents.

Motivated by previous works which indicated that certain com-
binations of feature detectors and descriptors outperform com-
monly used features, we based our evaluation on combinations
of publicly-available detectors and descriptors. For example, sub-
stituting the detection phase of the root-SIFT algorithm with the
BRISK method dramatically improves its invariance to seasonal
changes, while making the algorithm computationally more ef-
ficient. We noted that the BRIEF descriptor based on bitwise

comparisons of the pixel intensities around a keypoint detected
by the STAR method performed better than most other detec-
tor/descriptor combinations. To further elaborate on this result, we
trained the comparison sequences that constitute the core of the
BRIEF descriptor on a limited number of images, obtaining a new
feature, which we call GRIEF.

The lowest registration error rates (2.4% and 3.0%) were
achieved by the SpG/CNN and STAR/GRIEF detector/descriptor
combinations, which makes these features a good choice for vision-
based teach-and-repeat systems operating in outdoor environ-
ments for long periods of time. While the SpG/CNN performed
better in semi-urban areas, the performance of STAR/GRIEF was
slightly higher in environments with natural features such as fo-
liage, where it was trained on. Moreover, the STAR/GRIEF feature
was faster to calculate, which makes it suitable even for resource-
constrained systems. We hope that this evaluation will be use-
ful for other researchers concerned with long-term autonomy of
mobile robots in challenging environments and will help them
to choose the most appropriate image feature extractor for their
navigation and localization systems. To allow further analysis
of this problem, we provide the aforementioned benchmarking
framework and the GRIEF training method as a documented, open-
source software package [21].

Acknowledgments

The work has been supported by the EU ICT project 600623
* STRANDS’ and UBACYT project 20020130300035BA. We would
like to thank Nicholas Carlevaris-Bianco for sharing the Michigan
dataset.

References

[1] J.Li,N.Allinson, A comprehensive review of current local features for computer
vision, Neurocomputing (2008).

[2] K. Mikolajczyk, C. Schmid, A performance evaluation of local descriptors, [EEE

Trans. Pattern Anal. Mach. Intell. 27 (10) (2005) 1615-1630. http://dx.doi.org/

10.1109/TPAMI.2005.188.

D. Mukherjee, Q. JonathanWu, G. Wang, A comparative experimental study of

image feature detectors and descriptors, Mach. Vis. Appl. (2015) 1-24. http:

//dx.doi.org/10.1007/s00138-015-0679-9.

[4] D.G. Lowe, Distinctive image features from scale-invariant keypoints, Int. J.

Comput. Vis. 60 (2) (2004) 91-110.

S. Gauglitz, T. Hollerer, M. Turk, Evaluation of interest point detectors and

feature descriptors for visual tracking, Int. J. Comput. Vis. 94 (3) (2011) 335-

360.

[6] A.Gil, O. Mozos, M. Ballesta, O. Reinoso, A comparative evaluation of interest
point detectors and local descriptors for visual SLAM, Mach. Vis. Appl. (2010)
905-920. http://dx.doi.org/10.1007/s00138-009-0195-x.

[7] S. Lowry, N. Sunderhauf, P. Newman, J. Leonard, D. Cox, P. Corke, M. Milford,

Visual place recognition: A survey, IEEE Trans. Robot. PP (99) (2015) 1-19.

http://dx.doi.org/10.1109/TR0.2015.2496823.
N. Sunderhauf, S. Shirazi, A. Jacobson, F. Dayoub, E. Pepperell, B. Upcroft,
M. Milford, Place recognition with ConvNet landmarks: Viewpoint-robust,
condition-robust, training-free, Robot. Sci. Syst. XII (2015).
W. Churchill, P. Newman, Practice makes perfect? Managing and leveraging
visual experiences for lifelong navigation, in: ICRA, 2012.
[10] P.Furgale, T.D. Barfoot, Visual teach and repeat for long-range rover autonomy,
]. Field Robot. (2010).

[11] T.Krajnik, ]J. Faigl, V. Vonasek et al., Simple, yet stable bearing-only navigation,
]. Field Robot. (2010).

[12] Z. Chen, S.T. Birchfield, Qualitative vision-based path following, IEEE Trans.
Robot. Autom. (2009). http://dx.doi.org/10.1109/TR0.2009.2017140.

[13] C.Valgren, AJ. Lilienthal, SIFT, SURF & seasons: Appearance-based long-term
localization in outdoor environments, Robot. Auton. Syst. 58 (2) (2010) 157-
165.

[14] E. Royer, M. Lhuillier, M. Dhome, ].-M. Lavest, Monocular vision for mobile
robot localization and autonomous navigation, Int. J. Comput. Vis. (2007).

[15] M. Calonder, V. Lepetit, C. Strecha, P. Fua, BRIEF: binary robust independent
elementary features, in: ICCV, 2010.

[16] E. Rublee, V. Rabaud, K. Konolige, G. Bradski, ORB: An efficient alternative
to SIFT or SURF, in: International Conference on Computer Vision, Barcelona,
2011.

3

[5

[8

[9



140 T. Krajnik et al. / Robotics and Autonomous Systems 88 (2017 ) 127-141

[17] S. Leutenegger, M. Chli, R.Y. Siegwart, BRISK: Binary robust invariant scalable
keypoints, in: 2011 International conference on computer vision, IEEE, 2011,
pp. 2548-2555.

[18] P. Neubert, P. Protzel, Local region detector+ CNN based landmarks for practi-
cal place recognition in changing environments, in: ECMR, IEEE, 2015, pp. 1-6.

[19] T. Krajnik, P. Cristéforis, M. Nitsche, K. Kusumam, T. Duckett, Image features
and seasons revisited, in: European Conference on Mobile Robots, ECMR, IEEE,
2015, pp. 1-7.

[20] N. Carlevaris-Bianco, A.K. Ushani, R.M. Eustice, University of Michigan North
Campus long-term vision and lidar dataset, Int. J. Robot. Res. (2015).

[21] T. Krajnik, GRIEF source codes and benchmarks, URL http://purl.org/robotics/
grief-code.

[22] G.D. Finlayson, S.D. Hordley, Color constancy at a pixel, J. Opt. Soc. America:
Optics, Image Sci. Vis. 18 (2) (2001) 253-64.

[23] W. Maddern, A.D. Stewart, C. McManus, B. Upcroft, W. Churchill, P. Newman,
[llumination invariant imaging: Applications in robust vision-based localisa-
tion, mapping and classification for autonomous vehicles, in: ICRA Workshop
on Visual Place Recognition in Changing Environments, 2014.

[24] C. McManus, W. Churchill, W. Maddern, A. Stewart, P. Newman, Shady
dealings: Robust, long-term visual localisation using illumination invariance,
in: International Conference on Robotics and Automation, ICRA, 2014, pp.
901-906.

[25] K. MacTavish, M. Paton, T. Barfoot, Beyond a shadow of a doubt: Place recog-
nition with colour-constant images, in: Field and Service Robotics, FSR, 2015.

[26] M. Paton, K. MacTavish, C. Ostafew, T. Barfoot, It's not easy seeing green:
Lighting-resistant stereo visual teach-and-repeat using color-constant images,
in: International Conference on Robotics and Automation, ICRA, 2015.

[27] J. Mount, M. Milford, 2d visual place recognition for domestic service robots at
night, in: International Conference on Robotics and Automation, ICRA, 2016.

[28] F.Dayoub, T. Duckett, An adaptive appearance-based map for long-term topo-
logical localization of mobile robots, in: IROS, 2008.

[29] D.M. Rosen, J. Mason, J.J. Leonard, Towards lifelong feature-based mapping
in semi-static environments, in: International Conference on Robotics and
Automation, ICRA, IEEE, 2016.

[30] N. Carlevaris-Bianco, R.M. Eustice, Learning visual feature descriptors for dy-
namic lighting conditions, in: IEEE/RS] Int. Conference on Intelligent Robots
and Systems, IROS, 2014.

[31] S. Lowry, G. Wyeth, M. Milford, Unsupervised online learning of condition-
invariant images for place recognition, Australas. Conf. Robot. Auto. (2014).

[32] T. Cieslewski, E. Stumm, A. Gawel, M. Bosse, S. Lynen, R. Siegwart, Point cloud
descriptors for place recognition using sparse visual information.

[33] S. Lowry, M. Milford, G. Wyeth, Transforming morning to afternoon using
linear regression techniques, in: International Conference on Robotics and
Automation, ICRA, IEEE, 2014.

[34] P.Neubert, N. Siinderhauf, P. Protzel, Appearance change prediction for long-
term navigation across seasons, in: ECMR, 2013.

[35] N. Stinderhauf, P. Neubert, P. Protzel, Predicting the change-a step towards
life-long operation in everyday environments, in: Robotics Challenges and
Vision, RCV2013, 2014.

[36] T. Krajnik, J. Fentanes, G. Cielniak, C. Dondrup, T. Duckett, Spectral analysis
for long-term robotic mapping, in: International Conference on Robotics and
Automation, ICRA, 2014.

[37] T. Krajnik, ]J.P. Fentanes, O.M. Mozos, T. Duckett, ]. Ekekrantz, M. Hanheide,
Long-term topological localization for service robots in dynamic environments
using spectral maps, in: Int. Conf. on Intelligent Robots and Systems, IROS,
2014.

[38] C. McManus, B. Upcroft, P. Newmann, Scene signatures: localised and point-
less features for localisation, in: RSS, 2014.

[39] T. Krajnik, S. Pedre, L. Pfeucil, Monocular navigation system for long-term
autonomy, in: International Conference on Advanced Robotics, ICAR, 2013.

[40] N.Siinderhauf, F. Dayoub, S. Shirazi, B. Upcroft, M. Milford, On the performance
of convnet features for place recognition, 2015. arXiv preprint arXiv:1501.
04158.

[41] N. Sunderhauf, P. Corke, Visual Place Recognition in Changing Environments
(VPRICE),https://roboticvision.atlassian.net/wiki/pages/viewpage.action?pag
eld=14188617.

[42] D. Mishkin, M. Perdoch, J. Matas, Place recognition with WxBS retrieval,
in: CVPR 2015 Workshop on Visual Place Recognition in Changing Environ-
ments, 2015.

[43] K. Mikolajczyk, C. Schmid, An affine invariant interest point detector,
in: European Conference on Computer Vision, 2002.

[44] J. Matas, O. Chum, M. Urban, T. Pajdla, Robust wide-baseline stereo from
maximally stable extremal regions, Image and vision computing 22 (10) (2004)
761-767.

[45] E. Rosten, T. Drummond, Machine learning for high-speed corner detection,
in: European Conf. on Computer Vision, 2006.

[46] E.Mair, G.D. Hager, D. Burschka, M. Suppa, G. Hirzinger, Adaptive and generic
corner detection based on the accelerated segment test, in: European Confer-
ence on Computer Vision, 2010.

[47] M. Agrawal, K. Konolige, M.R. Blas, Censure: Center surround extremas for
realtime feature detection and matching, in: European Conf. on Computer
Vision, ECCV, Springer, 2008, pp. 102-115.

[48] P. Neubert, P. Protzel, Beyond holistic descriptors, keypoints, and fixed
patches: Multiscale superpixel grids for place recognition in changing envi-
ronments, IEEE Robot. Auto. Lett. 1 (1) (2016) 484-491. http://dx.doi.org/10.
1109/LRA.2016.2517824.

[49] R.Arandjelovi¢, A. Zisserman, Three things everyone should know to improve
object retrieval, in: Computer Vision and Pattern Recognition, CVPR, 2012,
pp. 2911-2918.

[50] H. Bay, A. Ess, T. Tuytelaars, L. Van Gool, Speeded-up robust features, SURF,
Comput. Vis. Image Underst. (2008).

[51] A. Alahi, R. Ortiz, P. Vandergheynst, FREAK: Fast retina keypoint, in: [EEE
conference on Computer vision and pattern recognition, CVPR, IEEE, 2012.

[52] K. Chatfield, K. Simonyan, A. Vedaldi, A. Zisserman, Return of the devil in
the details: Delving deep into convolutional nets, in: British Machine Vision
Conference, 2014.

[53] M.A.Fischler, R.C. Bolles, Random sample consensus: A paradigm for model fit-
ting with applications to image analysis and automated cartography, Commun.
ACM (1981) 381-395. http://dx.doi.org/10.1145/358669.358692.

[54] Stromovka Dataset, [Cit: 2013-03-25]. URL http://purl.org/robotics/stromovka_
dataset.

[55] D.G.R.Bradski, A. Kaehler, Learning Opencv, first ed., O'Reilly Media, Inc., 2008.

[56] P.De Cristéforis, M. Nitsche, T. Krajnik, T. Pire, M. Mejail, Hybrid vision-based
navigation for mobile robots in mixed indoor/outdoor environments, Pattern
Recognit. Lett. (2015).

[57] K.Matusiak, P. Skulimowski, Comparison of key point detectors in SIFT imple-
mentation for mobile devices, Comput. Vis. Graph. (2012) 509-516.

[58] E.Kushilevitz, R. Ostrovsky, Y. Rabani, Efficient search for approximate nearest
neighbor in high dimensional spaces, SIAM ]. Comput. 30 (2) (2000) 457-474.

[59] M.S. Charikar, Similarity estimation techniques from rounding algorithms,
in: Proceedings of the thiry-fourth annual ACM symposium on Theory of
computing, ACM, 2002, pp. 380-388.

[60] M. Nitsche, T. Pire, T. Krajnik, M. Kulich, M. Mejail, Monte Carlo localiza-
tion for teach-and-repeat feature-based navigation, in: Towards Autonomous
Robotics Systems, TAROS, 2014.

[61] S.Griffith, C. Pradalier, Survey registration for long-term natural environment
monitoring, J. Field Robot. (2016).

Tomas Krajnik is a research fellow at the Lincoln Center
of Autonomous Systems, UK. He received the Ph.D. degree
- in Artificial Intelligence and Biocybernetics from the Czech
Technical University, Prague, Czech Republic, in 2012. His
research interests include life-long autonomous naviga-
tion, spatio-temporal modeling, and aerial robots.

Pablo De Cristéforis received the Ph.D degree in Com-
puter Science from the University of Buenos Aires, Ar-
gentina in 2013. He is currently a research assistant at the
National Council of Scientific and Technological Research
(CON-ICET), Argentina. His research interests include au-
tonomous vision-based navigation, visual SLAM and 3D
vision reconstruction for mobile robotics.

Keerthy Kusumam obtained her masters by research in
computer vision in 2015 from the university of Lincoln.
She is currently working as a research assistant in com-
puter vision and machine learning at the Lincoln Centre
for Autonomous Systems Research. Her main interests are
computer vision and machine learning.



T. Krajnik et al. / Robotics and Autonomous Systems 88 (2017 ) 127-141 141

technology at the Technische Universitit Chemnitz. He University of Lincoln, UK, where he also leads the Lin-
received his Ph.D degree in 2015 from the same university. coln Centre for Autonomous Systems. His research inter-
His research interests include computer vision, machine { ests include autonomous robots, artificial intelligence and
learning and artificial intelligence in particular for appli- X - ‘k machine perception, with applications including service
cation in the area of autonomous mobile robots. A key as- | robotics and assistive technologies. Tom has co-authored
pect is the transformation of biologically inspired models, ' over 100 scientific publications and held peer-reviewed
concepts and ideas to application on computers. l grants worth over 1.5 million at the University of Lincoln.

Peer Neubert is a researcher at the chair for automation l -8 r = Tom Duckett is a Professor of Computer Science at the
Fry







KEY ARTICLE [14] - ICRA 2014

©l2014] IEEE. Reprinted, with permission, from Toma$ Krajnik, Spectral Analysis for
Long-Term Robotic Mapping, 2014.






2014 |IEEE International Conference on Robotics & Automation (ICRA)
Hong Kong Convention and Exhibition Center
May 31 - June 7, 2014. Hong Kong, China
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Abstract— This paper presents a new approach to mobile
robot mapping in long-term scenarios. So far, the environment
models used in mobile robotics have been tailored to capture
static scenes and dealt with the environment changes by means
of ‘memory decay’. While these models keep up with slowly
changing environments, their utilization in dynamic, real world
environments is difficult.

The representation proposed in this paper models the envi-
ronment’s spatio-temporal dynamics by its frequency spectrum.
The spectral representation of the time domain allows to iden-
tify, analyse and remember regularly occurring environment
processes in a computationally efficient way. Knowledge of the
periodicity of the different environment processes constitutes
the model predictive capabilities, which are especially useful
for long-term mobile robotics scenarios.

In the experiments presented, the proposed approach is
applied to data collected by a mobile robot patrolling an indoor
environment over a period of one week. Three scenarios are
investigated, including intruder detection and 4D mapping.
The results indicate that the proposed method allows to
represent arbitrary timescales with constant (and low) memory
requirements, achieving compression rates up to 10°. Moreover,
the representation allows for prediction of future environment
states with ~ 90% precision.

Index Terms—long-term autonomy, mobile robotics, spatio-
temporal mapping

I. INTRODUCTION

Long-term robotic autonomy has not yet been achieved
due to many challenges, one of them being the fact that
robotic mapping is vulnerable to changes in the environment.
However, many future tasks performed by mobile robots
will be carried out in places where humans perform their
usual activities, causing the environment to change. Many of
these activities consist of daily routines that are performed
on a regular basis. This regularity can be exploited by
the robots to build more robust representations of their
surroundings. To address this issue, we propose to treat
the observed environment states as signals over which a
spectral analysis can be performed to identify regularities of
environmental variations occuring on timescales from days
to months. Knowledge of these regularities allows efficient
representation of the world model’s temporal domain as well
as prediction of the environment properties at a specific time.

This ability would allow to improve many tasks that the
mobile robots have to perform. For example, a robot can
predict the appearance of a particular location at a certain
time in order to achieve more robust localization. Moreover,
higher-level path planning can use the approach to predict
which doors will be open or which areas will be difficult to
navigate because they will be crowded at particular times.

Lincoln Centre for Autonomous Systems, University of Lincoln, UK
tkrajnik@lincoln.ac.uk
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Mapping a static environment is a problem that has been
widely studied for a long time [1], however mapping dy-
namic environments is still an open problem. So far, mapping
dynamic environments has been done by removing moving
objects from the representation of the environment [2],
[3] or by tracking these objects and classifying them as
moving landmarks [4], [5], [6]. In general, separation-based
approaches can handle some problems of dynamic mapping,
but they assume that most of the environment is static, which
makes them unsuitable for scenarios where the environment
appearance varies significantly. In [7] a new map type that
represents local maps at different time scales is presented,
where the best map for localisation is chosen by its con-
sistency with current readings, which provided improved
localisation over large time scales.

Adaptive approaches never assume the map to be complete
and perform continuous mapping, adding new features to
the map every time the robot observes its environment. In
these approaches, the key problem is managing map size [8],
[9], [10]. [11] presents a feature persistence system based on
temporal stability in sparse vision-based maps. Some authors
propose systems that learn a fixed set of possible states for
the dynamic objects in the environment, e.g. corresponding to
open and closed doors [12], [13], but this approach is limited
in the real world, where the number of states is unpredictable
and this approach does not offer state prediction capabilities.

[14] proposes a new representation that models occupancy
grid maps in the wavelet space in order to optimize the
amount of information that has to be processed for path plan-
ning. [15] presents a representation which models transitions
of dynamic objects in the environment. Spectral analysis
has also been used for 2D [16] and 3D [17] registration.
Finally, [18] has shown state prediction can be useful on
long-term robotic tasks by proposing an implementation of
an appearance change prediction (ACP) method to improve
the performance of place recognition on a large-scale dataset
under extremely different conditions.

The representation proposed in this paper models the
environment’s spatio-temporal dynamics by its frequency
spectrum. We propose to model local states of an envi-
ronment by means of a probability function which is a
superposition of periodical functions. The model includes
recurrent environment changes, which improves the robot’s
knowledge of its surroundings and the events that take place
in them. We hope that this proposal becomes a useful tool
for modelling the environment and leads to developing new
representations of the environment that consider the spatio-
temporal dynamics that take place there.
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II. SPECTRAL REPRESENTATION FOR SPATIO-TEMPORAL
ENVIRONMENT MODELS

Most mapping approaches assume that the principal com-
ponents of a particular environment model can be in two
distinct states. For example, cells of an occupancy grid are
occupied or free, edges of a topological map are traversable
or not, doors are opened or closed, rooms are vacant or
occupied, landmarks are visible or occluded, etc. In a typical
situation, the state of each model component is uncertain,
because it is measured indirectly by means of sensors which
are affected by noise. A common way to represent the uncer-
tainty in the state estimate of the j*" world model component
is by its associated probability p;. This allows to counter
the effect of noisy measurements by employing statistical
methods, such as Bayesian filtering. While Bayesian filtering
methods allow to keep up with a changing environment, the
mathematical foundations they are based on assume a static
world, i.e. the p; of the world components are assumed to
be constant. As a result, a change in the environment causes
the old state to be ‘forgotten’ over time.

Once we assume that p; is a function of time, we need
to outline a suitable representation for p;(t). Although one
could simply store the whole history of the environment
model, such an approach would quickly face memory limita-
tions. Typical static 3D models of of complex environments
contain millions of distinct components [19]. Storing the
entire model history is infeasible. Moreover, in the context
of robotic mapping, it is not clear how to utilize the past
estimates of the environment models, i.e. what is the relation
of the past models to the current state of the world.

In our approach we assume that the variations of the
environment are caused by a number of unknown processes,
which might be periodical. If we could identify the in-
fluence and periodicity of these processes, we could then
calculate the probabilities p;(t) from the description of
these processes. To identify these periodical processes, we
propose to use a frequency transform, namely the Fourier
transform [20].

A. An introduction to the Fourier Transform

The Fourier Transform (FT) is a well-established math-
ematical tool widely used in the field of statistical signal
processing. It transforms a function of time f(¢), into a func-
tion of frequency F(w), i.e. F(w)=F(f(t)). The function
F(w) is commonly referred to as the frequency spectrum
of f(t). The Fourier transform is invertible, and therefore,
one can recover the function f(¢) from its spectrum F'(w),
ie. f(t) = F/(F(w)). If one wants to analyze or alter the
periodic properties of a process characterized by a function
f (%), it is reasonable to calculate its spectrum F'(w), perform
the analysis or alteration in the frequency domain, and then
transform the altered spectrum F’(w) back to the temporal
domain. Such a process is referred to as spectral analysis.

Typically, F(w) is a complex-valued function, whose
absolute values and arguments correspond to the amplitudes
and phase shifts of the frequency components w. Considering

that f(¢) is a real periodical discrete function, the spectrum
F(w) can be represented by a finite set of complex numbers.

B. The proposed representation

Let us represent the environment as a set of independent
components, which can be in two distinct states. Without
loss of generality, we will explain our approach with an
occupancy grid. Let us assume that each grid cell state
s; = {occupied, free} is not constant, but is a function
of time, i.e. s;(t). The uncertainty of the state s;(t) is
represented by its probability p;(¢). Now, let us assume
that the occupancy of each grid cell is affected by a set
of unknown periodical processes, which can be identified by
the Fourier Transform. Since we assume the occupancy of
the individual cells to be independent, we can explain the use
of the Fourier transform on the state s(¢) of a single cell.

1) The spectral model: The main idea behind the pro-
posed model is to measure the temporal sequence of states
s(t) and calculate their frequency spectrum by means of a
Fourier Transform as S(w) = F(s(t)). Then, we select the [
most prominent (i.e. of highest absolute value) coefficients .S;
of the spectrum S and store them along with their frequencies
w; in a set P. The coefficients stored in P are then used to
recover the smoothed signal p(¢) by means of the Inverse
Fourier Transform p(t) = ¢(F'(P(w))), where ¢ denotes a
saturation function that ensures that p(t) €< 0,1 >. One
can easily verify that P(s(t) = occupied) = p(t) > 0 and
P(s(t) = occupied)+P(s(t) = free) = p(t)+1—p(t) =1,
i.e. p(t) satisfies Kolmogorov’s axioms and therefore is a
probability. Thresholding the probability p(¢) allows us to
calculate an estimate s'(¢) of the original state s(¢). In
order not to lose any information of the original signal, the
differences between s’(¢) and s(t) are stored in an outlier
set O, which is A-encoded, see Figure 1.

Thus, our model of the state consists of two finite sets
P and O. The set P consists of [ triples abs(P;), arg(P;)
and w;, which describe the amplitudes, phase shifts and
frequencies of the model spectra. Each such triple might
be interpreted as the importance, time offset and periodicity
of one particular periodical process influencing the state
s(t). We will refer to the number of modeled processes [
(i.e. to the number of triples in P) as the ‘order’ of the
spectral model. The set O represents a set of &k time intervals,
during which the state s(¢) did not match the state s'(t)
calculated from p(¢). Internally, the set O is implemented
as a sequence of values, indicating the starts and ends of
time intervals when the predicted and observed state did not
match, i.e. s'(t) # s(¢). Each interval is represented by its
limits < tof, t2k+1).

2) Model adaptation: To be able to build, maintain and
use this representation, we define four operations: reconstruc-
tion of the original state s(t), addition of a new measurement,
model update and prediction of the future state with a given
confidence level. The aforementioned representation allows
us to retrieve the cell state s(t) by means of the following
equation:

s(t) = (F'(P)>0.5) (t ¢ 0), (D)
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where @ is a XOR operation. The idea behind this equation
is to reconstruct the probability p(t) from the spectrum P,
set s(t) to 1 if p(t) exceeds 0.5 and finally to negate s(t) if
t belongs to the set of outliers O.

Whenever a real state s™ (t) is measured, we calculate s(t)
by means of Equation (1) and if it differs from s™(¢), the
current time ¢ is added to the set O:

st £ (F'(P)>05)@(t¢ 0) - O0=0Ut. (2)

Since p(t) does not predict s(t) with perfect accuracy, the
set O is likely to grow larger as measurements are added.

To update the model, we reconstruct s(t) in the desired
time interval < {fgiqp¢,teng > and calculate its spectrum
‘P. Again, we select the [ coefficients with highest absolute
values |P;| and reconstruct the outlier set @ by means of
Equation 2. In a typical situation, the updated spectrum
P would reflect s(t) more accurately, causing reduction of
the set . Note, that the spectral model order [ can be
changed prior to the update step without causing any loss
of information.

3) Prediction: Note, that the Equation (1) allows for
calculating s(t) for any ¢ and that the threshold value of 0.5
can be set arbitrarily. In fact, a threshold ¢ such that P(s(t) =
occupied) > c represents a confidence level of the grid cell
being full at time ¢. Therefore, we can use Equation (1) for
future prediction of s(t) with a certain confidence level c. In
the case of prediction, the outlier set O is not included in
the calculation and the predicted state might not match the
real state, so we denote it as s'(¢,c). To simplify notation,
we also define s'(t) as s'(¢,0.5). Therefore, s'(t, ¢) and s'(t)
can be calculated as follows:

§'(t,c) =F(P) > c. 3)

Time domain Frequency domain

T T T T T T T T T T
Measured state — s(t Discarded coeficients  ©
Probability function — p(t Model coefficients ©
Estimated state — s’(t
Outlierset -0 —— o]
o0
og
| [ ] \ PecPornlscolaloloctl oo
‘ -2 -15 -1 -05 0 05 1 15 2
I Frequency [H7
abs(P): { 196, 46, 23}
arg(P): {0, 157,157}
Frequencies: {0,0.2,0.6 }
‘ ‘ ‘ ‘ Outlier set O:  {3.7,3.8 }
0 2 4 6 8 10 Parameters of the learned model
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Fig. 1. An example of the measured state and its spectral model. The left
part shows the time series of the measured state s(t), probability estimate
p(t), predicted state s’(t) and outlier set O. The upper right part shows the
absolute values of the frequency spectrum of s(¢) and indicates the spectral
coefficients, which are included in the model.

An example of the third-order spectral model which repre-
sents a quasi-periodic function is provided in Figure 1. Since
the observed processes are not identified perfectly, one can
expect that the prediction becomes less and less accurate

over time. However, modelling the uncertainty of the model
prediction is outside the scope of this paper.

C. Notes on notation

Throughout the rest of the article, we will keep the nota-
tion introduced in Section II-B. Therefore, s,(¢) represents
the measured state of the 5" world component, P; ;(w;) is
a complex number representing amplitude and phase shift
of the state’s frequency component w;, (i.e. iy, coefficient
of P), the value of p;(t) is the state’s probability estimate
given by the inverse Fourier transform of P, s';(t) is the most
probable state at a given time ¢ and s’(%, c) is the estimate
of s;(t) = 1 with a confidence level c. For the sake of
simplicity, the index j will be omitted in the case where our
description concerns a single world model component only.

D. Spectrum and periodical processes

In the rest of the article, we will try to examine the
tractability of using the Fourier transform as a core com-
ponent of spatio-temporal models for mobile robotics. In
particular, we will investigate the following questions:

o How many parameters of the spectrum typically have
to be stored to represent and predict the environment
state?

o What is the accuracy and efficiency of the spectral
representation?

o Are the predictions of this approach good enough to
detect anomalous situations?

o How does the approach deal with sensor noise and
localization uncertainty?

To answer these questions, we analysed several types of
environment models gathered by a mobile robot, which was
continuously operating for more than one week in an indoor
environment shared with humans.

III. DATA COLLECTION

Our experimental platform consists of a SCITOS-G5 mo-
bile robot (see Figure 2) equipped with RGB-D and laser
sensors. The robot gathered two datasets in two different
environments: a staff office and the robotics lab of the
Lincoln Centre for Autonomous Systems.

A. The office dataset

The first dataset, considered for basic evaluation, was
gathered from a stationary position with sensors aimed at the
door of one of the building’s offices. The range measurement
was used to establish the occupancy of a single cubic cell
located in the middle of the room entrance. Since the office
has an open door policy, the door remained open whenever
the office was occupied by a person. Therefore, the measured
state s(t) not only indicated if the particular area of the
environment was occupied or free, but also corresponded to
the presence of people inside the office. Every time someone
went through the door, the monitored area was briefly occu-
pied and the room was considered empty, which introduced
noise on the measured state s(¢). The measurements were
taken continuously for one week (July 23-29 2013) at a rate
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of 30Hz, so s(t) consisted of 18 million values. After this
week, two additional full-day datasets (July 31 and August
2 2013) were gathered.

B. The laboratory datasets

To gather the second dataset the robot was programmed
to visit three designated areas of the robotics lab every five
minutes. Each time an area was visited, the robot created
a 2D and 3D point cloud and analysed the onboard color
camera image to check for the presence of people. Thus,
the robot created three datasets of different dimensionality,
where each dataset contains observations from three different
places, see Figure 2. We will refer to these datasets as Lab-
2D, Lab-3D and Lab-1D respectively.

s

Fig. 2. The robot and its view of two locations of the ‘Lab’ dataset.

The data gathering process started on August 2013 and is
still in progress. For this study, we use the data collected dur-
ing the first week of September consisting of approximately
12,000 point clouds and 6,000 results of people detection.

The autonomous patrolling has been based on combination
of the ROS nav stack and the visual localization method
proposed in [21]. The robot reports its status regularly [22],
so the occational failures can be dealt with immediatelly.

IV. ALGORITHM PERFORMANCE

To answer the questions set in Section II-D, we analyse the
performance of the proposed representation on the datasets
described in Section III.

A. Model accuracy and efficiency

Knowing the coefficients P;(w;) of the spectrum P allows
us to calculate an estimate s’(¢) of the original state s(t).
A natural concern is the accuracy of reconstruction of s'(¢),
which affects the prediction capabilities of the model and the
size of the outlier set O. One can expect that increasing the
number of spectral parameters will increase the reconstruc-
tion accuracy. However, as the number of parameters grows,
the model becomes more adjusted to the specific time series
of s(t) and loses its generality. This loss of generality would
hamper the ability of the model to predict the environment
state in the future.

We define the accuracy of the spectral model ¢(t,,5) as
the ratio of the correctly estimated signal s’(¢) on a given
time interval ¢ € (to,¢1) to the length of the interval:

1

taty) =
Q(a b) ty — tq

/ S0 - sl @

In our case, ¢ = ¢(0,T") can be directly calculated from the
values t; stored in the outlier set O by

1 |0]/2-1
== kz_o (tok41 — tok). )]

Suppose that the spectrum P is estimated for s(¢) within
interval (t.,tq) and ¢ is calculated for an interval (t,,tp).
If t. < t,, then q(t,,ts) relates to the accuracy of model
prediction and if (t,,tp) € (tc, tq), then g relates to the
accuracy of reconstruction.

To estimate the dependence of the accuracy of reconstruc-
tion g, and prediction g, on the number of model parameters,
we built a spectral model of the one-week-long ‘Office’
dataset. The accuracy of reconstruction g, was calculated as
the difference between the original and reconstructed signal.
Moreover, we calculated the accuracies of prediction g, and
gp2 for two days of the following week, see Figure 3. The

T
Measurements used to establish the model
Predicted probability estimate

Predicted future state
Measured state — dataset 1
Measured state — dataset 2

i

T R R
Thu Fri  Sat

- . .
Wed Thu Fri Sat Sun Mon

- P R
Tue Wed Sun Mon Tue

Fig. 3. Comparison of predicted and real values - office dataset.

dependence of the reconstruction and prediction accuracy on
the number of parameters of the spectral model is shown in
Figure 4. The Figure shows that the spectral model order

100 T T T T T T T
95
90
85

80

Quality of reconstruction [%]

75 ‘ ‘ b
\ op1- Prediction quality — dataset 1 ——

qp2- Prediction quality — dataset 2

qu—Reconslr‘ucuon qulaluy !

70 1 I I ! I
2 4 6 8 10 12 14 16 18

Number of spectral model coefficients

Fig. 4. Model accuracy vs. model complexity - office dataset.

of 15 parameters achieves 95% reconstruction accuracy. As
expected, the reconstruction accuracy ¢, increases monoton-
ically with the number of spectral model coefficients j, but
the prediction quality does not. The local maxima of g,
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and gp2 at [ = 2 and [ = 3 suggest that for the purpose of
prediction, one should use a spectral model of order 3.

The test indicates that the spectral model allows to rep-
resent millions of measurements with only a few complex
numbers. Thus, the spectral representation P without the
outlier set O achieves compression ratios in the order of
millions while losing less than 5% of information. The full
model is composed of 15 triples of spectrum P and 160
values in the set O that represent 80 time intervals where
the spectral model did not match the measured sequence.
Thus, the proposed model achieves lossless compression of
the temporal data with a compression ratio reaching ~ 10°.

Since the model that achieved the most accurate signal
reconstruction included 15 spectral components, we used
this model order for the Lab-nD datasets as well. The
reconstruction quality of the ‘Office’ dataset was 0.95 and
the corresponding values for the ‘Lab’ datasets are shown in
Table I.

TABLE I
RECONSTRUCTION QUALITY FOR DIFFERENT DATASETS

Dataset Lab-1D Lab-2D Lab-3D

Location 1 0.95 0.99 0.99
Location 2 0.99 0.97 1.00
Location 3 0.96 0.98 0.99

The data indicate that the model size remains more or
less constant regardless of the time span it covers. Therefore,
higher compression rates are achieved simply by representing
larger datasets. On average, the proposed model represented
the environment state with 98% accuracy while stationary
models achieved 95% accuracy.

B. Anomaly detection

An anomalous situation can be defined as a local state of
the world which deviates from the internal world model of
the robot. Since our model can predict the state s(¢) with a
given confidence value by Equation 3, we can assume that a
measurement s™(¢) is anomalous with confidence level ¢ if

s™(t) # (F'(P) > c). (6)

While setting ¢ too high would lower the algorithm’s sen-
sitivity to anomalies, a low value of ¢ would result in an
increased number of false positives. An optimal confidence
level ¢ can be calculated from the statistical properties of
p(t) and the requirements for the number of false positives
and failed detections.

Figure 5 shows the results of anomaly detection for the
Lab-1D dataset. The anomaly detection was performed “post-
hoc”, i.e. we first build the model from the entire dataset and
then applied Equation 6. The confidence level ¢ was set to
90% and the anomalous situations correspond to the room
being accessed at night or a sudden absence of all people
just before and after a meeting, see Figures 6 and 2.

These examples demonstrate how the model adapts its
inner dynamics to represent the observed environment. The

L ‘\'/\: " \ " - \7|77\J\ ’1‘\
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. Person detected
Probability of person present

Anomaly detection

Fig. 5.

Anomaly detection for two locations of the Lab-1D dataset.

Fig. 6. Anomalous situations in the ‘Lab’ environment. Left: Workplace
empty on Friday early afternoon. Right: Person entering the room at night.

differences between the inner dynamics and real observations
allow for natural detection of anomalous situations with
arbitrary confidence levels. Figure 5 shows how the spectral
models for each laboratory location adapt to the particular
location’s dynamics. This results in a different anomaly
detector for each location. For example, the present of a
person on Monday morning is considered normal for location
1, but triggers the anomaly detector on locations 2 and 3.

C. Building spatiotemporal maps for mobile robotics

The quality of the aforementioned datasets was not sig-
nificantly affected by the sensor position, because either
the sensor was static or the measurement did not require
perfect sensor localization. However, metric-map-building
algorithms require precise localization of the sensor. While
localization can be solved by means of known SLAM
methods, the position estimate is never absolutely error-
proof or perfectly accurate. Therefore, localization glitches
and inherent sensor noise cause degradation of metric maps
over time. This degradation can be countered by means
of Bayesian filtering methods. Since our approach is not
explicitly designed to suppress sensor noise, one might
assume that it would not deal with the aforementioned issues.

However, from the theoretical point of view, taking into
account only the most prominent spectral components in the
update step (see section II-B) is equivalent to sensor data
filtering. Thus, map errors caused by noisy measurements
should fade out similarly as with the classical mapping ap-
proaches. To emphasize new measurements, the update step
introduced in Section II-B might be performed for a limited
slice of the data gathered causing the model to “forget”
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observations that were made too long time ago. However,
such a forgetting scheme is beyond the scope of this paper. To

RGB Image Estimated Grid

=

Measured Grid

-

Point Cloud

Day 1

Day 2

Day 6

Reconstructed and real environment state at different times.

Fig. 7.

demonstrate that our representation can deal with the noisy
measurements of the environment states s;(t), we used the
3D and 2D measurements to build 3D and 2D occupancy
grids, see Section III. To suppress the effects of imprecise
localization, the point clouds gathered by the range sensors
were aligned by means of the ICP algorithm prior to the
occupancy grid calculation. The individual grid maps were
aligned over each other. Therefore we were able to track how
the occupancy of the individual grid cells changes over time.
Since the cells are considered independent, each cell of the
aforementioned grids maintains its own spectral model built
from approximatelly 2000 measurements gathered regularly
during one week. Figure 7 provides a detail of the 3D
occupancy grid at location 2 of the ‘Lab’ dataset, showing
the estimated probabilities and measured states of individual
cells at different times.

The accuracy of reconstruction of each cell’s spectral
model was calculated, see Table 1. The results indicate that
the accuracy and compression ratio of the spectral model was
not significantly affected by the imperfections of the robot
localization.

V. CONCLUSION

A novel approach for spatiotemporal mapping in the
context of mobile robotics has been presented. The approach
is based on an assumption that in a mid-term perspective,
the environment is influenced by several processes which
might be periodical and that the evolution of the environment
can be described by the periodicity, amplitude and time shift
of these underlying processes. To identify the parameters of
these processes and to predict the environment’s local state
we use the direct, respectively inverse Fourier transform. The
core of the proposed temporal representation is composed of
the most prominent frequency components of the Fourier
spectrum — these relate to the most important periodical
processes influencing the environment.

To evaluate the perfomance of the proposed method in a
real scenario, we have applied it to data gathered by a mobile
robot continuously patrolling in an indoor environment for a

period of one week while detecting people and building 2-
and 3-D occupancy grids of designated locations.

The results indicate that the proposed method allows
to represent arbitrary timescales with constant (and low)
memory requirements, achieving compression rates up to
10%. Moreover, we demonstrate that the representation allows
prediction of future states of the environment with accuracies
ranging from 88% to 99%, which enables easy detection of
unexpected (anomalous) environment states.

In the future, we will study the utility of the spectral model
for mobile robot localization, path planning, information-
driven spatio-temporal exploration and semantic segmenta-
tion. We will examine the method’s accuracy in long-term
scenarios and extend the spectral representation by modelling
the uncertainty of its long-term predictions.
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Frequency Map Enhancement: Introducing Dynamics into Static
Environment Models

Tom4s Krajnik

Abstract— We present applications of the Frequency Map
Enhancement (FreMEn), which improves the performance of
mobile robots in long-term scenarios by introducing the notion
of dynamics into their (originally static) environment models.
Rather than using a fixed probability value, the method models
the uncertainty of the elementary environment states by their
frequency spectra. This allows to integrate sparse and irregular
observations obtained during long-term deployments of mobile
robots into memory-efficient spatio-temporal models that reflect
mid- and long-term pseudo-periodic environment variations.
The frequency-enhanced spatio-temporal models allow to pre-
dict the future environment states, which improves the efficiency
of mobile robot operation in changing environments. In a series
of experiments performed over periods of weeks to years, we
demonstrate that the proposed approach improves mobile robot
localization, path and task planning, activity recognition and
allows for life-long spatio-temporal exploration.

I. INTRODUCTION

As robots gradually enter human-populated environments,
they have to deal with the fact that the environments
are uncertain because they change over time. While the
probabilistic mapping methods used in robotics can handle
uncertain and incomplete environment knowledge, their the-
oretical foundations assume that the uncertainty is caused
by sensor noise rather than by natural processes that govern
the environment changes. The assumption of a static world
negatively impacts the ability of these models to reflect
the environment changes and effectively support long-term
autonomous operation of mobile robots. However, several
studies [1], [2], [3], [4], [5] indicated that explicit modeling
of the environment changes improves localization robustness.

Biber and Duckett [5] proposed to represent the world
dynamics by multiple maps with different timescales, which
are switched on the fly based on their consistency with the
current observations. Dayoub et al. [6] present a system that
evaluates the persistence of visual features over time in order
to identify features that are more likely to be stable. Churchill
and Newman [1] demonstrated that clustering spatially-close
observations into ‘experiences’ improves long-term localiza-
tion. The article [3] associates each cell of an occupancy
grid with a hidden Markov model, which improves the
localization robustness as well. Kucner’s method [7] assumes
that occupancies of grid cells are influenced by a moving
objects, which allows to infer typical motion patters in a
given environment. Siinderhauf’s method [4] proposes to
learn typical appearance changes caused by seasonal factors
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and use this knowledge for long-term predictions of envi-
ronment appearance. Finally, Rosen et al. [8] use Bayesian-
based survivability analysis to predict which landmarks will
be visible after some time and which are going to disappear.

Our approach to environment change modeling is based on
the assumption that some of the mid- to long-term processes
that cause the environment changes are (pseudo-)periodic,
e.g. seasonal foliage variations, daily illumination cycle or
routine human activities. To reflect this assumption, we
represent the probability of each local environment state not
by a single value, but by a probabilistic function of time
composed of several harmonic functions whose periodicities
and amplitudes relate to the frequencies and influences of
these hidden processes.

II. METHOD DESCRIPTION

The proposed method, coined the Frequency Map En-
hancement (FreMEn), represents the probability of each
environment state by a function of time

p(t) =po+ij cos(w;t + ¢;), )]
j=1

where n is the number of environment processes taken
into account, w;, ¢; and p; relate to the frequencies, time
offsets and influences of these processes, and pg is the mean
probability of the state. To obtain the parameters w;, ¢; and
p;. we first obtain the frequency spectra S(w) of long-term
observations of each environment state s(t) by means of a
(non-uniform) Fourier transform [9], i.e. S(w) = FT (s(t)).
The parameters w;, ; and p; in Equation (1) are equal to the
amplitudes, phases and frequencies of the n» most prominent
spectral components of the spectrum S(w). To deal with
the fact that robots might observe the environment on an
irregular basis, we employ a non-uniform Fourier Transform
scheme [9] similar to the one used in [10].

The approach, which was originally presented in [11], can
be applied to all environment models that represent the world
as a set of independent component with binary states. In
this short overview, we will show its use does not improve
only long-term localisation in changing environments [2],
[12], but that it also improves robotic search [13], path
planning [14] and activity recognition. We will also show
that the time-dependent probability of the environment states
expressed by Equation (1) allows the calculation of the
spatio-temporal environment entropy, which, combined with
information-theoretic planning, results in life-long spatio-
temporal exploration of dynamic environments [9], [15].



III. VISUAL LOCALIZATION

The problem of visual place recognition in changing
environments has received considerable attention during re-
cent years [16]. We propose to represent the variations in
appearance of different locations by modeling the visibility
of individual image features in the frequency domain. Thus,
we can predict which visual features are going to be visible at
which time and use these time-specific features to localise the
robot [2]. To evaluate our approach, we performed both in-
doors and outdoors experiments. The indoor experiment was
performed at the Lincoln Centre for Autonomous Systems,
where a SCITOS-GS5 robot captured images of 8 areas every
10 minutes for one week and used the models created to
localize itself after one week, three months and one year [2].
The outdoor experiment was performed in the Stromovka
park in Prague, where a P3AT robot captured images of
designated places on a monthly basis for one year and used
the FreMEn feature map to determine its location during
three testing runs during the following year. While the indoor
dataset was mainly affected by the daily illumination cycle
and human activities, the outdoor dataset captured seasonal
variations of foliage.

The dependence of the localization error on the number
of features used is shown on Figure 2, which indicates that
the frequency-enhanced models that generate a set of likely-
to-be-visible features for a particular time outperform the
‘static’ approach that relies on the most stable features,
i.e. modelling the appearance variations by our approach
improves the robustness of localization.

IV. CONTINUOUS LASER-BASED LOCALIZATION

While the advantages of using dynamic representations for
visual localisation are clear, because the environment appear-
ance variations are significant due to the passive nature of
the cameras, the usefulness of dynamic maps for laser-based,
2d localisation was demonstrated only in highly dynamic
environments, such as parking lots [3]. However, maps are
not useful only for localization, but also for planning. Thus,
a mobile robot that operates in the long-term should be able
to reason about the nature of the environment changes it
encountered during its deployment: knowing that obstacles
which were blocking a corridor a hours ago are likely to
be gone by now or that during noon, the cafeteria is too
crowded, is beneficial when planning the robot’s path.

However, the major part of the changes observed in 2D
occupancy grids build by lasers are not periodic. Typically,
they are caused by temporary stationary objects that tend to
disappear after some time. Since modeling periodic changes
alone is not sufficient, we combined FreMEn with the
approach presented in [3] and created a 2D occupancy
grid that models both the periodicity and stationarity of
the changes [12]. This FreMEn 2D occupancy grid was
integrated into the ROS navigation stack of our SCITOS-
G5 robot, which operated in a populated open plan office
for 2 weeks. During these two weeks, we observed that
the efficiency of the robot navigation gradually improved

(e.g. path re-planning was triggered less often), while the
reduction in the localization error was only marginal [12].

V. TOPOLOGICAL PATH PLANNING

Imagine a robot operating in an office like environment
24/7, performing different user-defined tasks at different
locations. The robot needs to schedule not only these tasks,
but also has to determine when to visit its charging station.
To create the schedule, the robot needs to predict which areas
of the environment are going to be accessible at which times.

To address this problem, we represented the environment
as a topological map, where the traversability of individual
edges was modelled by FreMEn [14], see Figure 4. Using
this topological map, the robot can not only plan its path,
but it can also determine what is the chance of the path’s
successful traversal, i.e. the chance of reaching a given
destination at a particular time. To evaluate our approach,
we let our SCITOS-GS5 robot operate in an populated office-
like environment for more than 10 weeks, during which
the robot learned that two edges of the topological map
exhibit periodic changes to their traversability. The first edge
corresponded to a laboratory safety door that was kept closed
at night and the second edge led through a narrow area
behind lecturer’s desks, which was occasionally blocked by
chairs. Using its knowledge about the dynamics of these
edges, the robot could infer that the best time to perform
its activities in the office areas was afternoon during the
weekdays, because at other times, it would risk that after
completing these tasks, it would not be able to return to
the laboratory and reach its charging station, see the map in
Figure 4.

VI. ROBOT SEARCH

Another combination of topological representations with
FreMEn was used to model object and people presence in a
robotic search scenario. Here, a mobile robot has to find a
certain object or person as quickly as possible. For the sake
of simplicity, we assume that the object or person is detected
as soon as the robot arrives at its location.

To plan an efficient search path through the individual
locations, the robot needs to take into account the probability
of object occurrence. Improved knowledge about possible
object location leads to more efficient plans and hence,
shorter times to locate the desired object. We formulated
the search as a path planning problem in a graph where
the probability of object occurrences at particular nodes
is a function of time represented by FreMEn [13]. To
evaluate our approach, we used three datasets collected over
several months containing person and object occurrences in
residential and office environments. Several types of spatio-
temporal models were created for each of these datasets
and the efficiency of the search method was assessed by
measuring the time it took to locate a particular object. The
experimental results indicated that representing the dynamics
of object occurrences by FreMEn reduced the search time by
25% to 65% compared to maps that consider the probability
of object occurrences as independent of time.
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VII. LIFE-LONG EXPLORATION

In the previous scenarios, the map was created from
sensory data which were gathered when the robot was

Measured and modeled room occupancy

Masier bedroom Living room

T T T
L-ic".lsurcd occupancy Occupancy probability

Fig. 5: Aruba ‘CASAS’ [17] apartment with probabilities of
person presence in two rooms.

performing user-motivated tasks. This passive approach to
mapping is not only slow, but it typically results in an
incomplete knowledge that might lead to misinterpretations
of the processes that govern the environment changes. To
deal with this, the robot has to explore its environment in an
active way, which does not only mean that it should visit all
the relevant locations at least once, but it should also revisit
them to understand how they change over time.

The crucial issue is to determine where and when to
perform observations in order to refine and complete the
spatio-temporal model. Since the FreMEn model predicts
the probability of the environment states, we use it to
calculate the states’ entropy, which directly corresponds to
the amount of information obtained by observing these states
at a particular time. Application of information-based explo-
ration methods to the spatio-temporal entropy predicted by
FreMEn resulted in intelligent and continuously improving
exploratory behaviour, which evolves as the environment
knowledge becomes more refined over time [9], [15].

Figure 6 illustrates the exploratory behaviour on the
Aruba [17] dataset, where the robot created a spatio-temporal
model of person presence used for the robot search [13].
During the first day, the robot has no knowledge of the
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temporal entropy estimates (third row) to schedule its obser-
vations (bottom graph) and learn the environment dynamics
(top). As the environment knowledge improves over time,
the scheduled observations provide more information which
allows for further refinement of the environment model.

environment and it has no room or time preference when
scheduling its observations. After the first day, it schedules
more visits of the rooms where the person presence changes
more often. The second day observations provide information
about the rooms’ dynamics: the robot assumes that the
bedroom has a daily periodicity and that the kitchen is visited
five times per day. This causes the expected information gain
to be time-dependent — e.g. evening and morning observa-
tions of the bedroom provide more information than in the
afternoon, which is reflected by the exploration schedule, see
the last row of Figure 6.

VIII. ACTIVITY RECOGNITION

Using the office and household datasets from Sections III
and VI respectively, we also tested the use of the FreMEn as
a model providing temporal-based priors for human activity
recognition. The FreMEn models were created incrementally
by a Bayesian update scheme, which was performed every
time an activity was recognized. The method gradually
learned about the typical rhythms of the people’s activities,
effectively reducing the error in activity classification, see
Figure 7 and article [18].
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Fig. 7: Activity recognition error over time

IX. CONCLUSION

We presented applications of a method that improves the
efficiency of long-term mobile robot operation in chang-

ing environments. The method assumes that in a mid-
term perspective, the environment is influenced by pro-
cesses which might be periodical and that the evolution
of the some environment states can be described by the
periodicity, amplitude and time shift of these underlying
processes. To identify the parameters of these processes and
to predict the environment’s local state we use techniques
based on the Fourier transform. We gave an overview of
the methods’ applications so far, showing that in long-term
scenarios, it reduces localisation error [2], [12], speeds-up
robotic search [13], improves path planning [14], activity
recognition [18]and allows for active, life-long environment
exploration [9], [15]. To facilitate the use of the method by
other researchers, we published its ROS-compatible source
code at http://fremen.uk.
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FreMEn: Frequency Map Enhancement for
Long-Term Mobile Robot Autonomy in
Changing Environments

Tomas Krajnik, Jaime P. Fentanes, Jodo M. Santos, and Tom Duckett

Abstract—We present a new approach to long-term mobile
robot mapping in dynamic indoor environments. Unlike traditional
world models that are tailored to represent static scenes, our ap-
proach explicitly models environmental dynamics. We assume that
some of the hidden processes that influence the dynamic environ-
ment states are periodic and model the uncertainty of the estimated
state variables by their frequency spectra. The spectral model can
represent arbitrary timescales of environment dynamics with low
memory requirements. Transformation of the spectral model to
the time domain allows for the prediction of the future environ-
ment states, which improves the robot’s long-term performance in
changing environments. Experiments performed over time periods
of months to years demonstrate that the approach can efficiently
represent large numbers of observations and reliably predict fu-
ture environment states. The experiments indicate that the model’s
predictive capabilities improve mobile robot localization and nav-
igation in changing environments.

Index Terms—Localization, long-term autonomy, mapping.

I. INTRODUCTION

DVANCES in the field of mobile robotics are gradually
A enabling long-term deployment of autonomous robots in
human environments. As these environments change over time,
the robots have to deal with the fact that their world knowledge
is incomplete and uncertain. Although probabilistic mapping
methods [1] have demonstrated the ability to represent incom-
plete knowledge about the environment, they generally assume
that the corresponding uncertainty is caused by inherent sensor
noise rather than by natural processes that cause the environment
to change over time. Thus, traditional mapping methods treat
measurements of dynamic environment states as outliers [2].
This undermines the ability of the mapping methods to reflect
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Fig. 1. Frequency-enhanced model of a single image feature visibility. The
observations of image feature visibility (red) are processed by the FreMEn
method that extracts the time-dependent probability of the feature being visible
(green). This allows us to reconstruct and predict the feature’s visibility for a
given time (blue).

the environment dynamics and provide support for long-term
mobile robot autonomy. Recent works have demonstrated that
exploiting the outlying measurements allows us to characterize
some environment changes, which improves robot localization
in changing environments [3]-[6].

In our approach, we assume that some of the mid- to long-term
processes that exhibit themselves through environment changes
are periodic. These processes can be both natural, e.g., seasonal
foliage changes, or artificial, e.g., human activities character-
ized by regular routines. Regardless of the primary cause of
these processes, we hypothesize that the regularity of the en-
vironment changes can be exploited by robots to build more
robust representations of their surroundings. We propose to rep-
resent the probability of the elementary environment states by
combination of harmonic functions whose amplitudes and peri-
odicities relate to the influences and frequencies of the hidden
processes that cause the environment variations. This allows for
efficient representation of the spatiotemporal dynamics as well
as prediction of future environment states. To obtain the parame-
ters of the harmonic functions, we propose to treat the long-term
observations of the environment states as signals, which can be
analyzed in the frequency domain.

An advantage of our approach is its universal applicability—
it can introduce dynamics to any stationary environment model
that represents the world as a set of independent components. In-
troduction of the dynamics is achieved simply by representing
the uncertainty of the elementary states as probabilistic func-
tions of time instead of constants that are updated only when
the given state is observed by a robot. The approach, which
was originally introduced in [7], was successfully applied to

1552-3098 © 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
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landmark maps to improve localization [4] and to topological
maps to improve the robotic search [8] and navigation [46]. The
application of the method to occupancy grids not only reduces
memory requirements [9], but also enables lifelong spatiotem-
poral exploration [10], [47] of changing environments. In this
paper, we summarize and extend the previous results by a thor-
ough examination of the method’s ability to efficiently represent
environment changes over long time periods, predict the future
environment states, and use these predictions to improve the
robustness of robot localization and navigation. While the main
aim of our method is to deal with periodic changes, we also
show that its combination with a persistence model allows us to
learn and deal with nonperiodic dynamics as well.

II. RELATED WORK

While the mapping of stationary environments has been
widely studied [11] and generating large-scale stationary envi-
ronment models has been in the spotlight of robotics research for
along time, mapping methods that explicitly model the environ-
ment dynamics gained importance only after robots attained the
ability of autonomously operating for longer time periods [44].

The first approaches to address the problem of dynamic
environments were object-centric. These methods identify
moving objects and remove them from the environment rep-
resentations [12], [13] or use them as moving landmarks [14],
[15] for self-localization. But not all dynamic objects actually
move at the moment of mapping, which means that their
identification requires long-term observations. To tackle
this issue, Ambrus er al. [16] proposed to process several
3-D point clouds of the same environment obtained over a
period of several weeks to identify and separate the movable
objects and refine the static environment structure at the same
time. While object-centric representations can handle some
problems of dynamic mapping, they still assume that most of
the environment is static, which makes them unsuitable for
scenarios where the environment varies significantly.

Considering this aspect, other authors propose approaches
that assume the map to never be complete and perform mapping
in a continuous manner, adding new features to the map every
time the robot observes its environment. In these approaches,
managing map size is crucial [17]-[20].

Alternatively, some authors propose systems that learn a fixed
set of possible states for the dynamic objects, e.g., corresponding
to open and closed doors [21], [22], which can limit the map
size, but this approach is limited in the real scenarios, where the
number of states is unpredictable.

Other approaches do not attempt to explicitly identify mov-
able objects, but rely on less abstract environment representa-
tions. For example, Biber and Duckett [17] and Arbuckle et al.
[23] represent the environment dynamics by multiple temporal
models with different timescales where the best map for lo-
calization is chosen by its consistency with current readings.
Dayoub et al. [24] and Rosen et al. [25] each present a feature
persistence system based on temporal stability in sparse visual
maps that can identify environmental features which are more
likely to be stable. Yguel et al. [26] propose to model occupancy

grid maps in the wavelet space in order to optimize the amount
of information that has to be processed for path planning.

Churchill and Newman [3] propose to integrate similar obser-
vations at the same spatial locations into “experiences” which
are then associated with a given place. They show that associ-
ating each location with multiple “experiences” improves au-
tonomous vehicle localization. Tipaldi et al. [5] represent the
states of the environment components (cells of an occupancy
grid) with a hidden Markov model and show that their repre-
sentation improves localization robustness. Kucner er al. [27]
learn conditional probabilities of neighboring cells in an occu-
pancy grid to model typical motion patterns in dynamic envi-
ronments. Another method can learn appearance changes based
on a cross-seasonal dataset and use the learned model to predict
the environment appearance [6] showing that state prediction
can be useful for long-term place recognition in changing envi-
ronments. Finally, Krajnik er al. [7] represent the environment
dynamics in the spectral domain and apply this approach to im-
age features to improve the localization [4] and to occupancy
grids to reduce memory requirements [9].

While most of the aforementioned methods are aimed specif-
ically at the problem of lifelong localization, our approach
was shown to be applicable in other scenarios as well [28].
In this paper, we extend the results and experimental analysis
presented in [4], [7], and [9]. The efficiency of spatiotempo-
ral representation, which was only briefly mentioned in [9], is
now thoroughly investigated on a FreMEn 4D (3D+time) occu-
pancy grid, which represents almost 2 million observations of
a small office over 112 days. Compared to the work presented
in [4], which provides only a coarse evaluation compared to a
naive localization method, the experiments in this paper demon-
strate how the localization robustness depends on the number
of predicted visual landmarks, compare its performance to the
experience-based approach [3], and present additional evalu-
ation on outdoor datasets. This paper also demonstrates that
integration of the method in the ROS navigation stack improves
both the accuracy of robot localization and the efficiency of
navigation.

III. SPECTRAL REPRESENTATION FOR SPATIOTEMPORAL
ENVIRONMENT MODELS

Many environment models used in mobile robotics consist
of independent components that can be in two distinct states.
For example, the cells of an occupancy grid are occupied or
free, edges of a topological map are traversable or not, doors
are open or closed, rooms are vacant or occupied, landmarks
are visible or occluded, etc. The states of the real world can-
not be observed directly, but through sensors that are affected
by noise. Thus, the state of each world model component is
uncertain, which is typically represented by the probability of
a particular component being in a given state, e.g., the uncer-
tainty of occupancy of the jth cell is typically represented by
p; = P(s; = occupied). This allows us to counter the effect of
noisy measurements by employing statistical methods, such as
Bayesian filtering [1]. However, the mathematical foundations
described in [1] assume a static world, i.e., the probabilities of
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the world components are assumed to be constant. While this
still allows us to update the environment model if a change has
been observed for long enough, the old states are simply “for-
gotten” over time and the system does not learn from the change
observed.

We propose to represent the uncertainty of the environment
states not as probabilities p;, but as probabilistic functions of
time p;(t). Assuming that the variations of the environment
are caused by a number of unknown processes, some of which
exhibit periodic patterns, the p; (t) can be represented by a com-
bination of harmonic functions that relate to these periodic pro-
cesses. To identify the parameters of these harmonic functions,
we propose to use spectral analysis methods, namely the Fourier
transform [29].

A. Fourier Transform

The Fourier Transform is a well-established mathematical
tool widely used in the field of statistical signal processing. In a
typical case, it transforms a function of time f(¢) into a function
of frequency F(w) = fj;o f(t)e~7«tdt. The function F(w) is
commonly referred to as the frequency spectrum of f(¢). The
Fourier transform is invertible, and therefore, one can recover the
function f(¢) from its spectrum F(w), i.e., f(t) = F' (F(w)).
If one wants to analyze or alter the periodic properties of a
process characterized by a function f(t), it is reasonable to
calculate its spectrum F'(w), perform the analysis or alteration in
the frequency domain, and then transform the altered spectrum
F'(w) back to the temporal domain. Such a process is referred
to as spectral analysis.

Typically, F'(w) is a complex-valued function, whose abso-
lute values and arguments correspond to the amplitudes and
phase shifts of the frequency components w. Given that f(t)
is a real periodic discrete function, the spectrum F'(w) can be
represented by a finite set of complex numbers.

B. Proposed Representation

Although the approach can be applied to most state-of-the-art
representations, we will explain it with an occupancy grid. To
keep this explanation simple, we assume that the occupancy of
the individual cells is independent of each other and explain the
approach on a single cell. So let us assume that at a given time ¢,
a single cell of an occupancy grid is either occupied or free. Let
us represent the state as a binary function of time s(t) € {0, 1},
where s(t) = 0 corresponds to the cell being free at time ¢ and
vice versa.

The main idea behind the proposed model is to treat the values
of the function s(¢) as real numbers and calculate the Frequency
spectrum of the sequence s(¢) by means of a (Discrete) Fourier
transform as

S(w) = F(s(t)- (1)

The resulting frequency spectrum S(w) is a discrete complex
function whose absolute values |S(w)| correspond to the influ-
ences of periodic processes on s(t). In other words, each local
maximum of |S(w)| indicates that the function s(¢) might be in-
fluenced by a hidden process whose period is T' = 27 /w. Since
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we do not want to represent the state s(¢) directly, but as a com-
bination of [ periodic processes, we select the [ most prominent
(i.e., of highest absolute value) coefficients of the spectrum S(w)
and store them along with their frequencies w; in a set P(w).
The coefficients stored in the set P are then used to recover a
function p(t) by means of the inverse Fourier transform

p(t) = <(FH(P(w))) @

where ¢ denotes a function that ensures that p(t) € [0, 1].
For our purposes, we choose a simple saturation function
¢(z) = min(max(z,0), 1), which achieved better results than
other normalization schemes in our experiments.

Now, let us assume that

P(s(t) = 1) = p(t)
P(s(t) = 0) = 1 - p(2). 3)

The ¢ function ensures that both 1 — p(t) and p(t) are always
positive, i.e.,

P(s(t)) >0 “4)

for all possible states s(t). The cell is always either free or
occupied, i.e., the state s(t) is always either O or 1, meaning
that

P({s(t) =0} U{s(t) =1}) = 1. )
Finally, the sum of all P(s(t)) for all s(¢) € {0,1} is

P({s(t) = 1}) + P({s(t) = 0}) = 1 = p(t) + p(t) = 1. (6)

Since P(s(t)) satisfies (4)—(6), which are Kolmogorov’s ax-
ioms, we can assume that P(s(t)) is a probability. Thus, the
function p(t) recovered from the frequency spectrum of s(t) by
(2) represents the probability that the cell is occupied at time ¢.

By thresholding the probability p(t), we can calculate an
estimate s'(¢) of the original state s(t). However, the original
observation of s(t) can differ from the probabilistic estimate
§'(t). In the case that the given application has to preserve all
past observations correctly, the differences between s'(¢) and
s(t) are stored in an outlier set O.

Thus, our model of the state consists of two finite sets P and
O. The set P consists of [ triples abs(F; ), arg(P;), and w;, which
describe the amplitudes, phase shifts, and frequencies of the
model spectrum. Each such triple is related to the importance,
time offset, and periodicity of one particular periodic process
influencing the state s(t). We will refer to the number of modeled
processes [ (i.e., to the number of triples in P) as the “order”
of the spectral model. The set O represents a set of k time
intervals, during which the state s(¢) did not match the state s'(t)
calculated from p(t). To achieve low memory requirements, the
set O is A-encoded, i.e., it is implemented as a sequence of
values, indicating the starts and ends of time intervals when the
predicted and observed state did not match, i.e., s'(t) # s(¢).
Thus, each such interval is represented by its limits [tay, ta5 4 1)-

Fig. 2 provides a graphic representation of the model building
process and a commented video is available at [30]. The process
starts with the measured state s(¢) (red line, left box), which
is transformed into the frequency domain S(w) (right top, red).
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Fig. 2. Example of the measured state and its spectral model. The left part

shows the time series of the measured state s(t), probability estimate p(t),
predicted state s'(t), and outlier set O. The upper right part shows the absolute
values of the frequency spectrum of s(¢) and indicates the spectral coefficients,
which are included in the model, i.e., in the set P. The spectrum is symmetric
and the spectral coefficient with frequency 0 corresponds to mean probability
of s(t) = 1. Thus, the model encodes two periodic nodes—its order [ is 2.

The most relevant spectral components P (w) (right top, green)
are then selected and transformed back to the time domain as
p(t) (green line, left box). The probability p(¢) is then thresh-
olded to obtain s'(t) (left, blue line) and the difference is stored
in the outlier set O (left box, violet line).

To be able to build, maintain, and use this representation, we
define four operations: reconstruction of the measured state s(t),
addition of a new measurement, model update, and prediction
of the future state with a given confidence level.

1) Reconstruction of the Measured State: The aforemen-
tioned representation allows us to retrieve the past cell state
s(t) as

s(t) = (F ' (P(w)) > 05) @ (t € O) )

where @ is an XOR operation. The idea behind this equation
is to reconstruct the probability p(t) from the spectrum P, set
§'(t) to Lif p(t) exceeds 0.5 and finally apply the XOR operator
to negate s'(t) if ¢ belongs to the set of outliers O.

2) Addition of a New Measurement: Whenever a real state
s™(t) is measured, we calculate s(t) by means of (7) and if it
differs from s™ (t), the current time ¢ is added to the represen-
tation of the set O:

s"(t) £ (FHPWw) >05) @ (te0) - 0=0Ut.

(®)
Since (8) takes into account the current contents of the outlier
set O, the time ¢ is added to O only when §'(t) starts and
stops matching s(t), which results in A-encoding of the set O.
Nevertheless, p(t) does not predict s(¢) with perfect accuracy
and the set O is likely to grow as measurements are added. After
some time, the outlier set O itself might contain information
about dynamics that were previously unobserved and is thus not
included in the set P. To take into account the new information,
our method offers an efficient way to update the entire spectral
model.

3) Model Update: To update the spectral model, we recon-
struct s(¢) including the newly added measurements by (7) and
calculate its spectrum S(w). Again, we select the [ coefficients
with highest absolute values of the spectrum S(w), store them
in P(w) and reconstruct the outlier set O using (8). In a typi-
cal situation, the updated spectrum P would reflect s(¢) more
accurately, causing reduction of the set O. The spectral model
order | can be changed prior to the update step without any
loss of information. Thus, we can change the model order and
recalculate it whenever required. In our experiments, model
update was typically performed on a daily basis as discussed
in Section I'V-B.

4) Estimation and Prediction of Future States: Note, that (7)
can calculate s(¢) for any time ¢ and that the threshold value of
0.5 can be set arbitrarily. In fact, a threshold ¢ such that p(t) > ¢
represents a confidence level of the grid cell being occupied at
time ¢. Therefore, we can use (7) for future prediction of s(t)
with a given confidence level c. In the case of prediction, the
outlier set O is not included in the calculation and the predicted
state might not match the real future state, so we denote the
prediction as s'(t, ¢). To simplify notation, we also define s'(t)
as §'(¢,0.5). Therefore, s'(t, ¢) and §'(t) can be calculated as

s'(t,c) = F Y (P(w)) > e 9)

An example of the second-order spectral model which represents
a quasi-periodic function is provided in Fig. 2.

5) Estimation and Prediction for a Single Time Instant: In
many cases (such as in the scenarios described in Sections VII
and VIII), one does not need to recover or predict environment
states over a long time interval, but for a single time instant. Here,
it is impractical to use (9) or (2), because these use the inverse
Fast Fourier transform, which generates an entire sequence of
probabilities. Instead, one can exploit the sparsity of the spectral
model P(w) and calculate p(t) simply as

n
p(t) = ap + Zajcos(wjt + ;)
Jj=1

(10)

where w;, ©;, and o; represent the frequencies, time shifts, and
amplitudes of the spectral components stored in the set P (w).
The parameter o, which corresponds to wy = 0 is the mean
of s(t).

C. Nonuniform Sampling Scheme

Typically, the Fourier transform is applied not to continu-
ous functions, but to discrete sequences of data measured on a
regular basis. The assumption of equally spaced samples s(t)
allows us to employ the fast Fourier transform (FFT) algorithm,
which calculates the frequency spectrum S(w) in a very efficient
manner.

However, the FFT-based model update requires recovery of
the entire sequence of the observed states, which becomes com-
putationally expensive over time. Additionally, the FFT relies on
the assumption that the observations of the environment states
can be performed frequently and on a regular basis, which is
hard to satisfy even in laboratory settings. The requirement of
regular observations also means that the robot’s activity has to
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be separated into a learning phase, when it frequently visits in-
dividual locations to build its dynamic environment model, and
a deployment phase when it uses its model to perform the tasks
requested. This division means that while the robot can create a
dynamic model which is more suitable for long-term operation,
it cannot be updated and thus cannot adapt to variations that
were not present during the learning phase. Thus, the predictive
capability of the method will become less and less reliable over
time, which will negatively affect the efficiency of robot oper-
ation in long-term scenarios. To allow the robot to cope with
the changing dynamics, we introduce a generalized method that
can build and update the spatiotemporal model from sporadic
irregular observations in an incremental manner.

This version of the method maintains a sparse frequency spec-
trum, which is a set C of complex numbers ;. for each modeled
state. These correspond to the set 2 of modeled periodicities
wy, that might be present in the environment. Each time a state
s(t) is observed at time ¢, the aforementioned representation is
updated as

1
Yo p—— (nyo +s(t))

1 i
= =g (0 (5() = ) ) Ve € 0

n<n+1

(1)

where n represents the number of observations. The proposed
update step is analogous to incremental averaging—the absolute
values of |y, | correspond to the average influence of a periodic
process (with a frequency of wy) on the values of s(¢). To
perform predictions, we select the [ components with the highest
absolute value of ~; from the set C, store them in the set P(w),
calculate v = ||, ¢; = arg(~y,) and predict p(t) using (10).

The choice of set €2, which determines the periods of the
potential cyclic processes, depends on the memory size that
can be allocated for the model and the longest period that is
going to be modeled. In the indoor navigation experiment de-
scribed in Section VIII, €2 consisted of 168 components cov-
ering periodicities from one week to 1 h. In the outdoor case
Section VII-B, €2 consisted of 1000 components covering peri-
ods from one year to 8 h. The discussion about the optimal choice
of set 2 along with other details of the nonuniform sampling
scheme is provided in [10]. In the case of uniform sampling, the
spectrums generated by (11) and FFT are identical. However,
while the set of modeled periodicities of the FFT-based method
scales naturally with the duration of the data collection, the set
of periods €2 captured by the nonuniform scheme is fixed.

D. Modeling Persistence

The aforementioned representation is primarily aimed at
modeling the environment changes from a long-term perspec-
tive. Thus, the predictions of future states are based on the
observed periods of the changes in the past. While this is useful
for long-term forecasts, prediction of near future states should
take into account not only the states’ periodicity, but also their
persistence. For example, if a given visual feature was observed
10 s ago, it is quite likely that it will be still observable even
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though it is not usual to observe it at this time of day or week.
To enable the deployment of the proposed method on continu-
ously operating mobile robots, the ability to perform short-term
predictions is also important. Thus, we extended the FreMEn
representation with a persistence model, which acts as short-
term memory that represents the expectation that the given state
did not change since the last observation if the observation was
performed recently. This is achieved by extending the update
scheme of (11) by

Py PR pLOR

n+1 t—t
s(t) < s(t)

ot (12)

where s(t;) represents the last observation at time ¢; and 7
represents the modeled state persistence, i.e., the mean time
between the state’s changes. To predict the value of state s(t)
for a future time ¢, we calculate

s(tl)et]% +p(t) (1 - ey)

where p(t) is calculated by means of (10). Note that for
the predictions which closely follow the last observation, i.e.,
[t — t;| < 7, the expression etlr;t is close to 1, which means
that the expected occupancy would be the same as the one re-

cently observed. Using (13) to predict the more distant future,

p(t) = (13)

ie., [t —t;| > 7, causes the expression e’%f to be close to 0,
which suppresses the effect of the latest observation on p/(t) and
emphasizes p(t), which represents the behavior of the predicted
state from a long-term perspective. The experiments presented
in Section VIII show that the addition of the persistence model
to the FreMEn representation allows us to deal with nonperiodic
changes as well.

IV. PERFORMANCE EVALUATION

In the rest of this paper, we examine the tractability of using
our approach, the Frequency Map Enhancement (FreMEn), as a
core component of spatiotemporal models for mobile robotics.
In particular, we investigate the following questions:

1) How many parameters of the spectrum typically have to

be stored to represent and predict the environment state?

2) How efficiently can it represent long-term observations?

3) What is the accuracy of its predictions?

4) How can the approach benefit long-term autonomy of

mobile robots?

To answer these questions, we analyzed several types of envi-
ronment models gathered by a mobile robot which was continu-
ously operating for several months in a human-populated indoor
environment. To quantitatively evaluate the performance of the
FreMEn, we use four different criteria relevant to mobile robot
mapping. The prediction and estimation errors ¢, and ¢, relate
to the faithfulness of the FreMEn, i.e., its ability to correctly
estimate and predict the environment states for a given time pe-
riod. The compression ratio relates to the memory efficiency of
the FreMEn representation, i.e., the memory needed to represent
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the long-term observations of the environment. The update time
relates to the computational complexity of the FreMEn.

A. Prediction and Estimation Error

Knowing the coefficients P;(w;) of the spectrum P allows
us to calculate an estimate s'(t) of the original state s(t) by
(9). A natural concern is the accuracy of reconstruction of s'(t),
because it will affect the prediction capabilities of the spectral
model and the size of the outlier set O. One can expect that
increasing the spectral model order (i.e., including more coeffi-
cients in P) would enable more precise reconstruction of s'(t)
from the spectral model P alone. However, as the number of
parameters grows, the model becomes more adjusted to the spe-
cific time series of the observations s(¢), which decreases its
ability to predict the environment state in the future.

To evaluate the quality of the spectral model, we define the
estimation error €(t,, t;) as the ratio of the correctly estimated
signal ¢'(¢) on a given time interval ¢ € [t,, ;] to the length of
the entire interval

1
ty, — t,

E(ta,tb) =

/|s’(t) — s(t)|dt. (14)

t

The estimation error can be also calculated from the intersection
of the intervals in the outlier set O and (¢,,t;) as

[(tp,t0) N O]
|(tbata)|

Since the outlier set O is A-encoded, the calculation of (15) can
be performed very efficiently.

Typically, the error would be calculated for the entire series
of observations, i.e., from time O to the time of the latest obser-
vation 7. We call this error the estimation error of the spectral
model and denote it as €, = €(0, 7).

Suppose that the sequence s(t) includes observations made
from O until 7 and that the spectral model P(w) had been cal-
culated using only observations made between 0 and 7/, where
7/ < 7. Then, calculation of §'(t) for t € (7', 7] by (9) is actu-
ally a prediction. Thus, the estimation error €(7/, 7) relates to
the ability of the spectral model to predict future states from
past observations. We denote the error ¢(7', 7) as the prediction
error €,. Note that the aforementioned situation happens every
time the model is updated: the value of 7’ corresponds to the
time of the last update, while the outlier set already contains
observations that have been obtained after 7. Since calculation
of €. and ¢, by (15) is computationally efficient, the proposed
algorithm can use it to decide whether a model update is needed
as well as the optimal order of the spectral model. This can
be employed to adapt the model order based on the observed
dynamics rather than using a fixed model order.

Although the calculation of both errors is similar, they repre-
sent different properties of the FreMEn model. The estimation
error ¢, relates to the ability of the spectral model to recover
past observations and ¢, represents the ability to predict future
states. While ¢, decreases with the model order, the dependence
of ¢, on the model order is more complex.

€(ty,ty) = (15)

Note also that (14) relates only to the reconstruction of the
states s(t) from the spectral model P before the outlier set is
taken into account. The application of the outlier set O allows
us to recover the sequence s(t) in an exact way.

B. Choosing the Model Order

As mentioned before, the dependence of the prediction er-
ror €, on the model order [ is not straightforward. Choosing
too low a value [ causes overgeneralization, while choosing too
high a value of [ causes overfitting of the FreMEn model. To
select the proper value of the model order [, we evaluate the
model’s predictive capability for different values of [, choose
the order ! with the lowest prediction error ¢, and then per-
form the model update with the value I’. In a typical scenario
of robot deployment in our project [31], updates of the FreMEn
models are performed at midnight every day when the robot
replenishes its batteries at its charging station. Before updating,
the performance of the FreMEn models with different orders [
is evaluated by comparing their predictions to the observations
gathered since the last update (i.e., since midnight the previ-
ous day). Then, the models are updated using the order which
achieved the lowest prediction error. A typical value for an op-
timal model order [’ is 2 or 3 and the typical time to establish
the optimal order and update the spatiotemporal models used in
our robot deployments is less than a minute.

C. Compression Ratio

The compression ratio indicates the efficiency of the model in
representing the spatiotemporal dynamics of the environment.
Rather than evaluating the compression ratio from a theoretical
point of view, we adopt a more practical approach and base our
calculations on the actual size of the file that contains the spectral
model. Assuming that a file of size z[bits] contains a FreMEn
model of an environment with n states and m observations, and
that a traditional model would use one bit per observation, the
compression ratio is simply

r=—:.
z

(16)

In some scenarios, maintaining an entire outlier set © might be
infeasible due to memory constraints, and the past observations
s(t) are represented solely by the set P. While this results in
lossy compression with quality corresponding to the estimation
error €., the memory size of this reduced representation is inde-
pendent of the number of measurements and is determined by
the number of modeled states n and the model order [, which
can be selected a priori.

D. Update Time

The computational complexity of the proposed method is
given by the complexity of the fast Fourier transform algorithm,
which is O(m log m), where m is the length of the processed
sequence. This indicates that the time ¢ needed to build, update,
or reconstruct a spectral model with n states and m observations
by (1) and (7) is t ~ mnlog(m). Thus, the update time of the
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Fig.3. Week-long state model of a single cell of an occupancy grid. While the
traditional static model simply assumes that the probability of the cell occupancy
is ~25%, the frequency-enhanced model captures the cell’s dynamics. Note the
model improvement as more spectral components are included.

FFT-based model increases with the number of past observa-
tions.

However, the computational complexity of the incremental
calculation scheme performed by (11) depends only on the num-
ber of new observations m’, the number of independent states 7,
and the number of maintained spectral components k, and there-
fore, does not depend on the number of past observations. On
the other hand, it requires to maintain a larger number of spec-
tral components and is less memory efficient than the FFT-based
model.

Since we are concerned with the practical applicability of our
approach rather than with theoretical bounds of computational
complexity, we measured the real time required to calculate and
update the spectral models in our evaluations.

V. SINGLE-STATE DYNAMIC MODEL

To experimentally verify the feasibility of the proposed ap-
proach, we first gathered a week-long dataset containing a single
state.

This dataset was gathered by a RGB-D camera monitoring
a small university office from a fixed location. Its range mea-
surements were used to establish the occupancy of a single
20 x 20 x 20 cm cell located in the middle of the room en-
trance. This cell was occupied when the door was closed and
when people passed through the door, otherwise it was free.
The office had an “open door” policy, i.e., the door remained
open whenever the office was occupied. Therefore, the mea-
sured state s(¢) corresponded strongly to the presence of people
inside the office. Every time someone went through the door,
the monitored cell was briefly occupied and the room was con-
sidered empty, which introduced noise on the measured state
s(t). The measurements were taken continuously for one week
(July 23-29, 2013) at a rate of 30 Hz, so the state observation
consists of 18 million values. For the purpose of this evaluation,
we subsampled the values by 15, which means that the state
s(t) is measured twice per second, so that s(t) consists of more
than a million values. After this week, two additional single-day
datasets (July 31 and August 5 2013) were gathered.
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model’s compression ratio and errors of estimation and prediction.

To evaluate the proposed method’s capability to represent
the temporal dynamics of the observed state, we built several
spectral models of the training dataset. Fig. 3 shows that the
spectral model captures the state dynamics, which results in a
more faithful representation of the given state. The first row
of Fig. 3 shows that the traditional probabilistic model would
simply assume that the door is open with 25% probability.
Modeling the state with FreMEn of order 1, i.e., considering
only one periodic process results in a model that suggests that
the door is likely to be open during the afternoon rather than
at night—see the second row of Fig. 3. Adding three other
spectral components results in a model that captures the weekly
periodicities as well—the probability of the door being open
(see the last row of Fig. 3) during weekends is lower than during
the working days. This result suggests that the method’s ability
to model the dynamics of the measured state increases with the
number of model parameters included.

The dependence of the estimation and prediction errors on
the number of components of the spectral model is shown in
Fig. 5. To estimate the dependence of the model estimation
and prediction errors on the number of model parameters, we
built a spectral model of the one-week-long training dataset.
The accuracy of estimation e, was calculated as the difference
between the original and reconstructed signal by (14). Moreover,
we calculated the accuracies of prediction ¢,; and ¢,2 for two
days of the following week, see Fig. 4.

The results in Fig. 4 indicate that the static model (i.e., Fre-
MEn order 0) achieves an estimation error of 25%-35%. The
results also indicate that while the estimation error ¢, decreases
monotonically with the model order, the prediction error is not
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(a) (b)

Fig. 6.  Fine-grained 3-D occupancy grids of the “Office” dataset. (a) Empty
office 3-D grid. (b) Occupied office 3-D grid.

necessarily monotonic. Rather, the local minima of the predic-
tion errors suggest that for the purpose of predictions, one should
use spectral models of orders around 2 or 3 to prevent overfitting.
The overfitting effect is more prominent with the second testing
set, which might be caused by the longer prediction horizon.

The test indicates that the spectral model can represent mil-
lions of measurements with only a few complex numbers. Fig. 5
shows that the spectral model without the outlier set O achieves
compression ratios in the order of 1 : 1000 while losing less
than 5% of information. The size of the A-encoded outlier set
was about 360 values representing 180 time intervals where
the spectral model did not match the measured sequence, which
corresponds to a lossless compression ratio of ~1:100. The time
needed to build the spectral representation on an i7 processor
was 3.7 ms, which illustrates the efficiency of the chosen Fast
Fourier transform implementation [32].

Our method can be also used to detect anomalies, i.e., sit-
uations where a local state of the world deviates significantly
from the spectral world model of the robot. Since our model
can predict the state s(t) with a given confidence value by (9),
we can assume that a measurement s (¢) is anomalous with
confidence level c if s™ (t) < s(t,¢) or if s (t) > s(t,1 — c).
Fig. 4 shows that FreMEn-based anomaly detection with confi-
dence level 99% correctly detected a situation when the room
was accessed by an unexpected visitor shortly after midnight.

VI. LARGE SPATIOTEMPORAL REPRESENTATION

To evaluate the ability of the proposed method to represent
the long-term dynamics of three-dimensional environments, we
collected two million occupancy grids of a University office over
the course of 112 days. Similarly to the previous experiment,
the dataset was collected by a stationary RGB-D camera that
captured and stored a depth image every 5 s. These range mea-
surements were integrated into a FreMEn occupancy grid [9],
where the occupancy of each cell was modeled by the proposed
method. Fine-grained occupancy grids captured by the RGB-D
camera are shown in Fig. 6 (for the purpose of visualization,
the resolution of the grids shown is higher than those in the
dataset). Each day, the spectral model of the entire grid was
updated and the resulting representations were saved in sepa-
rate files. To evaluate the efficiency of the resulting 4-D rep-
resentations, we measured the compression ratios, estimation
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precisions, and times needed to calculate the update. The com-
pression ratios were calculated simply by comparing the size of
the saved files to the theoretical size of a traditional model by
(16), where the number of modeled states n, i.e., the number of
cells in the grid was ~213 000 and 17 200 observations per day
were considered. This means that storing all the observed states
would require ~500 MB per day and a naive representation of
the entire dataset would require around 50 GB of storage space.
The estimation error of the entire model was calculated as an
average of estimation errors of the individual cells that changed
at least once—calculating the average estimation error for all
cells would result in small numbers, because most of the cells
represent space that is always empty. Finally, the update time
was obtained by the direct measurement of the time needed to
update the spectral models of all the grid cells. These experi-
ments were performed on an i7-4500U processor with 16 GB
of RAM.

Five types of spectral models were calculated. The first, “loss-
less” model maintains not only the spectral representation, but
also an outlier set O of each cell, and can recover all the mea-
surements accurately. The other, “lossy—order 1-5” models did
not use the outlier set and maintained 1 to 5 spectral compo-
nents of the dynamic cells. The dependencies of the sizes of
the “lossy” models on the length of the dataset represented are
shown in Fig. 7. One can see that after some initial growth,
the storage requirements of the models stabilize at the order of
megabytes. The growth of the “lossy” models is caused by the
fact that longer data collection means that more cells change
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Fig. 9.

Frequency-enhanced feature map [4] for visual localization: The observations of image feature visibility (center,red) are transferred to the spectral domain

(left). The most prominent components of the model (left, green) constitute an analytic expression (center, bottom) that represents the probability of the feature
being visible at a given time (green). This is used to predict the feature visibility at a time when the robot performs self-localization (blue).

their states at least once, which causes the method to extend
their temporal models.

Given that the naive representation of the dataset grows by
500 MB per day, the compression rates of the “lossy” models
actually grow in time (see Fig. 8) and are in orders of 10 000.
The “lossless” representation grows linearly with time at a rate
of 2 MB per day achieving compression rates of 1:250. Fig. 7
also shows that the time needed to update the model, which rep-
resents 4 x 10'! cell observations is reasonably short—creation
of a 16-week-long spatiotemporal model takes less than 1 h. Us-
ing the nonuniform incremental Fourier Transform results in an
update time that exhibits a similar trend to the “lossy” model
sizes. This is caused by the fact that the number of cells for
which the transform has to be calculated increases over time,
i.e., the same effect that causes the growth of the “lossy” mod-
els. Finally, the estimation errors of the spatiotemporal models
with different orders are presented in Fig. 8, which shows that
as the model includes more spectral components, its estima-
tion error and compression rates drop. Compared to the “Static”
model, which fails to correctly estimate approximately 6% of
the states, the “lossy” FreMEn estimates fail in 3% to 4% cases.
This means that using the FreMEn method reduces the amount
of incorrectly estimated states by 30%—50%. Using the lossless
method results in faithful (0% error) state reconstruction at the
expense of a lower (1:250) compression rate.

VII. FREMEN FOR MOBILE ROBOT LOCALIZATION

The results of the previous experiments demonstrate that
through explicit modeling of the environment dynamics, our
method can efficiently represent the evolution of indoor envi-
ronments over time. Moreover, we have shown that the method
can predict future environment states. In this experiment, we
evaluate the usefulness of these predictions for mobile robot
localization in indoor and outdoor environments. The consid-
ered scenario is vision-based localization. Given a topological
map, where each node is associated with a set of image features
visible at that particular location, the robot has to decide on its
current location based on its camera image. The difficulty is
that the appearance of the locations (i.e., visibility of the image
features) varies over time. This problem has been tackled by

Fig. 10.  Example images of the indoor training dataset. Shows the appearance
of six monitored locations on November 2013.

attempting to identify the most stable [24] or most useful [33]
features, or by remembering several appearance models for the
same location [3]. Other approaches [6], [25] attempted to infer
the environment appearance for the particular time(s) by mod-
eling the persistence [25] or systematic appearance change of
visual features [6]. In this experiment, we predict the visibility
of the individual image features at a given time by FreMEn, see
Fig. 9 and video at http://fremen.uk.

A. Indoor Localization

The environment considered is a large open-plan office of
the Lincoln Centre for Autonomous Systems, where an au-
tonomous robot captured RGB-D images of eight designated
areas every 10 min. During a week-long data collection session
in November 2013, the robot visited each of the eight locations
144 times per day, collecting a training dataset that contains
more than 8000 images. To document the appearance change
over one year, we provide images from the three testing datasets
in Fig. 11. The three testing datasets were collected one week
(November 2013), three months (February 2014), and one year
(December 2014) after the training dataset collection. Each of
these datasets was gathered for 24 h and contains over 1000
images. Representative examples of the images of the training
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(b)

Fig. 11.  Example images of the indoor testing datasets. Shows the evolution
of one of the monitored places over the course of one year. (a) November 2013.
(b) February 2014. (c) December 2014.

dataset are shown in Fig. 10. The gathered images were pro-
cessed by the BRIEF algorithm [34], which was evaluated as
one of the best performing image feature extractors in outdoor
scenarios of long-term localization [35], [36], and our tests con-
firmed its good performance in indoor scenarios as well. The
features of the training dataset belonging to the same locations
were matched and, thus, we obtained their visibility over time,
which was then processed by our method. To choose the or-
der of the FreMEn models, we adopted the scheme described in
Section IV-B, i.e., to select the correct order [, the FreMEn mod-
els were trained initially on the first six days of the training data
and their predictive capability was evaluated on the last training
day. Next, the models were trained using the entire 7-day-long
dataset. Thus, we obtained a dynamic appearance-based model
of each topological location that can predict which features are
likely to be visible at a particular time, see Figs. 1 and 9.

To test if these predictions actually improve robot localiza-
tion, the following procedure was performed for each of the
~3000 images in the testing datasets. First, the method estab-
lished the time ¢, when the testing image was captured. Then,
the dynamic map created during training was used to calculate
the probability of each feature’s visibility at time ¢.. Next, the
n most likely visible features at each location were selected,
which resulted in eight sets denoted as JF;, each containing n
image features. Finally, the features of the testing image were
extracted and matched to the sets ;. If the set with the high-
est number of matches corresponded to the real location of the
robot, localization was considered successful, otherwise it was
considered a failure.

To compare the proposed algorithm with other localization
methods, we implemented a simple version of the experience-
based approach developed by the Churchill and Newman [3].
During training, this method attempts to determine the robot
location based on the camera input, and if it fails, the current
appearance (aka experience) is added to the set of “experiences”
that are associated with the given location. Thus, each location
is associated with several experiences which are matched to the
currently perceived sensory data. While the method introduces a
certain computational overhead caused by the fact that there are
more experiences than actual locations, this overhead is com-
pensated by the method’s robustness to significant appearance
changes. This computational overhead was reduced in [37] by
inferring the most probable appearances that the robot will expe-
rience around a given location. Since we use a slightly different
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Fig. 12.  Localization error rates for different indoor testing datasets, methods,

and feature numbers. The first three graphs show the dependence of the error
on the number of features used for localization. The fourth graph compares
the localization errors of the different methods and datasets assuming that the
number of features used is 50.

setup and scenario than the one considered in [3], we had to
introduce a slightly different version of the experience-based
localization. In our case, an experience consists of the robot
position and image coordinates and descriptors of the detected
visual features, and we did not use the optimizations introduced
in [37].

We also attempted to reduce the aforementioned computa-
tional overhead by combining the experience-based approach
with FreMEn—the FreMEn was used to calculate the proba-
bility of a given experience for a given time, so we could use
only the relevant experiences for localization. In the following
evaluation, this frequency-enhanced experience method will be
coined as “FreEx.” Processing of our training dataset by the
experience-based method generated over 170 different experi-
ences tied to eight different locations.

The dependence of the average localization error for each
indoor testing dataset on the number of features n used for
localization is shown in Fig. 12. The results indicate that the
localization robustness of the FreMEn is only marginally better
compared to the experience-based method and they both outper-
form the “static” approach that relies on the most stable image
features. However, while the FreMEn approach improves the
robustness by predicting the appearance of the eight locations,
the experience-based method requires that the current camera
image is matched to all of the 170 experiences, which is com-
putationally more expensive. This is partially mitigated by the
FreEx approach, which typically localizes the robot based on
100 experiences, which are selected from the 170 learned ones
based on the current time.

While the results show that explicit representation of environ-
ment change improves the localization robustness, the improve-
ment diminishes with map age. Since we can observe the same
effect for the FreMEn and experience-based methods, the effect
is probably not caused by change in the environment dynamics.
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Fig. 13.  Seasonal variations at location I of the Michigan dataset. (a) Winter
2012. (b) Summer 2012.

Rather, the environment is subject to unexpected and cumulative
changes, which affect its appearance in a way that is not possi-
ble to predict by the approaches evaluated. This issue severely
affected the FreEx approach, which failed to correctly predict
the relevant experiences to be used for visual localization. The
effect of map decay could possibly be mitigated by active re-
observation of locations that were not visited for a long time,
e.g., by means of lifelong exploration [10]. This problem also
leads to fascinating questions that regard forgetting of obsolete
observations and adaptation of the forgetting speed to the rate
of environmental change, although these questions are beyond
the scope of the work presented here.

B. Outdoor Localization

To evaluate the performance of the FreMEn for visual local-
ization in outdoor environments, we performed the same com-
parison on two datasets, which capture the seasonal changes of
ten different locations in two semiurban environments.

The images of the first five locations were obtained from the
North Campus long-term vision and lidar dataset (NCLT) which
was collected at University of Michigan to support research on
image features for dynamic lighting conditions [38]. The orig-
inal NCLT dataset [39] was gathered during 27 data-collection
sessions performed over 15 months and includes LIDAR, GPS,
and odometry data. For our evaluation, we selected five different
locations from the NCLT dataset and created the training dataset
from 12 images captured at each location at a different time. To
create the testing dataset, we randomly selected three images per
location from the set of images not used for training. Unlike the
two aforementioned datasets, the Michigan set was not gathered
on a regular basis and thus, we used the nonuniform version of
FreMEn introduced in Section III-C.

The second set of outdoor images was obtained from the
Stromovka dataset [40] that was collected in one of Prague’s
arboretums to support research on long-term teach-and-repeat
navigation [41]. The Stromovka dataset contains images that
were captured by a mobile robot every month from September
2009 until the end of 2010, and three additional image sets that
were collected during 2011 and 2012. Compared to the Michi-
gan dataset, the Stromovka one spans a longer time period and
contains more foliage and fewer buildings. Moreover, seasonal
weather variations in Prague are more extreme than in Ann Ar-
bor, see Figs. 13 and 14. Thus, the appearance variations of the
Stromovka dataset images are greater than the Michigan ones.

To perform the evaluation, we trained both methods using
the datasets gathered during the first 12 months. Then, we
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(a) (b)

Fig. 14.  Seasonal variations at location I of the Stromovka dataset. (a) Winter
2010. (b) Summer 2010.
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Fig. 15. Localization error rates for the Stromovka and Michigan outdoor

datasets. Shows the dependence of the error rates on the methods and feature
numbers used.

calculated the localization error rates on the testing sets, which
were collected during the following months and years. The
dependence of the localization error for both outdoor datasets
on the number of features n is shown in Fig. 15. Similarly
to the indoor case, the localization error rates of the FreMEn
and experience-based methods were much lower compared
to the “static” method, which neglects the appearance change
and takes into account only the most stable features. However,
the FreMEn localization was computationally more efficient,
because it had to match the current camera image to five
predicted maps, while the experience-based approach used 15
and 21 different experiences in the Stromovka and Michigan
cases, respectively. For the case of outdoor datasets, we did
not have enough data to properly estimate the best-performing
model order [, so we set [ to a conservative value of 1.

The aforementioned localization experiments were per-
formed with a relatively low number of image features per
image, because the number of locations to distinguish is low.
In such cases, extracting a large number of image features will
cause the evaluated methods to exhibit a similar performance.
To demonstrate the advantages of our approach while utilizing
the full power of the feature extractors available would require
long-term data collection in much larger environments.

C. Predictive Capability

To evaluate the predictive capability of the FreMEn approach,
we calculated the average probability that a predicted feature
will actually be visible in the testing images and compared
this with a static approach. First, we calculated the ten most
stable features across the training sets and calculated how often
these are matched to the features extracted from the testing
images of the same location. This corresponds to the Static
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TABLE I
NAVIGATION STATISTICS

Method Nov’13
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FreMEn 55.2
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Fig. 16. Navigation system overview. Proposed navigation stack on the left
and predicted and observed 2-D grids on the right.

method described in the previous sections. Then, we repeated
the procedure with the ten features, which were predicted by
FreMEn to be most likely visible at the given time. The results,
summarized in Table I indicate that the image features predicted
by the FreMEn method for a particular time are more likely to
be visible compared to the features that were most frequently
reobserved in the training sets.

VIII. FREMEN FOR MOBILE ROBOT NAVIGATION

The experiments presented previously were conducted in an
offline manner on prerecorded data. To use FreMEn online as
an integral component of a long-running autonomous system,
we developed a FreMEn occupancy grid which was integrated
in the ROS navigation stack [42]. This spatiotemporal grid uses
the nonuniform version of FreMEn with the recency model
proposed in Section III-D. During autonomous navigation, our
robots build temporally local maps and integrate them into the
global spatiotemporal grid. Through reobservation of the same
spatial locations, the spatiotemporal grid obtains information
about long-term environment dynamics and gains the ability
to predict the future environment states. This predictive ability
enables the generation of time-specific 2-D maps which can
be used by the robot’s localization and planning modules. The
integration of this predictive spatiotemporal model in the sys-
tem and a visualization of the map building process are shown in
Fig. 16. In this scenario, we evaluated the impact of the proposed
spatiotemporal representation on localization accuracy and effi-
ciency of path planning. To do this, we deployed a mobile robot
for several days at the Lincoln Centre for Autonomous Sys-
tems, having it regularly patrolling the office in a predetermined
path several times per hour, using the proposed modification
of the ROS navigation stack. The patrolled area contained a
1.5-m-wide corridor. On its sides, there are storage cupboards
that are used by research staff and closed at the end of their
working day. When a cupboard door is left open, the corridor

Environment Static Changing

Map Static  Average  Predicted
Average speed [ %] 0.21 0.15 0.18
Recovery events [-] 1 21 12

appears to be wider and its center may be perceived as displaced
to one side.

To evaluate the accuracy of robot self-localization, we in-
stalled an independent localization infrastructure over the mon-
itored corridor [45]. To estimate the impact of the environment
change and sensor range on the localization precision, we pro-
cessed laser, odometry, and ground truth data from 20 differ-
ent passes of the robot and trimmed the laser data at different
lengths. We then performed standard ROS-based AMCL local-
ization on the “static,” “averaged,” and “predicted” 2-D maps
and compared the robot positions to the ground truth obtained
by the independent localization infrastructure.

The results shown in Fig. 17 indicate that use of the time-
specific, predicted maps improves the localization precision in a
significant way if the range of the laser rangefinder is lower than
the overall map size. However, a small difference in localization
precision can have a significant impact on the efficiency of the
robot navigation and quality of the constructed maps.

To evaluate the navigation efficiency, we processed navigation
statistics of 180 different patrol runs. The data from each patrol
run contains the robot’s average speed and the number of events
where normal navigation behavior failed and the robot had to
perform custom recovery behaviors in order to proceed with
its patrol. The gathered navigation statistics were divided into
three groups of 60 patrols each. The first group contained patrols
where the system was using a static map when no environment
changes were happening. The second group contained patrols
where the robot was using an “averaged” map, which slowly
adapts to the observed change. The third group contained patrols
where the robot was using a “predicted,” time-specific map
that took into account not only the periodicity, but also the
persistence of the observed changes.
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Table II indicates that in a static environment, the robot could
navigate efficiently even when using a static map, but as soon as
the environment began to change, the navigation efficiency was
affected in a negative way. However, the negative effect of the
changes was slightly lowered through the use of the proposed
dynamic map, which represents the environment changes in an
explicit way.

IX. CONCLUSION

We have presented a novel approach for spatiotemporal en-
vironment modeling in the context of mobile robotics. The
approach is based on an assumption that from mid- to long-
term perspectives, the environment is influenced by various
processes, some of these being periodical. We hypothesize that
certain regularities in the environment dynamics can be rep-
resented by the periodicity, amplitude, and time shift of these
underlying processes, and propose to identify these parameters
through spectral analysis based on the Fourier transform.

Knowledge of these processes allows us to represent the ele-
mentary states of the environment models by probabilistic func-
tions of time, which enables efficient representation of arbitrary
timescales, anomaly detection, and prediction of future states.
To evaluate the performance of the proposed method in real
long-term scenarios, we applied it to data gathered by mobile
robots over extended time periods of months and years.

The results indicate that the proposed method can represent
arbitrary timescales with constant (and low) memory require-
ments, achieving compression rates between 10% and 10° while
predicting the future states with error rates of less than 10%.
We have also demonstrated that our method’s prediction of the
environment appearance improved vision-based localization in
changing environments. Moreover, we demonstrated that inte-
grating the method in the ROS navigation stack improves the
efficiency of robot navigation.

In the future, we would like to extend the approach so that
it can take into account sensor noise and represent not only
binary, but also higher dimensional states, such as object posi-
tions. While the method itself does not exceed the performance
of other approaches for persistent localization in changing en-
vironments, such as [3], [5], [6], [43], its simplicity enables its
application to other scenarios related to long-term autonomy
and life-long learning. To provide an overview of the method’s
applications and to allow its use by other researchers, we have
released the method’s source code, examples of use, and datasets
at http://fremen.uk.
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The STRANDS Project

Long-Term Autonomy in Everyday Environments

hanks to the efforts of the robotics and autonomous
systems community, the myriad applications and
capacities of robots are ever increasing. There is
increasing demand from end users for
autonomous service robots that can
operate in real environments for extended periods.
In the Spatiotemporal Representations and
Activities for Cognitive Control in Long-Term
Scenarios (STRANDS) project (http://strands-
project.eu), we are tackling this demand
head-on by integrating state-of-the-art
artificial intelligence and robotics research
into mobile service robots and deploying
these systems for long-term installations in
security and care environments. Our robots
have been operational for a combined
duration of 104 days over four deployments,
autonomously performing end-user-defined
tasks and traversing 116 km in the process. In
this article, we describe the approach we used
to enable long-term autonomous operation in
everyday environments and how our robots are
able to use their long run times to improve their
own performance.

Long-Term Autonomy in STRANDS
Autonomous robots come in myriad forms and can be used

in a range of applications. With these differences, long-term

autonomy (LTA) has a variety of meanings. For example, NASA’s

Opportunity rover has been autonomous for more than ten years on the surface of Mars; wave gliders
can automatically monitor stretches of ocean for months at a time; and autonomous cars have completed
journeys of thousands of kilometers. In this article, we restrict our contributions to mobile robots operat-
ing in everyday, indoor environments, such as offices and hospitals, and capable of performing a variety of
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service tasks. Across the various robots described previously,
there are commonalities in low-level, short-term control algo-
rithms (e.g., closed-loop motor control). Beyond this, the
algorithms used to provide long-term, task-specific autono-
mous capabilities—and the hardware these algorithms
control—vary greatly, according to application and environ-
mental requirements. The challenges that distinguish indoor
service robots from other LTA robots relate to both their envi-
ronment and their task capabilities. Indoor task environments
are less physically risky than outdoor environments, but they
have a comparatively higher degree of short- to medium-term
physical variability, e.g., moving objects such as people, doors,
and furniture. You might argue that traffic is highly variable,
but roads are generally similar to each other and the move-
ment of vehicles is generally more predictable than the move-
ment of people. In terms of application requirements,
multipurpose service robots must be capable of predictable
scheduled behavior while also being retaskable on demand
with high availability and must be able to navigate in rela-
tively confined, dynamic environments. This is in contrast
to the largely restricted-purpose systems mentioned previ-
ously, such as rovers and wave gliders. Taken together, the
set of requirements for indoor service robots presents
unique challenges, and, thus, LTA in this context warrants
dedicated research.

Given the state of the art, we consider long-term for a
mobile service robot to mean at least multiple weeks of
continuous operation. In very general terms, such LTA
operation requires a robot’s hardware and software to be
robust enough to overcome failure to enable such opera-
tion. Such robustness can be provided by both design-time
and run-time approaches. It is essential that LTA systems
actively manage consumable resources (e.g., a battery) and
that any autonomy-supporting capabilities (e.g., localiza-
tion) are not adversely affected by long run times. While
this latter point is common sense and may be common
practice in many other technologies (from operating sys-
tems to cars), it has only recently been considered in auton-
omous robotics.

One reason it is challenging to design a service robot to
meet the requirements of LTA is the impossibility of antici-
pating all situations in which it may find itself. If we can
enable robots to run for long periods of time, however, then
they will have opportunities to learn about the structure and
dynamics of such situations. By exploiting the results of such
learning, the robots should be able to increase their robust-
ness further, leading to a virtuous cycle of improved perfor-
mance and greater autonomy. It is this latter point that
motivates STRANDS: To go beyond robots that simply sur-
vive to those that can improve their performance in the long
term. It is within this context that this article makes its main
contribution: the STRANDS Core System, a robotic software
architecture that was designed for LTA service robot applica-
tions and has been evaluated across four end-user deploy-
ments. The STRANDS Core System contains a mix of
common sense and novel elements that have enabled it to

support more than 100 days of autonomous operation. This
is the first time all of these elements have been presented
together, and this is the first presentation of metrics describ-
ing performance across deployments. Our approach is
inspired by the work of Willow Garage [1] and the CoBot
project [2], plus the pioneering work on the Rhino and
Minerva systems (e.g., [3]). Our work is distinguished from
previous work by the combination of multiple service capa-
bilities in a single system capable of weeks-long continuous
autonomous operation in dynamic indoor environments
while using various forms of learning to improve system per-
formance. Many other projects address one or two of these
elements but not all four simultaneously.

Application Scenarios
To ensure our research meets the demands of end users, our
work is evaluated in two application scenarios—security and
care. Space does not permit a detailed explanation of the
tasks in each scenario; instead, we cite other works that
include further information on the tasks and technology
from each scenario.

Our security plan was developed with G4S Technology. The
aim of this system was to have a robot monitor an indoor office
environment and generate

alerts when it observed
prohibited or unusual
events. We completed two
security deployments in
which a mobile robot rou-

Our robots have been

tinely created models of  duration of 104 days
the environment’s three-
dimensional (3-D) struc- over four deployments,

ture [4], objects [5], and
people [6]; modeled their
changes over time; and
used these models to detect
anomalous situations and
patterns. For example, we
developed robot behaviors
to detect when a human
moves through the envi-

autonomously performing
end-user-defined tasks
and traversing 116 km in

the process.

operational for a combined

ronment in an unusual

manner [6], to build models of the arrangement of objects on
desks [7], and to check whether fire exits have been left open.
Long-term deployments are essential for these services to
gather sufficient data to build appropriate models.

Our care scenario was developed with the Akademie fiir
Alterforschung at the Haus der Barmherzigkeit. In this
arrangement, the robot supported staff and patients in a large
elder-care facility. We completed two care deployments in
which a mobile robot guided visitors, provided information to
residents, and assisted in walking-based therapies. In the care
scenario, the robot serves users more directly, and, therefore,
long-term system robustness is crucial, as is adapting to the
routines of the facility. More information on this plan is
available in [8] and [9].
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Figure 1. Two of the STRANDS MetraLabs SCITOS A5 robots in their application environments. (a) The robot Bob at G4S's Challenge
House in Tewkesbury, United Kingdom. (b) The robot Henry in the reception area of Haus der Barmherzigkeit, Vienna.

Robot Technology

The systems reported in this article are developed in Robot

Operating System (ROS), available under open-source licenses

and binary packaged for Ubuntu (http://strands-project.eu/
software.html) [2]. While

the majority of our work is

We also take advantage platform-neutral, all of
our deployed systems are
of the robot’'s need to based on the MetraLabs
SCITOS A5 robot (Fig-
regularly dock with ure 1). This is an industry-
standard mobile robot
a charging station by capable of long run times
(12 h on one charge) and
resetting the robot's autonomous charging. Our

robots each have SICK
S300 lasers in their bases
(for localization, leg detec-
location while it is docked.  tion, and so on) and two
e Asus Xtion PRO RGB-D

position to this known

cameras, one at chest height
pointing downward (for obstacle avoidance) and the other on a
pan-tilt unit (PTU) above the robot’s head. The SCITOS has an
embedded computer with an Intel Core i7 processor with 8 GB
of random-access memory (RAM), to which we networked
two additional computers, each with an Intel Core i7 processor
and 16 GB of RAM.

The STRANDS Core System

The STRANDS Core System (Figure 2) is an application-neu-
tral architecture for LTA in mobile robots. It is a combination of
widely used components and components designed specifically
for LTA. As mentioned previously, hardware and software
robustness is essential for LTA. Hardware robustness is beyond
the scope of our research; thus, we assume our software is
running on an appropriate robot and computational platform.
We address software component robustness through a mix of
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strategies. During development, we encourage components to
be designed in a way that makes the minimal assumptions
about the existence of other components and services (e.g., by
checking service existence before running). We also pay partic-
ular attention to error handling to ensure component-local
errors and exceptions do not propagate unnecessarily. This
allows components and whole subsystems to be brought up
and down automatically. At run-time, we use built-in ROS
functionality to automatically relaunch crashed components,
and most subsystems run only when required, thus saving the
energy and processing power and reducing opportunities for
errors. We also use run-time topic monitoring to detect prob-
lems (e.g., low publish rates) and trigger component restarts.
Finally, we run a continuous integration server that tests
components and the whole system in isolation, on recorded
data, and in simulation.

The overall performance of a mobile robot is constrained
by its localization and navigation systems, so we use widely
adopted ROS packages to provide state-of-the-art perfor-
mance. At the start of a deployment, we build a fixed map from
laser scans, localize in it with adaptive Monte Carlo localiza-
tion, and navigate using the dynamic window approach
(DWA) over 3-D obstacle information [3]. See http://wiki.ros
.org/navigation for details on these techniques. While our use
of a fixed map appears at odds with LTA in a dynamic environ-
ment, our environments are dominated by static features (e.g.,
walls), which prevent the robot’s localization performance
from degrading. We also take advantage of the robot’s need to
regularly dock with a charging station by resetting the robot’s
position to this known location while it is docked. This limits
localization drift to that which can occur during time away
from the dock.

We manually build a topological map on top of the fixed
continuous map. We place topological nodes at key places in the
environment for navigation (e.g., either side of a door) or for
tasks (e.g, by a desk to observe). The topological map from our
2015 security deployment is shown in Figure 3. Edges in the
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Figure 2. A schematic overview of the STRANDS Core System. 2-D: two-dimensional.

topological map are parametrized by the
action required to move along them. In
addition to DWA navigation, our system
can perform door passing, docking with
a charging station, and adaptive naviga-
tion near humans [10].

In our experience, navigation per-
formance is a major determinant of
the autonomous run time of a mobile
robot. This is because navigation fail-
ures (e.g., getting stuck near obstacles)
can result in the robot being unable to
return to its charging station. The ele-
ments of the STRANDS Core System
support LTA in the following ways: By
constraining the robot’s movements to
the topological map, we are able to
restrict navigation to known good
areas of the environment. We addi-
tionally restrict movement by marking
areas of the static map as “no go”
zones that cannot be planned through.
Despite these restrictions, navigation

Figure 3. The map of the deployment area in Challenge House in Tewkesbury, United Kingdom,
with the topological map superimposed. Also displayed are the locations where the robot
successfully recovered from a navigation failure. Locations where the bumper was triggered are
red, and green locations indicate nonbumper fails; the robot asked humans for help at these
locations. Places where recoveries were performed by reversing along the previous path are
marked in yellow, and recoveries performed by simply retrying are shown in blue.

failures still occur due to environmental dynamics (e.g., peo-  event of failure (see the “Monitored Navigation” section).
ple walking in front of the robot). Therefore, edge traversals  Topological route planning and execution is one area where
in the topological map are executed by a monitored naviga-  our core system adapts to long-term experience, as described
tion layer that can perform a range of recovery actions in the  in the “Adaptive Topological Navigation” section.

SEPTEMBER 2017 ® |EEE ROBOTICS & AUTOMATION MAGAZINE  ©

149



ID Check
I Wait, Gather Data

[777 Fire Door Check
I Autonomous Object Learn [l Explore Topological Edge
[ Meta-Room Creation [ Visual Object Search

Build Edge Duration Model

Friday, 08 May 2015
Monday, 11 May 2015
Tuesday, 12 May 2015

Wednesday, 13 May 2015
Thursday, 14 May 2015

Friday, 15 May 2015
Monday, 18 May 2015
Tuesday, 19 May 2015

Wednesday, 20 May 2015 - MENEEE NINE O O AR OINNI | | B -
Thursday, 21 May 2015 - (SRR 11 1 T N A M1 [ | 8
Friday, 22 May 2015 |- I A N B .
Tuesday, 26 May 2015 - 1 A O MAINTIE AR I "I 1| 8
Wednesday, 27 May 2015 - AR | AT T AN T 1] T o m [ | .

Thursday, 28 May 2015
Friday, 29 May 2015

Monday, 01 June 2015 - TNA 1 O A O NN [y n T
Tuesday, 02 June 2015 - A N O 11 1 O [ | T
Wednesday, 03 June 2015 - AV O ~ ININNE 000 I . ]
Thursday, 04 June 2015 - A0 0 T A O N L ]
Friday, 05 June 2015 |- OB A (RN | T
Monday, 08 June 2015 - LR UL WL ] T

Tuesday, 09 June 2015
Wednesday, 10 June 2015 -

L L L L
7:00 8:00 9:00 10:00

1
11:00

L L L L L
12:00 13:00 14:00 15:00 16:00 17:00

Figure 4. A plot of the tasks performed by the robot during the 2015 security deployment. White space represents times when the
robot was not performing any tasks, which indicates that the robot was charging or a failure had occurred.

The main unit of behavior in our system is a task. Tasks rep-
resent something the robot can do (e.g,, check whether a fire
door is open, deliver infor-

mation via a graphical user

The data observed interface), and tasks have
an associated topologi-
and generated (e.g., cal location, a maximum
duration, and a time win-
as intercomponent dow for execution. Our

executive framework [11]
schedules tasks to be exe-
cuted within their time
windows and manages
task-directed navigation
and execution. To prevent
task failures from inter-
fering with long-term op-
erations, our framework

communication) by an LTA
system is crucial for both
learning and for monitoring

and debugging the system.

detects task time-outs and
failures, at which point it will stop or restart robot behaviors as
necessary. Maintenance actions such as charging, batch learn-
ing, and database backups are all handled as tasks, allowing the
executive framework to control most of the robots behavior.
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This is essential for LTA as it enables the system to actively
manage its limited resources. A plot of tasks from the 2015
security deployment can be seen in Figure 4.

Our system relies on separate pipelines for perceiving differ-
ent elements of its environment: real-time multiperson RGB-D
detection and tracking [12], visual object instance and category
modeling and recognition [13], and 3-D spatiotemporal map-
ping [4]. This article does not cover our work on perceptually
challenging tasks. Instead, we refer readers to other sources
where we have exploited these perception pipelines, e.g., [5],
[7], and [10].

The data observed and generated (e.g., as intercomponent
communication) by an LTA system is crucial for both learning
and for monitoring and debugging the system. We therefore use
tools based on MongoDB (http://wiki.ros.org/mongodb_store)
to save ROS messages to a document-oriented database. Data-
base contents (e.g., observations of doors being opened or
closed) can then be interpreted by the Frequency Map
Enhancement (FreMEn) component [14], which integrates
sparse and irregular observations into spatiotemporal models
representing (pseudo) periodic environment variations. These
can be used to predict future environment states (see the “Adap-
tive Topological Navigation” section).



Table 1. LTA metrics from the first four STRANDS system deployments.

Care 2014 Security 2014 Care 2015 Security 2015 Total
Total Distance Traveled (km) 2794 20.64 23.41 44.25 116.24
Total Tasks Completed 1,985 963 865 4,631 8,444
Maximum TSL 7d,3h 6d,19h 15d,6 h 28d,0h
Cumulative TSL 20d,19h 21d,0h 27d,8h 35d,3h 104d,7h
Individual Continuous Runs 18 18 5 2 43
A% 38.80% 18.27% 53.51% 51.10%
Metrics deployed. For example, information-serving tasks may take

So far, we have performed two evaluation deployments for
each of the security and care scenarios. For each deployment,
we monitored overall system performance against two metrics:
the total system lifetime (TSL) and the autonomy percentage
(A%). The TSL measures how long the system is available for
autonomous operation and is reset if the system experiences
an unrecoverable failure or needs an unrequested expert inter-
vention (i.e., something that cannot easily be done by an end
user on site). The A% measures how long the system was
actively performing tasks as a proportion of the time it was
allowed to operate autonomously; in our deployments, this is
typically restricted to office hours. The motivation of the A% is
that it is of little value to achieve a long TSL if the system does
nothing. Neither the TSL nor the A% measures the quality of
the services being provided. As this article focuses on LTA, we
restrict our presentation to task-neutral but LTA-specific met-
rics. End-user evaluations of task-specific performance are
ongoing and will be published in the future (see [8] and [9]
for early evaluations from the care scenario).

Table 1 presents our systems LTA performance in 2014
and 2015. In 2014, we aimed for 15 days for the TSL; however,
the longest run we achieved was seven days. Most of our sys-
tem failures were caused by the lack of robustness of our ini-
tial software, leading to unrecoverable component behavior
(crashes or deadlock states). This was fixed for our 2015
deployments by following the development approaches out-
lined in “The STRANDS Core System” section. In 2015, we
targeted 30 days for the TSL, coming close with 28 days in the
security deployment. This long run was terminated when the
robots motors failed to respond to commands, an issue that
has since been fixed with a firmware update. In the 2015
deployments, most failures were due to computer-related
issues beyond the direct contributions of the project (e.g.,
USB drivers, power cables, network problems, and so on). Of
the seven runs in 2015, one run was ended due to user
intervention (a decorator powered off the robot), two due to
bugs in our software, and the remaining four due to faults in
software or hardware beyond our components.

The variations across deployments in terms of the num-
ber of tasks completed and distance traveled are largely
attributable to the different types of tasks performed by the
robots and the different environments in which they were

several minutes with very little travel, but door-checking
tasks will be brief but will require the robot to travel both
before and during the task.

Systems in the literature have delivered more autonomous
time and distance cumulatively (i.e., accumulated across multi-
ple robots and system runs), but we believe the 28-day run is
the longest single continuous autonomous run of an indoor
mobile service robot capable of multiple tasks. The most
relevant comparison we can make is to the CoBots, which
reported a total of 1,279.5 h of autonomy time, traversing
1,006.1 km [2]. This was achieved by four robots in 3,199 sep-
arate continuous autonomous runs over three years, at an aver-
age of 23 min and 0.31 km per run. They did not report the
longest single continuous run (either in time or distance), but
even an extremely long run for a CoBot would only be mea-
sured in hours, not days, because the CoBot does not have
autonomous charging capabilities. In contrast, the STRANDS
systems performed a total of 43 separate continuous runs,
yielding a total of 2,545 h and 116 km over the four deploy-
ments, at an average of 2.7 km and 58 h 12 min per run. The
varied durations of individual runs can be seen in Figure 5.
Note that we use this data to provide a point of comparison.

m Care 2014

m Security 2014
Care 2015

m Security 2015

=
oV

Length of Continuous Run

1]
s = = =
— (e0] A (o)

12h
24 h
48 h
72h
96 h
120 h
144 h

Figure 5. A histogram of individual continuous run lengths over
the four STRANDS deployments.
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Table 2. Classes of navigation failure, their associated recoveries, and the overall counts of successful
and unsuccessful recoveries from these failures. Per-recovery counts are shown in Figure 6.

Failure Recoveries Successful Unsuccessful Total
Bumper pressed Request help via screen and voice. 177 148 325
Repeated request until recovered.
Navigation failure (no valid Sleep then retry; backtrack to last 707 993 1,700
local or global path) good position; request help via
screen and voice. Repeated request
until recovered.
Stuck on carpet Increased velocities commanded to 16 247 263

motors

Security 2015 Monitored Navigation Recoveries

600

therefore developed a framework
that executes topological navigation

= Successful

B Unsuccessful

actions and monitors them for fail-
ure. If a failure is detected, then the

450

300

150

Backtrack Stuck on

Carpet

Request Help Request Help

(Bumper) (Navigation)

(@)

Care 2015 Monitored Navigation Recoveries

framework steps through a list of
recovery behaviors until either the
navigation action completes success-
fully or the list is exhausted, in which
case, failure is reported back to the
calling component. Failure types can
be mapped to specific lists of recov-
eries. When the robot’s bumper is
pressed, a hardware cut-off prevents
it from moving forward, which
means that the robot must ask to be
pushed away from obstructions by

Sleep and
Retry

75

nearby humans. If the local DWA

= Unsuccessful planner fails to find a path, then sim-

m Successful

ply clearing the navigation costmap
to remove transient obstacles may

suffice. We also developed a back-
track behavior that uses the PTU-
mounted depth camera to sense

Backtrack

Request Help Request Help

(Bumper) (Navigation)

(b)

Figure 6. Per-recovery counts for the 2015 (a) security and (b) care deployments.

The two projects are targeting different metrics (i.e., total dis-
tance for CoBots and single-run duration for STRANDS);
thus, the systems naturally have different perfor-
mance characteristics.

Monitored Navigation

Given the huge variety of situations an LTA service robot
will encounter, it is impossible to develop a navigation
algorithm that will successfully account for all of them. We
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Stuck on
Carpet

backward while the robot reverses
along the path it took to the failure
location. This is triggered when navi-
gation fails and clearing the costmap
does not overcome the failure.

Table 2 and Figure 6 present the
recovery behaviors used in our 2015
deployments. Successful recoveries
are those that were not followed by
another failure within one minute or
1 m of travel; otherwise, they are unsuccessful. A successful
recovery may be preceded by any number of unsuccessful
recoveries. A sequence of unsuccessful recoveries can come
from the monitored navigation system as it attempts recov-
eries that then fail or from the task execution framework
unsuccessfully trying to navigate the robot to another task
after a previous failure. Figure 3 shows where all the suc-
cessful recoveries from our 2015 security deployment
occurred. They are largely clustered around areas where it

Sleep and
Retry



was difficult to navigate, such as near doors and close to
desks. This novel approach contributed significantly to the
LTA performance of our systems, as each recovered failure
could have potentially caused the end of a continuous run.

Adaptive Topological Navigation

While monitored navigation helps the robot recover from
navigation failures, it does not help it to avoid them. To
avoid navigation failures in the future, the robot’s navigation
experience is aggregated into a Markov decision process
(MDP) automatically built from the topological map [15].
Using the MDP allows the system to model uncertainty over
the success of the robot traversing an edge in the map and
its expected duration. By learning models for these suc-
cess probabilities and durations online, the robot is able to
continually adapt its behavior to the environment in
which it is deployed. Every time the robot navigates an
edge, the duration and success of the traversal is logged to
the robot’s database. These logs are processed by FreMEn
to produce a temporal predictive model that allows the
actions of the MDP to be assigned probabilities and travel
durations appropriate for the time of execution [11]. This
MDP is then solved for a target location to produce a poli-
cy for topological navigation that prefers low-duration
edges with high success probabilities (see [15] for details).
This improves the system’s robustness by making it avoid
areas where it previously encountered navigation failures.
This is only possible in an LTA setting where the robot
runs repeatedly in the same environment.

Predicting Human-Robot Interaction

In the Haus der Barmherzigkeit care facility, our robot acted
as an information terminal, using its touch screen to present
the weather, daily menu, news, and so on, to staff and resi-
dents with potentially severe dementia. This behavior was
scheduled as a task at different topological nodes in the care
home. As we did not know in advance the locations and
times people would prefer to interact with the robot, we
allowed it to adapt its routine based on long-term experience.
To achieve this, each node in the topological map was associ-
ated with a FreMEn model that represented the probability
of someone interacting with the robot’s screen at a given
time. This was built from logs of screen interactions stored in
MongoDB. These FreMEn models were used to predict the
likelihood of interactions at given times and locations. These
predictions were used by the robot to schedule where and
when it should provide information during the day.

The schedule must satisfy two contradicting objectives
common to many online active-learning tasks: exploration (to
create and maintain the spatiotemporal models) and exploita-
tion (using the model to maximize the chance of interacting
with people). Exploration requires the robot to visit locations
at times when the chance of obtaining an interaction is
uncertain. Exploitation requires scheduling visits to maxi-
mize the chance of obtaining interactions. To tackle this trade-
off, the schedule was generated using Monte Carlo sampling
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Figure 7. The results of the robot selecting interaction times and
locations using FreMEn models learned during the 2015 care
deployment.

from the location/time pairs according their FreMEn-predict-
ed interaction probability (exploitation) and entropy (explora-
tion). For more details see [16].

Figure 7 shows that the robot was able to increase the
number of successful interactions (i.e., when information
was offered and someone interacted with the screen) on aver-
age, per day, over the course of its deployment. Although we
have no control group to compare against, our on-site obser-
vations indicate that the robots choices had a positive effect.
This demonstrates the ability of the system to improve its
application-specific behavior from long-term experience.

Activity Learning

In our security scenario, the robot had to learn models of nor-
mal human activity and then raise an alert if an observation
deviated from this. We explored activity learning using walk-
ing trajectories [see Figure 8(b)]. Over the 2015 security
deployment, the robot detected 42,850 individual trajectories.
As described in [6], we used qualitative spatiotemporal
activity graphs (QSTAGs) to generalize from individual
trajectories to spatial and temporal relations between trajecto-
ries and landmarks in a semantic map [see Figure 8(a)].
QSTAGs ignore minor quantitative variations across trajecto-
ries but capture larger, qualitative changes. Every night, the
robot created QSTAGs for a subset of all trajectories observed
during the day (based on their displacement ratio). It then
clustered these to create classes of movement activities. Some
examples of the results can be seen in Figure 9.

During the day, an observation of a trajectory sufficiently
far from any cluster center triggered a task to approach the
tracked human and request confirmation of their identity
using a card reader. To enable a fast response, it is important
that the robot can accurately match the start of the trajectory
to a cluster. Table 3 shows how the accuracy of predicting the
cluster of a trajectory from an initial segment (20%) improves
as more data is gathered over the robot’s lifetime. This provides
another example of how a robot can improve its application-
specific performance once it can operate over long periods.
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Figure 8. (a) The manually created semantic map from the 2015 security deployment. (b) Example human trajectories with lengths
close to the average trajectory length of 2.44 m. Also pictured are the manually annotated room regions used for task planning, where
the circles indicate the vertices of region polygons that were used to annotate the types of regions in the environment. The yellow
regions indicate offices, the dark orange regions indicate meeting rooms, the light orange region is a kitchen, and the red region is a
corridor. Blue to green lines indicate direction of movement.

Figure 9. Trajectories belonging to three learned clusters in the region at the bottom left of Figure 8 (the direction of motion is red to
green). These can be interpreted as two clusters of a desk-approaching activity and one cluster of a desk-leaving activity.
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Table 3. Accuracy of activity cluster prediction on
week 5 data from partial input trajectories.

Training Weeks

(Number of Number of

Trajectories) Clusters Recall Precision F-Score
Week 0 (342) 9 024 0.72 0.29
Weeks 0-1 (511) 12 043 0.54 0.44
Weeks 0-2 (707) 12 043 0.56 0.43
Weeks 0-3 (811) 10 043 071 0.49
Weeks 0-4 (1,016) 14 048 063 0.53

Conclusions and Future Work

The STRANDS Core System features a mix of design- and run-
time approaches that allow it to deliver LTA in everyday envi-
ronments. A key strategy for delivering long-term robustness is
the monitoring of system behavior, from the individual compo-
nent level up to navigation and task behaviors, as well as the
ability to restart system elements on demand. This allows the
system to cope with unexpected situations both internally and
in the external environment. The system also uses the
long-term experience of failures to learn to avoid these failures
in the future. This approach improves navigation ability, and we
hope to generalize this to other parts of the system. While these
features provide a fundamental ability to operate autonomously
for long durations in everyday environments, our robots cur-
rently have no way to manage failures that are more catastroph-
ic, harder to predict, or both. For example, our systems have
suffered from computer component failure and subtle network-
ing issues. In the future, we would like to look at the use of
redundancy and online reconfiguration, such as substituting a
failing software or hardware component, coupled with more
general failure detection approaches. Both of these topics have
been extensively researched in robots and other systems.

Our robots are able to learn online from lengths of experi-
ences from which no other robots to date have access. The
discussed results demonstrate what we have always known
from machine learning: More data improves performance.
The novel element here is that a robot must be able to operate
longer to gather additional data and must be able to make
active choices about what data is gathered.

In the future, we will focus on the robot’s ability to
understand human activities, which are the major causes of
environmental dynamics at most scales, and to actively close
gaps in the knowledge it has already obtained from weeks of

autonomous run time.
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Lifelong Information-Driven Exploration to
Complete and Refine 4-D Spatio-Temporal Maps

Jodo Machado Santos, Tomas Krajnik, Jaime Pulido Fentanes, and Tom Duckett

Abstract—This letter presents an exploration method that
allows mobile robots to build and maintain spatio-temporal mod-
els of changing environments. The assumption of a perpetually
changing world adds a temporal dimension to the exploration
problem, making spatio-temporal exploration a never-ending, life-
long learning process. We address the problem by application
of information-theoretic exploration methods to spatio-temporal
models that represent the uncertainty of environment states as
probabilistic functions of time. This allows to predict the poten-
tial information gain to be obtained by observing a particular area
at a given time, and consequently, to decide which locations to visit
and the best times to go there. To validate the approach, a mobile
robot was deployed continuously over 5 consecutive business days
in a busy office environment. The results indicate that the robot’s
ability to spot environmental changes improved as it refined its
knowledge of the world dynamics.

Index Terms—Mapping, service robots.

I. INTRODUCTION

ECENT improvements in the ability of mobile robots to

operate safely in human populated environments have
allowed their deployment in households, offices and public
buildings such as museums and hospitals. However, the struc-
ture of these environments is typically not known a priori,
which requires the robots to build their own models of their
operational environments. Moreover, natural environments tend
to change over time, which means that to achieve long-term
autonomous operation, robots must also update their environ-
ment models as a part of their daily routine.

While the problem of acquiring spatial representations of the
environment, known as robotic mapping and exploration, has
been addressed by many researchers, building and maintaining
dynamic spatio-temporal environment representations has been
addressed only recently. Several recent works demonstrated that
explicit representation of the environment changes improves the
performance of mobile robot operation in long-term scenarios
[1]-[5]. However, these works were concerned with the prob-
lem of lifelong mapping, where the environment model is built
in a passive way, and not lifelong exploration, where a robot
decides where and when to gather data in order to complete and
refine its environment model.

Our work addresses the problem of acquiring and main-
taining a dense spatio-temporal environment model during
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long-term operation. We show that application of information-
theoretic scheduling methods to time-dependent probabilistic
environment representations results in a continuously improv-
ing exploratory behaviour, which evolves with the knowledge
of the environment dynamics. Thus, the method allows the
mobile robot to create, maintain and refine its environment
models as a part of its daily routine and improve the robot’s
efficiency in performing other tasks at the same time. This abil-
ity is essential for long-term mobile robot operation in changing
environments.

The presented work is based on a method that integrates sen-
sory data captured at different locations and times into a dense
spatio-temporal model, which represents the uncertainties of
environment states as probabilistic functions of time. The prob-
abilistic representation of the environment states allows calcu-
lation of the environment’s spatio-temporal entropy, which can
be used to predict the amount of information that the robot
would obtain by observation of a given location at a particu-
lar time. Thus, the robot can schedule the times and locations
of its observations in order to increase its chances of observing
environmental changes, and thus to improve its knowledge of
the environment dynamics.

To evaluate the method we compare it to a standard explo-
ration method during 5-day-long simulated and real-world
experiments performed in a human-populated environment.

II. RELATED WORK

In order to plan its actions in an intelligent way, a mobile
robot needs a model of its operational environment. The quality
of its internal model has a significant impact on the robot’s abil-
ity to localise itself and navigate to the desired locations. Thus,
most of the previous research was aimed at developing efficient
environment representations.

Two of the most popular representations are metric and
topological maps. Perhaps the most known and used metric
map is the occupancy grid [6]. The main drawback of occu-
pancy grids is their low-memory efficiency since they represent
large, empty areas of the environment by a large number of
empty cells. The aforementioned models represent the envi-
ronment as a static structure, ignoring the environment dynam-
ics. Consequently, the localization and navigation errors will
accumulate over time as the environment changes. Thus, the
development of world representations that can model or adapt
to the environment dynamics improves the robot performance
in changing environments [7], [8].

Some authors have developed approaches that can cope with
dynamics without explicitly representing them [2], [4], [9],
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[10]. Biswas et al. [11] present a novel non-Markov local-
ization algorithm that classifies different types of unmapped
objects according to their dynamics, providing local and global
corrections to the environment model and thus more accurate
localization than systems relying on a static world assumption.
Similarly, [12] presents the concept of Dynamic Pose Graph
SLAM, which aims to improve robot localization in changing
environments. This method builds and maintains a pose graph
of the environment by detecting changes after several measure-
ments taken at the same locations. The pose graph is then edited
in order to be more consistent with the current world state.

Other authors [3], [1] have focused on models that explicitly
represent the environment changes and try to identify patterns.
In [1], the robot’s operational environment is modelled at mul-
tiple timescales. Churchill and Newman [2] use a vision system
to group several distinct observations into ‘experiences’ of the
same spatial locations, which improves long-term mobile robot
localisation in outdoor environments. Tipaldi et al. [4] represent
the states of the environment components (cells of an occu-
pancy grid) with Hidden Markov Models and show that their
method improves the robustness of localization. In [13], each
cell in the occupancy grid stores not only the probability of it
being occupied, but also the likelihood of the cell to change
after a given time.

The aforementioned works focus on solving mobile robot
localization in changing environments during long-term scenar-
ios but the mapping task itself is done passively as it does not
plan the locations and times to visit. Hence these approaches
do not guarantee a complete model of the environment, which
is vital for other abilities crucial to a robot such as planning.

Exploration approaches are aimed at guaranteeing com-
pleteness of the model by giving the robot the ability to
autonomously create an accurate model of its operational envi-
ronment. These methods typically focus on creating a complete
and accurate world model in the shortest possible time. In
frontier-based approaches [14], [15], the frontier is defined
as the boundary between the known and unknown parts of
the environment, and the robot plans its path in order to
remove all the frontiers. While these strategies ensure the map’s
completeness, they do not consider map quality.

Next Best View strategies optimise several criteria, e.g.,
the estimated time to reach a given location and the amount
of information expected to be gathered there [16]. Typically
information gain is calculated as the environment uncertainty
reduction achieved by incorporating the measurements from
given positions. The reduction of uncertainty is typically cal-
culated by means of entropy [17]. The lower the entropy of the
environment model, the more it reflects the actual environment
state.

Stachniss et al. [18] presented an information-gain based
exploration framework that integrates not only uncertainties of
the map, but also the uncertainties of the robot’s localization.
The method uses a Rao-Blackwellized particle filter to build
the map and an entropy reduction method to plan the next loca-
tion to be visited by the robot. In [19], the authors present a
Next Best View approach to build a 3D model of an outdoor
scenario while maximising the model’s quality and optimising
the robot’s trajectory.
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Most exploration approaches focus on building the initial
map and do not deal with its maintenance over time, treat-
ing environment dynamics as unwanted noise, which means
that the model loses its validity over time. To deal with this
a related family of algorithms aims at creating models of the
environment that allow them to predict where and when to
make observations of specific phenomena within the environ-
ment. They achieve this by reasoning about the best times
and paths to take. Typically, these algorithms rely on Gaussian
Processes [20]-[22], which allow the robot to learn patterns
in the environment. Other approaches represent the dynamics
of the environment states based on the assumption that some
of the environment variations observed are caused by routines
performed by humans [23]. While the first approach focuses
on building a model of sparse environmental phenomena as the
main task of the robot, the latter focuses on updating a model
of the environment that is used by the robot itself to improve
its performance while executing its daily duties. The results in
[23] showed that this approach could predict the environment
changes, allowing the robot to better plan where and when to
perform exploration. However, in this approach the topology of
the environment was known a priori.

Our method builds on the concept of spatio-temporal explo-
ration presented in [23], which builds frequency-enhanced
spatio-temporal models from sparse and non-uniform obser-
vations and examines the performance of various exploration
strategies and dynamic models. However, the prior work in [23]
was based on several simplifications that make its real-world
use difficult: it assumes that the topology of the environment is
known a-priori and it neglects the fact that navigating between
different locations requires different time durations. In other
words, in [23], the robot simply selects which pre-defined topo-
logical locations should be visited at particular times in order
to create and maintain local dynamic models on top of an a-
priori known topological structure. The work presented here
describes a complete exploration pipeline that starts without
any a-priori knowledge about the robot’s environment. The
locations to be observed are not selected from a pre-defined
set as in [23], but the robot infers the locations from the 3D
structure itself. Thus, it considers not only the information gain
obtained by visiting a given location, but also its reachabil-
ity and the time it takes to navigate there. This results in a
life-long exploration system that allows to create and main-
tain global 4D spatio-temporal representations of real, changing
environments without prior knowledge of their topology. This
letter also includes substantial new experimental work includ-
ing extensive ground-truth-based evaluations. Nevertheless, our
previous work indicated that the Monte Carlo exploration strat-
egy outperfromed other strategies in terms of the resulting
model accuracy.

III. EXPLORATION SYSTEM DESCRIPTION

Robotic exploration methods usually consist of two alter-
nating phases: planning and mapping. Considering that the
environment is constantly changing, both planning and map-
ping have to take into account the notion of time. Thus, 3D
mapping has to explicitly model the environment dynamics
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and becomes “4D mapping”. The planning has to determine
not only which locations to explore, but also when to per-
form the exploration. Other activities which form part of the
robot’s daily routines may also be scheduled here, since a robot
in a real-world application would have to balance its explo-
ration activities with other activities that exploit the current
spatio-temporal knowledge.

Our exploration system is composed of five main modules:
the Spatio-Temporal Model that maintains the environment
map, the Scheduler that determines the robot activity, the
Planner that calculates which locations are to be explored,
the Executioner that acts as a bridge between these modules,
and the Robot’s navigation and sensing systems. The robot’s
activity consists of separate exploration tours during which the
robot leaves its charging station, navigates to a set of locations,
where it uses its depth camera to observe the environment, and
finally docks to its charging station using a precise marker-
based localization method described in [24]. In this section, we
first provide an overview of the exploration system and then
details of its main modules.

A. System Overview

The overall system structure and its most important data
flows are shown in Figure 2. Every 24 hours at midnight, the
Scheduler sets up an activity plan for the upcoming day, which
is partitioned into several time slots of the same duration. To
determine which time slots are to be used for exploration and
which ones to use for charging, it uses the Planner and the
Spatio-Temporal Map to estimate how much information would
be obtained by performing exploration at each of the time slots.
In particular, the Scheduler sends the start time of a particular
time slot to the Spatio-Temporal Map and the number of loca-
tions to visit to the Planner. The Spatio-Temporal map then
predicts the probability and entropy of the environment states
for the given time and passes the model to the Planner. The
Planner then generates a sequence of candidate locations to
visit, queries the Spatio-Temporal Map for the expected infor-
mation gain at those positions and the Reachability Map for the
probability that the robot will be able to navigate to those loca-
tions. The Planner then selects a number of locations to visit,
where the number is given by the Scheduler, and reports the
overall information gain back to the Scheduler. Based on the
estimated information gain for each time slot, the Scheduler
decides which time slots are to be used for exploration and
which ones to use for recharging. The schedule-generation pro-
cess is computationally expensive, mainly because the robot has
to calculate the potential information gains across many loca-
tions and times. The entire schedule-generation process takes
approximately two minutes and is performed during recharg-
ing. While the generated schedule ensures that the robot will
tend to explore the environment when it is more likely to exhibit
changes, the plans (sequences of points) generated by the
Planner during the process of schedule generation might not be
suitable at the time of their execution because the environment
might change in a way that was not originally predicted.

Thus, at the beginning of each time slot allocated for explo-
ration, the Scheduler queries the Planner for a new plan.

IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 1, NO. 2, JULY 2016

(a) L-CAS office view

(b) L-CAS spatio-temporal model

Fig. 1. Spatio-temporal occupancy grid of the Lincoln Centre for Autonomous
Systems (L-CAS) office. The static cells are in green and cells that exhibit daily
periodicity are in red.
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Fig. 2. Exploration system modules and main data flows.

The Spatio-Temporal Map predicts a temporary 3D occu-
pancy grid, which is used to estimate the information gain
and the Reachability Map for the given time. The Planner
uses this information to decide which locations to visit and the
Executioner determines their order and passes these goals one-
by-one to the Robot’s navigation system. The Robot monitors
whether the required locations (goals) were reached and passes
this information to the Reachability Map. If a goal is reached
successfully, the Robot uses its pan-tilt unit and depth camera
to update the temporary 3D grid using the method in [25] and
marks which cells were observed. After each 3D sweep, the
updates made in the temporary 3D grid are propagated to the
Spatio-Temporal Map using Equation (2).

B. Spatio-Temporal Map

The Spatio-Temporal map used in our work is based
on a uniformly-spaced 3D occupancy grid extended by the
Frequency Map Enhancement (FreMEn) concept [26]. The
authors of FreMEn argue that the states of world models
of human populated environments are influenced by human
activities that — in a long-term perspective — tend to exhibit
regular patterns, which causes some of the states’ dynamics
to be regular as well. FreMEn attempts to capture and model
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the periodicities by modeling the states’ dynamics by their
frequency spectra. In short, FreMEn uses the Fast Fourier algo-
rithm to transform past observations of a given environment
state, which is a binary function over time s(t), to the spectral
domain S(w) and stores the most prominent spectral compo-
nents of S(w) in a sparsely-represented set P(w). The inverse
Fourier transform of P(w) is then interpreted as the prob-
ability p(¢) of the original state s(¢) at time ¢. Application
of FreMEn has been shown to improve mobile robot perfor-
mance in feature-based localization [3], topological navigation
[7] and robot search [8]. However, the Fast Fourier Transform
algorithm used in [26] requires that the state s(t) is sampled
on a regular basis, which conflicts with the requirements of
spatio-temporal exploration.

Thus, we propose a different scheme of transformation
between the time domain s(¢) and the frequency domain S(w).
We assume that the spectral representation P(w) of a state s(t)
consists a of small number of frequencies w;, phase shifts ¢;
and amplitudes «; The probability p(¢) of the state s(t) can be
calculated as

p(t) = (oo + > aicos(wit + i), ey

i=1

where oy corresponds to the ‘static’ probability of the state s(¢),
n is the number of periodicities modelled and ¢() ensures that
the result of Equation (1) is bounded between 0 and 1. To reflect
the fact that we cannot be absolutely certain when predicting a
given state, function ¢() limits p(¢) between 0.05 and 0.95.

To obtain the parameters w;, ¢; and «; from m measurements
of the state s taken at times ¢, we first calculate the value of
ay as the arithmetic mean of all past observations s(t). Then
we create a set of candidate frequencies €2, which represent the
periodicities of the hidden processes that affect the state s(t).
Finally, we establish the amplitudes . and phase shifts ¢, as

ac =Y (s(ty) — ag)e 92,
k=1
o = arg(>_(s(tr) — ag)e 72mee), @)
k=1

where w,. are elements of the set €2.

Then, we order the frequencies w,. according to their ampli-
tude a, select the first n of them and store these as parameters
wi, w; and «;, which are used in Equation (1). Note that unlike
the traditional Fast Fourier Transform used in [26], Equation (2)
allows to update the spectral model as new observations of the
state s(ty) are obtained. While faster to calculate and allow-
ing for non-uniform sampling, the proposed representation does
not ensure precise reconstruction of the original sequence s(t),
but typically results in ~2% reconstruction error. For details,
see our previous work on frequency-based representations pre-
sented in [26] and [23].

Our Spatio-Temporal Map applies the FreMEn concept to
occupancies of cells in a 3D occupancy grid. Thus, each cell
contains its own set P(w) that allows to calculate the probabil-
ity of the cell’s occupancy for any given time. This model is

updated by Equation (2) every time the cell is observed and its
state s(ty) is measured.

Both Equations (1) and (2) are derived from the continu-
ous formulation of the Fourier transform in [27], but unlike the
classic discrete Fourier transform (DFT), Equations (1) and (2)
simply do not assume time-uniform sampling of the state s(t).
In the case of uniform sampling with period At, i.e. t;, = kAt,
Equation (2) would become equivalent to the standard DFT.

1) Temporal Model Design: The set 2 of candidate fre-
quencies in Equation (2) defines which periodicities will poten-
tially be captured by our model. The elements of {2 can be
chosen arbitrarily, but one should consider that larger 2 enables
a finer representation of time at the expense of higher memory
consumption of the spatio-temporal model. In our experiments,
the set €) consist of 24 elements w;, which are distributed in the
same way as in the traditional FFT, i.e. w; = (24 x 3600)/i.
This allows to model several periodicities ranging from one day
to one hour. To model spatio-temporal dynamics of office-like
environments, one could extend the set €2 by adding day-to-
week periodicities as in [23]. However, this would require
continuous operation of the robot for several weeks, which we
hope to achieve during 2016.

The parameter n in Equation (1) determines how many peri-
odicities of € are actually considered in the state prediction.
Our previous work indicates that a good choice of n is 2,
which typically results in modelling week- and day-long peri-
odicities in indoor environments and year- and day-long cycles
outdoors. Note that setting n to 0 means that the probability
p(t) becomes a constant as in traditional spatial-only repre-
sentations. Similarly, non-periodic dynamics will cause the
coefficients «; calculated by Equation (2) to be close to 0,
which will cause p(t) to be almost constant as well.

C. Predicting the Information Gain

Since the aforementioned model can predict the probabil-
ity of each cell being occupied, it also allows to estimate the
amount of information that the robot obtains by observing the
particular cell at a given time. The amount of information I(¢)
obtained by observing a single cell at time ¢ can be calculated
as the difference between the cell’s a-priori entropy E(t) and
a-posteriori entropy E,., i.e. I(t) = E(t) — E,., which are func-
tions of the cell’s occupancy probability before and after the
observation. Since the cell’s occupancy probability is consid-
ered as a function of time and we assume that the robot observes
a given cell long enough to determine its state with certainty
pe = 0.95 (i.e. the probability of the cell being occupied after
the observations becomes either 0.05 or 0.95), the expected
information gain at time ¢ is

I(t) = —p(t)logap(t) — (1 — p(t))log2(1 — p(t))
+ pelogy pe + (1 — pe) logy (1 — pe), 3)

where p(t) is the probability of occupancy of a given cell at
time ¢ calculated by Equation (2). Using the predicted occu-
pancies and entropies, the Spatio-Temporal map allows to
estimate the amount of information that the robot will obtain
by observing a particular part of the environment at a par-
ticular time using its depth camera. Since our robot uses its
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pan-tilt unit to create a 360° ‘sweep’ of its surroundings, the
Spatio-Temporal Map implements a function that can estimate
the obtained information given the robot position and the time
of observation.

D. Reachability Map

Although the ability of the robot to reach individual loca-
tions of the environment can be inferred by the Planner from
the environment’s spatio-temporal representation, some loca-
tions might not be reachable due to factors that are not included
in the spatio-temporal model, such as transparent obstacles or
objects with dimensions smaller than the spatio-temporal grid
resolution. To reflect that, the exploration system maintains a
Reachability Map, which is a 2D (50 x 50 cm) grid with cells
that contain the robot’s success rate over the last five attempts
to reach that particular location. This information is taken into
account when the exploration plans are calculated.

E. Locations to Observe

We assume that moving to and observing one location
takes approximately two minutes. Taking into account the time
needed to dock to and leave the charging station, the robot can
visit 6 locations in a 15-minute time slot.

To determine which locations are to be visited during a given
time slot, the Planner first generates a uniform 2D grid of
candidate positions z;,y; € C that cover the operational envi-
ronment. Then, it sends these positions to the Reachability Map,
which returns the probability that the robot will be able to
reach these positions, i.e. the Planner will obtain a reachabil-
ity p,-(z;, y;) for each candidate location (x;,y;). If a position
(x4,y;) is reachable, i.e. p,.(x;,y;) > 0, the Planner forwards
the position (z;,y;) to the Spatio-Temporal Map, which uses
the predicted 3D grid to estimate which cells are likely to
be observable by the robot’s depth camera from the position
(x4, y;). The Spatio-Temporal Map sums the information gain
of these cells using Equation (3) and reports it to the Planner
as I.(x;,y;). This allows the Planner to create an evaluation
E(z;,v;) of each candidate location as

E(zi,yi) = pr(wi, yi) (i, Y:)- 4

Once Equation (4) has been calculated for every (z;,y;), the
Planner starts to generate the locations to visit. First, the
Planner finds the global maximum E,,, .. (2, y;) of E(x;,y;),
adds (z;,y;) and E,q, to the set of goals G and sets E(z;,y;)
to 0. To take into account the fact that the cells observable from
(x,y;) are also visible from neighbouring locations but obser-
vations at locations close to (z,, y;) would not provide the same
expected information, the values of F(z;,y;) in the vicinity
of (z;,y;) are decreased proportionally to their proximity to
(x,y;). The aforementioned two steps, i.e. maxima search and
suppression of the information gain estimates at the neighbour-
ing locations, are repeated until the number of goals in the set
G equals the number of locations requested by the Scheduler.
Then, the Planner calculates the sum Eg of information gains
Epnaz(xj,y;) in G and reports the value of E¢ to the Scheduler
along with the locations in G.

IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 1, NO. 2, JULY 2016

F. Generating the Schedule

Once the Scheduler obtains the summarised information gain
E¢ for every time slot using the aforementioned procedure,
it uses a Monte-Carlo-based method to determine which time
slots to use for exploration and which ones to use for for charg-
ing. Thus, the probability that a given time slot will be selected
for exploration is proportional to its expected information gain
FE¢. The generated schedule is then saved and the Scheduler is
deactivated until the start of the next time slot.

At the beginning of each time slot, the Scheduler checks
whether the time slot was allocated for exploration and even-
tually queries the Planner for an up-to-date plan for the given
time. Then, it forwards the set of locations to observe to the
Executioner.

G. Plan Execution

The Executioner module is responsible for carrying out the
plan provided by the Scheduler. At first, the Executioner uses
a 2-opt method [28] to establish the sequence in which the
planned locations should be visited. Then, it ensures that the
robot leaves its charging station, follows the given path while
taking measurements at the given locations and returns back
to recharge. If the Executioner fails to reach a given loca-
tion, which is typically caused by the location being blocked,
it first waits for the location be cleared. If the location remains
unreachable, the Executioner simply proceeds with the follow-
ing location in the plan. After each run, the Executioner reports
the successes or failures in reaching the planned locations to the
Planner, which updates the Reachability map. This causes the
robot to avoid areas that are more likely to be blocked. However,
the amount of obtainable information for the neighbouring cells
is likely to be high, causing the robot to perform observations
in nearby locations in the next exploration run.

H. The Robot

The platform used in this letter is a SCITOS-GS5 mobile robot
equipped with RGB-D cameras and a laser rangefinder. The
robot’s navigation system is based on open-source, freely avail-
able software developed during the STRANDS project [29],
which extends the navigation stack of the Robot Operating
System (ROS). The sensor that was used for 4D mapping pre-
sented in this letter was the Asus Xtion RGB-D camera, which
was mounted on a pan-tilt unit placed on top of the robot’s
head. Using this pan-tilt unit, the robot created 360° x 90°
3D sweeps with a 4 m radius at locations it was supposed to
observe.

IV. EXPERIMENTAL EVALUATION

The most popular metrics used to evaluate static explo-
ration methods are the completeness of the robot’s environment
model and the time or travel distance required to complete
the exploration. Since spatio-temporal exploration is a contin-
uous process, these metrics are not applicable. Another quality
metric lies in comparison of the ground truth with the robot’s
internal environment model.
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Thus, we propose to evaluate the exploration algorithm by
two different metrics. The first metric is based on the amount
of changes observed by the exploration algorithm. This met-
ric is calculated directly as the number of cells that change
their states through direct observation during an exploration
tour. One would expect that a better spatio-temporal exploration
algorithm would be able to observe more changes, because it
can use its predictive capabilities to determine which areas are
more likely to change and direct the robot’s attention to these
locations.

The second metric is based on the accuracy of the cre-
ated model, which is calculated by comparing the model with
the ground truth. However, obtaining a complete ground truth
would require continuous observation of all environment loca-
tions, which would necessitate an extensive infrastructure.
To overcome this limitation, we built a simulated environ-
ment, where ground truth can be obtained relatively easily,
and performed the ground-truth comparison in the simulated
environment. In the real-world experiment, the ground-truth
comparison is performed on a limited set of regions around the
researchers’ workplaces.

A. Experiment Description

To evaluate our spatio-temporal exploration algorithm we
compare it against a method that considers a static environment
model. This ‘Spatial-only’ exploration method is equivalent
to state-of-the-art information-theoretic next-best-view explo-
ration methods, such as [16].

To compare these two methods, a robot platform running
the system described in Section III was deployed in both a
simulated and a real-world office for 5 business days.

Every day at midnight, the Scheduler generated a schedule
for the following day. This schedule was composed of 15-
minute-long time slots, of which 48 were exclusively allocated
for the spatial-only (SO) and 48 for the spatio-temporal
(ST) exploration algorithm. Since each method had to use
half of its allocated time slots to replenish the robot’s batter-
ies, the robot performed 24 exploration tours guided by the
spatio-temporal method and 24 tours guided by the spatial-only
method per day.

Both methods operated as described in Section III. The only
difference between them was that the ST method used the
predicted (by the Spatio-Temporal Model) map while the SO
method used the last obtained map. We hypothesize that the
use of a predicted map should allow the Scheduler to determine
when it is more likely to obtain more information and sched-
ule more exploration tours at the times when the office is more
likely to be occupied. Moreover, the Planner should be able to
predict which areas of the environment are likely to change at
a particular time and take this into account when generating the
locations to explore.

B. Real-World Experiment

The real-word experiment was performed in an open-plan
office of the Lincoln Centre for Autonomous Systems (L-CAS).
The office consists of a kitchen area, a lounge area and 20
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Fig. 3. The number of observed occupancy changes by the Spatio-Temporal
versus the Spatial-Only exploration methods.

working places that are occupied by students and postdoc-
toral researchers. During the experiment, two ceiling-mounted
cameras were used to capture a time-lapse video of the office
dynamics, which allowed not only for a location-based ground
truth comparison, but also to build a database of the office
dynamics.

After five days of exploration, we calculated the number of
cell changes that were observed by the two aforementioned
strategies during the individual exploration tours. Figure 3
shows that at the start of the exploration process, the number of
cells that changed their state was high, but gradually decreased
as the environment structure became known. After the first day,
the amount of changes observed by both methods tended to
stabilize around a value given by noise and the environment
dynamics. During the second day the Spatio-Temporal method
would start to identify the daily routines and the Planner would
guide the robot to locations that are more likely to exhibit
changes — see Figures 1 and 4 for the spatio-temporal map
obtained after the first two days of the experiment. After the
second day, the Spatio-Temporal method would allocate more
exploration tours to the afternoon, when the office is more likely
to be populated. In fact, there were 30% more tours scheduled
for the afternoon than for the morning.

In the last three days of the experiment, the Spatio-Temporal
method observed more changes than the Spatial-Only one, due
to its ability to identify the locations and times of environmen-
tal change. In other words, the Spatio-Temporal exploration
method could plan better both where and when to explore.

To establish the accuracy of the models created, we selected
six working locations in the office, see Figure 4, and manually
established the presence of people at these locations over time.
Then, we used the Spatio-Temporal models built by the two
exploration strategies to predict the overall occupancy of these
areas (see Figure 4) for every hour of the five-day experiment.
Then, we compared these occupancies to the ground truth for
people presence provided by hand. This allowed us to calculate
the error of each model in the same way as in [23], i.e. as an
average deviation from the ground truth during the experiment.
Table I indicates that part of the dynamics of these locations can
be explained by periodic processes related to human activity.
The researchers working at these six places had diverse working
habits, which caused the error rates to vary across the individual
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TABLE I
OVERALL ERROR OF THE ENVIRONMENT MODEL (%)

Location Avg  StD
Model type 0 1 5 3 4 5 c _
SO 28 23 43 23 21 29 28 8
ST 20 23 25 19 17 14 20 4

locations. Performing a paired ¢-test indicates that the error of
the ‘Spatio-Temporal’ environment model is significantly lower
than the error of the ‘Spatial-Only’ method.

C. Simulated Experiment

To speed up testing and to allow for a more representa-
tive ground-truth comparison, we created a 3D MORSE-based
simulation of our office.

Moreover, we created a software component that allows to
reconfigure the simulated environment on the fly. Using the
data gathered for five days by two ceiling cameras, we created
a database that contains the positions and presence of twenty
dynamic objects over time. Combination of the reconfigurable
simulator with the aforementioned database allowed us to cre-
ate a realistic simulation that reflects the real-world dynamics.
Thus, our simulator does not only reflect the environment’s
static structure, but also simulates dynamic elements, such as
people, chairs, laptops and doors (see Figure 5). The experiment
was performed in the same way as in the real environment. The
number of changed cells captured by both the Spatio-Temporal
and Spatial-Only algorithms followed a similar pattern as in the
real-world experiment. The main advantage of the simulation
was the possibility to obtain ground truth that spans the entire
space and time of the experiment. The ground truth for a sin-
gle time slot was obtained by configuring the simulation for
a particular time and letting the robot perform its 3D sweeps
at several locations in order to obtain a complete overview of
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Fig. 5. Snapshot of the simulated environment.
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Fig. 6. The ratio of incorrectly estimated cells for the Spatial-Only and Spatio-
Temporal strategies.

the environment. This was repeated for every time slot of the
experiment, obtaining 480 static 3D grids that represent the
environment’s evolution over time. The error of a particular
model at a given time was calculated as the number of cells
whose states differ from the ground truth divided by the total
number of observed cells.

To compare the performance of the SO and ST models,
we calculated their errors for each time slot and performed a
t-test of the error values for each experiment day. The results
of the ¢-tests indicate that during the first day, the ST model
performed significantly worse that the SO one. During the sec-
ond day, the ST model started learning the periodic patterns,
which improved its performance, and the ST and SO model
errors were not significantly different. The ¢-tests of the third,
fourth and fifth day show that during these days, the ST model
error was significantly lower than the SO one. These results are
consistent with Figure 6, which illustrates the error of the ST
and SO models over time.

The experimental results indicate that the Spatio-Temporal
method can identify periodic patterns in the environment and
take them into account when creating the schedule, which
results in more changes being observed. The observed changes
improve the predictive ability of the Spatio-Temporal model,
which allows to construct a better exploration schedule. Note
that this is due to the fact that part of the environment dynamics
is periodic. If the environment was changing non-periodically,
both Spatial-Only and Spatio-Temporal methods would capture
a similar amount of changes.
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V. CONCLUSION

We presented a 4D exploration method for dynamic envi-
ronments that extends information-driven exploration into the
time domain. The proposed method explicitly models the world
dynamics and can predict the environment change. The pre-
dictive ability is used to reason about the most informative
locations to explore for a given time. Experimental results show
that taking into account the environment dynamics increases
the amount of information gathered compared to approaches
that represent the environment by a static structure. Thus,
our method allows for efficient creation and maintenance of
spatio-temporal models that increase the robot’s efficiency in
long-term scenarios.

As future work we intend to embed the spatio-temporal
exploration strategy as part of the robot’s daily routine and
verify whether the ability to improve the spatio-temporal rep-
resentations during long-term operation results in continuous
improvement of the robot performance. Moreover, we want
to study the impact of different spatio-temporal models and
exploration strategies on the robot’s efficiency in perform-
ing useful tasks during long-term deployment. In particular,
we will examine the possibility of integrating the Markov-
Model-based representation proposed in [4]. To allow the robot
deployment in spatially-large environments, we also plan to
use a FreMEn-based Octomap [30], [31] instead of a uni-
form 3D occupancy grid. We are also investigating alternative
methods for calculating spectral representations from sparse
observations.
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1. Introduction

As robots gradually leave the well-structured worlds of factory
assembly lines and enter natural, human-populated environments,
new challenges appear. One of the first problems is to operate in
less structured and more uncertain environments. This challenge
gave birth to the field of probabilistic mapping, which enables the
representation of incomplete world knowledge obtained through
noisy sensory measurements [ 1]. Initially, the environment models
had to be created during a human-guided procedure [2], but later,
the combination of probabilistic mapping and planning methods
allowed robots to create the environment models themselves by
means of autonomous exploration [3]. However, as robots became
able to operate autonomously for longer periods of time, a new
challenge appeared—their typical operating environments are sub-
ject to change.

These changes manifest themselves through sensory
measurements—every perceived change causes the sensory data to
disagree with the original model obtained during the exploration
phase. Although probabilistic mapping methods can deal with
conflicting measurements, their approach is rooted in the idea
that these variations are caused by inherent sensor noise rather
than by structural environment change. Thus, these conflicting
measurements are generally treated as outliers caused by un-
wanted noise. Recently, some authors exploited these conflicting
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(T. Krajnik), tduckett@lincoln.ac.uk (T. Duckett).

http://dx.doi.org/10.1016/j.robot.2016.11.016
0921-8890/© 2016 Elsevier B.V. All rights reserved.

measurements in order to obtain information about the world dy-
namics and proposed representations that model the environment
dynamics explicitly. These dynamic representations have shown
their potential by improving mobile robot localization in changing
environments [4-7].

Similarly to traditional robotic mapping, introduction of spatio-
temporal mapping naturally requires novel exploration strategies
that allow to build and maintain spatio-temporal maps during the
robot’s deployment. Classic exploration strategies aim at building
a spatial-only model that covers the robot’s entire operational en-
vironment, ignoring the fact the environment might change after
its completion. Unlike the classic exploration approaches, spatio-
temporal exploration is a never-ending task, for several reasons.
First, some areas of the operational environment are not exactly
predictable during certain times, which requires the robot to re-
observe those locations at the times when their state is uncertain.
For example, even if we know the general habits of a certain
person, her presence at her workplace is uncertain around the
start and end of office hours, and thus, it makes sense to observe
the workplace during these times. Second, the patterns in the
environment dynamics might change and identification of the new
patterns requires re-observation of the particular area at the right
times. For example, the workplace might be occupied by a new em-
ployee with a different working pattern. Additionally, the general
structure of the environment can change due to reconstruction or
displacement of furniture.

Thus, the robot needs to take repeated observations of locations
in its operational environment over time in order to successfully
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build and maintain a spatio-temporal model. This requires the
robot to continuously explore the environment in addition to the
other tasks it was designed for. Therefore, spatio-temporal explo-
ration must become a part of the robot’s daily routine that has to be
carried out along with other tasks that the robot is required to per-
form. The ability to build and maintain the aforementioned spatio-
temporal representations allows the mobile robot to better cope
with changes in the environment and to perform its daily duties ef-
ficiently. Hence, being able to build, maintain and reason over such
an environment representation plays a key role in achieving long-
term operation without any major human intervention, i.e., long-
term autonomy.

We present an exploration method that integrates sensory data
captured at different times and locations into a dynamic spatio-
temporal model and uses the model to determine where and when
to perform future observations, while being able to cope with the
other tasks the robot needs to perform. We show that the applica-
tion of information-theoretic planning principles to environment
models that represent uncertainties of environment states in the
frequency domain results in an intelligent exploratory behaviour,
which evolves as the environment knowledge becomes more re-
fined over time. Moreover we evaluate all possible combinations
of four different spatio-temporal models and five planning strate-
gies by their long-term performance, according to their ability to
provide an accurate environment model over time. To complete
this study we also evaluate the impact of different exploration
versus exploitation ratios on the overall accuracy of the model. The
exploration versus exploitation dilemma means that the robot has to
find a balance between the time spent exploring and the quality
of its internal model [8]. The work presented in this article extends
the study presented in [9] by providing a more detailed description
of the spatio-temporal models and exploration strategies and by
introducing a new recency-based short-term model, as well as a
novelty-driven exploration strategy that takes into account the
predictions of both the recency- and periodicity-based models.

2. Related work

In order to explore the environment in an efficient way, the
robot not only has to be able to create a map from its sensory
inputs, but also to use the map to plan its path so that it can
reach previously unknown areas of the environment. Therefore,
mobile robot exploration is an iterative process in which the robot
integrates its observations into its world model, interprets the
world model to determine which parts of the environment are
unknown, and plans a path to visit and observe these unknown
areas. Therefore, an efficient exploration system consists of three
essential components: mapping, goal generation and path plan-
ning. For the purpose of spatio-temporal exploration, we have to
use mapping methods that allow to represent dynamic environ-
ments and goal generation methods that can determine not only
the position, but also the times of observations—i.e. we have to
schedule the observations in such a way that the robot can perform
its other tasks as well.

2.1. Exploration methods

One of the earliest and well-known methods is frontier-based
exploration [2,10,11]. This approach represents the environment
as an occupancy grid, which is processed to obtain boundaries
(frontiers) between the known and unknown parts of the environ-
ment. The robot movement is then planned so that these frontiers
are visited and removed. The advantage of this approach is its
scalability—the frontiers can be distributed among a number of
robots that can explore the environment in a cooperative man-
ner [12]. Even though these strategies ensure the completeness of

the environment model, i.e. they aim at removing all the frontiers,
they do not take into account the model quality.

Another class of exploration methods is based on the notion of
entropy. These methods generate a set of candidate observations
and estimate the amount of information these are expected to
provide [ 13]. The information gain is calculated as the reduction in
entropy of the world model, which requires a probabilistic repre-
sentation of the environment states. The lower the entropy of the
environment model, the more it reflects the actual environment
state.

An information-gain-based approach that integrates localiza-
tion, mapping and exploration is presented in [14]. The method
uses a particle filter to build the map of the environment and an
entropy estimation method to plan the next location to be visited
by the robot. However, the candidate observations are not evalu-
ated simply by their information gain. Rather, the evaluation takes
into account other criteria, such as the time to reach the respective
location [15]. An advantage of these methods is that they not only
attempt to cover the entire environment as quickly as possible, but
also plan re-observations of previously visited locations to increase
the quality of the resulting map [16].

Some exploration strategies aim at building maps of the envi-
ronment taking into account some a priori knowledge instead of
building it from scratch. For instance, ORBwald et al. [ 17] propose a
novel exploration strategy that aims at decreasing the exploration
time by assuming that the layout of the environment is known,
such as graphs automatically obtained from floor plans. In this
method a Travelling Salesman Planner generates a global plan
for the exploration run, while a frontier-based strategy is used
to explore the environment at each node of the graph. In [18]
an exploration strategy capable of predicting how the unexplored
areas may look based on previously mapped areas is proposed.
This strategy combines the knowledge obtained through previous
exploration tasks (in different environments) to predict which
observation points might close the loop with information-driven
exploration to more map the environment more efficiently.

The aforementioned exploration strategies aim at building a
map of the environment in the initial stage of the robot deploy-
ment, but fail at maintaining it over time, ignoring the changes
in the environment. Thus the model accuracy will decrease as
the environment changes, which would eventually lead to major
localization and navigation failures.

Other strategies could include intrinsic motivation systems,
which drive the robot towards situations that maximize the per-
formance of the learning process [19,20]. These strategies are able
to actively identify anomalous or novel situations that might lead
to decisions that provide more information and allows to deal
with situations where the information-gain never decreases due
to physical constraints. For example, novelty detection strategies,
which involve the recognition of environmental stimuli that differ
from those usually seen, allow the robot to gradually redirect its
attention according to the evolution of its internal models [21].

2.2. Dynamic environment representations

Once robots have attained the ability to operate for longer
periods of time, the effects of the environment changes have to be
taken into account. The first approaches were aimed at short-term
dynamics. These methods identify dynamic objects and remove
them from the environment representations [22,23] or use them
as moving landmarks [24] for self-localization. However, some
dynamic objects do not move at the time of mapping and, con-
sequently, the robot needs further observations to identify them.
Ambrus et al. [25] propose to process several 3d point clouds of the
same environment obtained over a period of several weeks to sep-
arate movable objects and refine the model of static environment
structure at the same time.
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Other approaches do not explicitly segment movable objects,
but use representations that are able to model large-scale, sub-
stantial environment changes over long time periods. Some au-
thors [26,27] represent the environment dynamics by multiple
temporal models with different timescales, and Dayoub and Duck-
ett[28] use a ranking scheme that allows to identify environmental
features that are more likely to be stable in long-term. Churchill
and Newman [4] propose to cluster similar observations at the
same spatial locations to form ‘experiences’ which are then associ-
ated with a given place and show that this approach improves au-
tonomous vehicle localization. Tipaldi et al. [6] represent the states
of the environment components (cells of an occupancy grid) with
a hidden Markov model and show that their representation also
improves localization. In [29], each cell in the occupancy grid stores
not only the probability of it being occupied, but also the likelihood
of the cell to change after a given time. Kucner et al. [30] propose a
method that learns conditional probabilities of neighbouring cells
of an occupancy grid to model typical motion patterns in dynamic
environments. Neubert et al. [7] proposed a method that can learn
appearance changes based on a long-term dataset collected across
multiple seasons and use the learned model to predict the envi-
ronment appearance for a given time. Another approach that pos-
sesses the ability to predict environment changes is proposed by
Rosen et al. [31], which uses Bayesian-based survivability analysis
to predict which environment features will still be visible after
some time and which features will disappear.

Another family of algorithms aims at creating models of the
environment that allow them to predict where and when to make
observations of specific phenomena within the environment. Typ-
ically, these algorithms rely on Gaussian Processes [32-34], which
allow the robot to learn patterns in the environment. Even though
these approaches are able to build models of given phenomena,
these models are not used by the robot itself to improve essential
competences such as localization.

Finally, Krajnik et al. [ 35] propose to represent the environment
dynamics in the spectral domain and apply this approach to image
features to improve localization [5], to occupancy grids to reduce
memory requirements [36], and to topological maps to improve
both path planning [37] and robotic search [38]. While being ap-
plicable to most environment models used in mobile robotics, the
aforementioned method suffers from a major drawback due to its
reliance on the traditional Fast Fourier Transform (FFT) method,
which requires the environment observations to be taken on a
regular and frequent basis. This means that the robot’s activity has
to be divided into a learning phase, when it would frequently visit
individual locations to build its dynamic environment model, and
a deployment phase when it would use its model to perform useful
tasks. This division means that while the robot can create dynamic
models, which are more suitable for long-term autonomy, it cannot
maintain them during subsequent operation. Thus, the robot does
not adapt to dynamics that were not present during the learning
phase. This fundamental limitation is addressed by the incremental
update scheme introduced in this paper.

2.3. Exploration vs exploitation

The long-term deployment of mobile robots in human-
populated environments must take into account the need to bal-
ance exploitation of what the robot already knows and exploration
to select better actions in the future [8]. This issue is addressed
in [39], which describes the deployment of a mobile robot in a
care centre. Several tasks need to be performed by the robot but
there is one that directly addresses the exploration/exploitation
dilemma. Here, the mobile robot has to act as an information
terminal providing information services to visitors. This task is
scheduled at different locations in order to increase the number of

interactions. However, the scheduler must address two different
objectives: exploration and exploitation. The first one creates and
maintains a spatio-temporal model of the interactions, provid-
ing interaction likelihoods for the different locations and times.
The second one aims at visiting the different locations at times
where the likelihood of observing interactions is uncertain. Based
on the above work, Kulich et al. [40] developed several policies
to schedule actions that allow to increase exploitation, or more
specifically to increase the number of interactions with humans. In
order to increase the interactions, the robot needs to learn human
behaviours, more specifically where and when it is more likely for
a human to ask for assistance. However, this needs to be achieved
in parallel with the human interactions as well as the other daily
tasks.

3. Spatio-temporal exploration

The primary purpose of robotic exploration is to autonomously
acquire a complete and precise model of the robot’s operational
environment. To explore efficiently, the robot has to direct its
attention to environment areas that are currently unknown. If the
world was static, these areas would simply correspond to previ-
ously unvisited locations. In the case of dynamic environments,
visiting all locations only once is not enough, because they may
change over time. Thus, dynamic exploration requires that the
environment locations are revisited and their re-observations are
used to update a dynamic environment model. However, revisiting
the individual locations with the same frequency and on a regular
basis is not efficient because the environment dynamics will, in
general, not be homogeneous (i.e. certain areas change more often
and the changes occur only at certain times). Similarly to the static
environment exploration problem, the robot should revisit only
the areas whose states are unknown at the time of the planned
visits. Thus, the robot has to use its environment model to predict
the uncertainty of the individual locations over time and use these
predictions to plan observations that improve its knowledge about
the world’s dynamics.

To tackle the problem of predicting environment uncertainty
over time, we propose to model the probabilities and entropies of
the environment states as functions of time. While the main idea
is still that some of the environment’s mid- to long-term dynam-
ics are periodic [35], the underlying mathematical representation
had to be reformulated. Unlike the method in [35] that requires
frequent and regular environment observations, the method pro-
posed in this paper allows to incrementally and continuously up-
date the spatio-temporal model from sparse observations taken
at different locations and times. This eliminates the need for a
separate training and deployment phase, and allows integration
of spatio-temporal exploration into the robot’s daily routine. Thus,
the robot can continuously refine its internal environment model
and improve its efficiency from the experience gathered over long
periods of time.

3.1. Problem definition

Let us represent the environment as a set S of n discrete non-
stationary independent binary states s;(t) that are observable by
a mobile robot through its sensors. The states s;(t) might rep-
resent the occupancy of individual cells in an occupancy grid,
the traversability of edges in a topological map, the visibility of
environmental features, etc. Since these states are dynamic and
the robot cannot observe all the states all the time, it maintains an
internal environment model that we denote as a set S’, where each
element sj(t) corresponds to the real-world state s;(t). To represent
the fact that the currently unobserved states are uncertain, we
associate each state with a probability value p;(t) such that p;(t) =
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P(si(t) = 1). We refer to the probability function p;(t) and the way
it is calculated from the past observations of s;(t) as a temporal
model.

Let us define a location as a set of environment states that can
be observed simultaneously, i.e. a location £; is a subset of S such
that by visiting location £; at time t, observations of the states that
belong to £; are obtained. Given that the robot location at time t
is I(t), the robot can directly observe only the states s; of location
Ly and states observable at other locations have to be estimated.
Thus, the states of the robot’s internal environment model are

/( ) — Sl(t)

pi(t) = 0.5
The purpose of the exploration process is to obtain and maintain
as faithful an environment model as possible, i.e. to minimize the
difference between the states of the real environment S and its
model S’. Technically, this corresponds to minimization of the
model error €(T) calculated as the difference between the real and
estimated states over the time period [0, T) as

ifs; € Lyt
otherwise.

(1)

1 T-1 n
€)= D Isit) = si(o)l. (2)
=0 i=1
Although the reduction of the error ¢(T) can be partially achieved
by visiting the relevant locations as often as possible, the robot
has to perform other tasks and the number of observations is
typically limited. Thus, the robot has to carefully plan where and
when to perform observations so that it obtains the relevant data
to create, maintain and refine its spatio-temporal models of the
environment. From a technical point of view, the robot has to
use its internal temporal models p;(t) to determine a sequence of
locations I(t). We refer to the way the robot plans the sequence of
I(t) from the p;(t) as its exploration strategy.

4. Spatio-temporal models

The underlying spatial environment representations that we
will use to test our approach are occupancy grids, topological
and feature-based maps. The elementary states of these models
represent the occupancy of individual cells, the presence of people
at the particular areas and the visibility of image features. Unlike
classic environment models that represent the probabilities of
the elementary states s(t) by constant values p, we represent the
probability of each elementary state as a function of time p(t).
In particular, we model each p(t) as a combination of harmonic
functions that correspond to hidden periodic processes in the
environment.

4.1. Spectral maps

The idea of identifying periodic patterns in the measured states
and using them for future predictions was originally presented
in [35]. These methods process the sequence of the measured state
s(t) by the Fast Fourier Transform (FFT) to obtain the corresponding
frequency spectrum s(w) and extract its most prominent spectral
components s'(w). Then, they employ the Inverse Fast Fourier
Transform (IFFT) to recover the sequence of state probabilities p(t),
which can be used for anomaly detection [35] or state predic-
tion [5]. However, the reliance of these methods on the Fast Fourier
Transform (FFT) algorithm makes their real-world application im-
practical. First, the FFT can transform only the complete sequence
of a state s(t) or its full spectral representation s(w). Thus, updating
the spectral representation with new measurements or prediction
of a single probability requires to recalculate the entire sequence
of observations, which becomes computationally expensive as the
observations accumulate. Most importantly, the FFT algorithm re-
quires that the environment observations are sampled at regular

intervals, which imposes an inefficient exploration scheme and
goes against the concept of spatio-temporal exploration that aims
at deciding when and where to observe the environment in a non-
regular way.

4.1.1. Frequency map enhancement (FreMEn)

Similarly to the aforementioned spectral representation [35],
our method still aims to identify the periodic patterns of the envi-
ronment states and use them for predictions. Unlike the previous
representation in [35], the method proposed here allows to update
the underlying dynamic models incrementally from sparse, irreg-
ular observations. The proposed method represents each state by
the number of performed measurements n, its mean probability w,
and two sets A, B of complex numbers &y and Sy, that correspond to
the set §2 of periodicities wy that might be present in the modelled
environment. The set £2 was chosen to cover periodicities ranging
from 4 weeks to 2 h with distribution similar to the traditional FFT,
ie oy = ks, where k € {1,2,...,4 x 7 x 12}. Initially,
the mean value p is set to 0.5 and all o, By are set to 0, which
corresponds to a completely unknown state.

4.1.2. Addition of a new measurement

Each time a state s(t) is observed at time t, we update its
representation, i.e. the number of measurements n, the mean x and
values of A4, B, which are actually a sparse spectral representation
of s(t), as follows:

<« n s(t)),
Iz n+](u+(»
1 .
t)e Jtex " 2,
o < 1 (noy, + s(t)e ) wy € (3)
Be < (B +pe ) Vo€,
n+1
n < n+1.

The proposed update step is analogous to incremental averaging—
the absolute values of |«; — x| correspond to the average influence
of a periodic process (with a frequency of wy) on the values of
s(t). Note that the size of the representation of the state (i.e. the
number of elements in .4, B) is independent of the number of
observations, which means that the memory requirements of the
proposed representation do not grow with time. Note also that if
the times of observations t are equally spaced and the frequencies
wy are selected as described in Section 4.1.1, then (3) corresponds
closely to the traditional Discrete Fourier Transform.

4.1.3. Performing predictions

To predict the value of state s(t) for a future time t, we first
create a set C consisting of y, = «, — Bk and then sort it descend-
ingly according to the absolute values |yx|. Then, we extract the
first m elements y; along with their corresponding frequencies w,
and calculate the state’s probability over time as

pit)=¢ <u + Y 2lpilcos(wrt + arg()/:))) : (4)

=1

where ¢(.) ensures that p(t) € [0, 1]. The choice of m determines
how many periodic processes are considered for prediction. Setting
m too low would mean that we might omit some environment
processes that actually influence the state, while setting m too
high might include components of C that are caused by sensor
noise. To estimate the optimal value of m, we compare the pre-
dictions performed by (4) to the measured values by means of
(2), and select the value of m that minimizes the prediction error
€. This choice of m is performed automatically during the robot
operation—initially, m equals O and is increased only after the
robot obtains enough data to verify the prediction accuracy of its
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Fig. 1. The underlying Markov chain in the short-term memory model.

spatio-temporal models. Since the most prominent periodicities in
human-populated environments are related to the day/night cycle,
the value of m typically equals to zero for the first two days of
exploration, because inferring a day-long periodicity requires two
days of data gathering—one day to build the model and one day to
verify it.

One of the main advantages of the proposed representation is
that the state is modelled probabilistically. This allows to calculate
the time intervals when the particular states are uncertain, which
is crucial to direct the robot’s attention during exploration.

4.2. Short-term memory

We propose to model the short-term dynamics using a similar
model to [29]. This model is based on a Markov chain and aims
not only at representing the environment states but also how likely
they are to change given the last observed state and the time it was
observed. Assuming that each measured state s can be occupied or
free, the goal of this method is to estimate the conditional probabil-
ities that represent the transition from one state to another, which
are p(s = 0|s = 1) and p(s = 1|s = 0). These probabilities are
estimated by means of a Poisson process, i.e., these probabilities
can be approximated by the ratio between the number of state
changes observed and the total number of observations. However,
as described in Section 3, due to the nature of spatio-temporal
exploration the observations of states are not performed uniformly
in time, and consequently the discrete Markov chain described in
[29] as well as the estimation of the aforementioned probabilities
do not apply in our case. Thus, we propose a continuous Markov
chain to model the recency of the environment states, as shown
in Fig. 1. In this case, the transition rates between the states 0 and
1, @ and B, are inversely proportional to the average time that an
observed state remains at 0 or 1. From the Markov chain shown in
Fig. 1, we infer the equations

po(t) = —a po(t) + B pi(t), (5)
pi(t) = =B p1(t) + a po(t).

Since we only have two states for any time t, we have po(t) +
p1(t) = 1. Thus, by differentiating and substituting the previous
set of equations we obtain Eq. (6), which allows us to predict the
probability of the state s(t) for a given future time t, where T is the
time of the most recent observation.

+ (p(r) - ﬁ> e e, (6)

p(t)=a+ﬂ

4.3. Alternative temporal models

The most popular way to deal with the uncertainty of the
environment is based on Bayesian filtering, which updates the
state estimates based on the sensor noise characteristics. The
typical measurement rate of the robot sensors exceeds the mid-
to long-term environment dynamics, therefore the Bayesian up-
date scheme causes the probabilities of the observed states to

quickly converge towards the latest observed values. Typically, the
traditional environment representations tend to reflect the latest
state measurements, discarding older measurements. However, for
long-term deployment it is sensible to use representations that
somehow reflect the prior environment states since the initial
deployment stage. To strengthen our study, we describe in this
section two additional environment representations that take into
account all the previous observations, a long-term memory model
and Gaussian Mixture Models (GMM).

4.3.1. Long-term memory

A way to reflect the uncertainty of the observed states in the
long-term is to implement a long-term memory (LM). The model
that we propose works as a memory that takes into account all the
observations and calculates the probability of a given state simply
as the arithmetic mean of all its past observations.

4.3.2. Gaussian mixture models
Gaussian Mixture Models that can approximate multi-
dimensional functions as a weighted sum of Gaussian component
densities are a well-established method of function approxima-
tion. A Gaussian Mixture Model of a function f(t) is a weighted
sum of m Gaussian functions:
(=)
20].2 )
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GMMs find their applications in numerous fields ranging from
botany to psychology [41]. The parameters of individual com-
ponents of GMMs, i.e. the weights wy, means u; and variances
oj are typically estimated from training data using the iterative
Expectation Maximization (EM) or Maximum A-Posteriori (MAP)
algorithms. While GMMs can model arbitrarily-shaped functions,
their limitation rests in the fact that they cannot naturally repre-
sent functions that are periodic.

To deal with this issue, we simply assume that people perform
most of their activities on a daily basis and thus we consider the
object presence in individual areas as being the same for every
day. While this assumption is not entirely correct (as working days
will typically be different from weekends), such a temporal model
might still be better than a ‘static’ model where the probability of
object presence is a constant.

Prior knowledge of the periodicity allows to transform the
measured sequence of states s(t) into a sequence p'(t) by

k/t

, .
p(t)= . ;S(t-‘rl‘f), (8)
where 7 is the assumed period and k is the s(t) sequence length.
After calculating p'(t), we employ the Expectation Maximization
algorithm to find the means u;, variances o; and weights w; of
its Gaussian Mixture approximation. Thus, the probability of oc-
cupancy of a room at time ¢ is given by

;o _ (mod(t,r)—p;)?
Wi 202

t)= — —e J 9
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where 7 is the a priori known period of the function p(t) and mod
is a modulo operator. The periodic-GMM-based (PerGaM) model
is complementary to the FFT-based one. It can approximate even
short, multiple events, but it can represent only one period (t)
that has to be known a priori. Since the dominating periodicity of
human populated environments is 1 day, we chose 7 = 86 400 s.

5. Exploration strategies

As noted in Section 3.1, an exploration strategy is defined as a
process that determines both which locations to visit and when
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to visit them. One has to assume that a real mobile robot has to
perform other tasks as well and can spend only a fraction of the
total time on actual exploration. We refer to this fraction as the
exploration ratio e, e.g. e = 0.2 means that the robot can spend
20% of its operational time on exploration.

Thus, given an exploration ratio e and a set 7 of time intervals
[ts, ts+1), the exploration algorithm has to determine a sequence
I(t;) of locations to visit. To represent situations where the time slot
[ts, ts+1) is allocated to an unrelated activity, the value of I(t;) is set
to zero, whereas a non-zero value of [(t;) signifies the location to
be observed during [t;, ts11).

5.1. Information-gain strategies

The information-gain strategies take into account the expe-
riences the robot has gathered so far to plan when and which
location to visit. These strategies attempt to reduce the uncertainty
of the environment models by planning the observations that
maximize the potential information gain. To estimate how much
information is gained by a particular observation, we will use the
notion of entropy. We assume that direct observation of particular
states at a given time reduces the entropy of these states to zero.
Thus, the information gained by a particular observation can be
estimated as the sum of the entropies of the states observed at a
given location as

I(c,t)=— Z(pi(f)ln(m(t)) + (1 = pi(t)In(1 — py(t))). (10)
iel

The Greedy strategy calculates the potential information gains for
all given time slots and locations, then assigns the best location to
visit at each time slot. Then, it selects a subset 7 of time slots with
the highest information gain such thate = |77|/| 7. The remaining
time slots are assigned to other tasks. Thus, this strategy maximizes
the potential information gain obtained over the time slots in the
set 7.

The Monte Carlo strategy chooses the locations randomly, but
the probability of selecting a given location at a given time is
proportional to the estimated information gain. At first, it estimates
the I(l, t;) for all given time slots and locations and sums these
values to I'. Then, it calculates the value of I(0, t;) = I'(1 — e)/(ne).
Finally, it calculates the probabilities of each I(t;) as

1(j, ts) +¢
Diec 1, t) + 1

Here, the value of I(0, t;) does not represent actual information
gain, but is added to ensure that the exploration ratio e is satis-
fied by ensuring sufficient chance of assigning the time slots to
exploration-unrelated tasks. The positive constant ¢ ensures that
the locations will be occasionally visited even at times when the
spatio-temporal model predicts their state with absolute certainty.
This allows the robot to detect unexpected changes in the environ-
ment dynamics.

The Novelty-driven strategy follows the same principle as the
Monte Carlo one. However, unlike the Monte-Carlo strategy, which
strictly follows a schedule determined by Eq. (11), the novelty-
driven strategy uses a combination of temporal models to identify
situations where a change in the Monte-Carlo schedule would
result in a high amount of information obtained. To identify such
situations, the novelty-driven strategy predicts the amount of in-
formation obtainable in the following time slot by:

(L. 8) = =Y (Pl (O)I(Piy, (1))
iel
+ (1= Pigge (DIN(1 = Py, (1)), (12)

where p;,, (t) is calculated by the short-term memory model (see
Section 4.2) and serves as a measure of expectation, whereas

P(I(ts) = j) = (11)

Piyp, 1s provided by another model and represents the amount of
information expected. If I'(Z, t) > I(£, t), i.e. the amount of infor-
mation predicted by Eq. (12) is significantly higher than the value
calculated by Eq. (10), then the location to visit in the following
time-slot is changed accordingly. Thus, if the observed states at a
recently visited location did not match their predictions, the robot
re-observes the location again to obtain more information about
this unexpected event.

5.2. Uninformed strategies

For comparison purposes, we include strategies which select
the places to visit regardless of the environment dynamics. These
strategies calculate the sequence of visits [(t;) simply from the
values of the ratio e, number of locations n and number of time
slots m.

The Round-Robin strategy visits all areas of the environment
with the same frequency, interleaving the observations with other
tasks so that the exploration ratio e is satisfied.

The Random strategy also attempts to visit all areas with the
same frequency, but the sequence of I(t;) is not deterministic, but
random. The probability of a given slot being assigned to a non-
exploration task is equal to 1 — e and the probability of visiting the
individual locations is uniform and equal to e/n.

6. Evaluation datasets

To evaluate the ability of the various temporal models and ex-
ploration strategies, we performed a comparison on two datasets
gathered over several weeks. The first, ‘Aruba’ dataset was gath-
ered by a team of the Center for Advanced Studies in Adaptive
Systems (CASAS) to support their research concerning smart en-
vironments [42]. The second, ‘Brayford’ dataset was created at
the Lincoln Centre for Autonomous System Research (LCAS) for
their research on long-term mobile robot autonomy [5]. The afore-
mentioned datasets were processed so that the dynamics of these
environments are represented as visual-feature-based, topological
and metric maps.

6.1. The aruba dataset

The ‘Aruba’ dataset consists of maps capturing 16 week long dy-
namics of a large apartment that was occupied by a single, house-
bound person who occasionally received visitors. An occupancy
grid and a topological map were created for every minute of a
16 week long period—the resulting dataset contains over 160 000
metric and topological maps. Since the original dataset [42] is
simply a year-long collection of measurements from 50 different
sensors spread over an eight-room apartment, these maps had to
be created by means of simulation.

First, we processed the events from the original dataset’s mo-
tion detectors to establish the location of people in the flat for
every minute of the 16 weeks. Then, we partitioned the flat into ten
different areas, where eight areas represent the rooms and two cor-
respond to corridors. This allowed us to create a topological map
that indicates the presence of people in these locations. To obtain
the metric representation, we created a simulated environment
with the same structure as the ‘CASAS’ apartment, see Fig. 2. Then
the simulation was provided with a sequence of person locations
recovered in the previous step. As a result, the simulated environ-
ment contains physical models of people at locations provided by
the real-world dataset, and thus it reflects the dynamics of the real
apartment. A virtual, RGB-D camera equipped robot was also intro-
duced into the virtual environment. Every time the configuration of
the simulated environment (i.e. locations of the people) changed,
the robot used its 3D sensors to create occupancy grids of the flat’s
individual rooms. Thus, we obtained occupancy grids that reflect
the real environment dynamics minute-by-minute for 16 weeks.
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Fig. 2. Aruba environment simulation.

6.2. The Brayford dataset

The Brayford dataset was originally collected for the purpose of
benchmarking long-term mobile robot localization algorithms in
dynamic environments [5]. The data collection was performed by
a human-sized robot equipped with an RGB-D camera in a large,
open-space office of the Lincoln Centre for Autonomous Systems.
The robot was set up to obtain RGB-D images of eight designated
areas every 10 min for a period of one week. Representative ex-
amples of the captured images are shown in Fig. 3. While the
high-level environment model of this dataset contains information
about people presence at the individual locations, the states of the
low-level model represent the visibilities of image features [43]
established by the method presented in our earlier work on visual
localization in changing environments [5]. The resulting dataset
contains more than 8000 feature-based and 8000 semantic maps
collected over a period of one week.

6.3. Dataset summary

Both datasets contain a high-level model representing people
presence at different locations and a low-level model based on
RGB-D sensing. In the following sections, we will refer to these
models as ‘symbolic’ and ‘metric’, respectively. The aforemen-
tioned datasets are available as a part of the long-term dataset
collection [44].

7. Experimental results

We assume that the aforementioned datasets reflect the real
state of the environments they have been captured in and thus
we use the sequence of the observations in the datasets as ground
truth. To evaluate how the various temporal models and explo-
ration strategies affect the robot’s ability to create and update its
internal environment models, we emulate the exploration process
using the datasets gathered. We assume that exploration can be
performed during only half of the robot’s operational time (i.e.
e = 0.5) and that a single observation takes 10 min. While 10 min
might seem like a long time, creation of a 3D occupancy grid of a
given location means that the robot has to position itself precisely,
and capture and process approximately 50 RGB-D images from
different viewpoints. This time also includes navigation to the
given spot, leaving the charging station, etc.

This exploration procedure corresponds to the situation when
the robot updates its spatio-temporal model and generates a new
observation schedule every 24 h at midnight. The robot starts with
an empty environment model that has all probabilities constant
and equal to 0.5.

First, the entropy functions of the individual locations are cal-
culated and 72 observations for the following day are scheduled.
Then, these 72 observations are retrieved from the given dataset
and the temporal models of the environment states are updated.
The updated temporal models are used to recalculate the spatio-
temporal entropy and the next day’s observation schedule is then
generated. These steps are repeated for every day of the given
dataset.

7.1. Evaluating environment model error

To compare the performance of the temporal models and ex-
ploration strategies described in Sections 4 and 5, the resulting
world model is compared to the actual dataset using Eq. (2), which
estimates the error in the environment model. Since there are 4
temporal models and 5 exploration strategies, each comparison
considers 20 values that characterize the ratio of incorrectly es-
timated states to the total number of environment states. One
dataset evaluation consist of two comparisons, each corresponding
to the given environment representation.

The results of the ‘Aruba’ dataset summarized in Table 1 show
that the combination of FreMEn with the novelty-driven or Monte-
Carlo strategies reduces the model error by more than 40%. Never-
theless, the combination of FreMEn and the novelty-driven strat-
egy performs slightly better than the combination of the same
model with the Monte-Carlo one. One may think that the greedy
strategy would be the best performer since it always chooses the
room with higher entropy, but in most situations this strategy fails
to maintain an up-to-date model. For example, in the case of noisy
and unpredictable signals in a given room, the robot will attempt
to focus its attention mainly in that room. While this is a logical
behaviour—not being able to model the location, the robot will
gather the data about it through direct observation, it might not be
really desirable, because the robot might not be getting valuable
data at all. Also, this behaviour would mean that the robot would
not observe the remaining rooms, since the entropy of the current
room is higher due to the higher uncertainties.
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Table 1

Aruba dataset results: Model errors for different exploration strategies and spatio-temporal models [%].

Strategy Spatio-temporal model

Symbolic Metric

SM LM FT GM SM LM FT GM
Round Robin 09.3 09.7 06.5 07.5 08.9 09.3 05.6 05.8
Random 08.9 09.5 09.2 07.5 08.7 09.0 08.3 07.2
Greedy 08.5 08.7 07.0 09.4 07.7 109 06.2 07.1
Monte-Carlo 08.5 08.9 05.8 06.4 08.0 08.3 05.0 05.7
Novelty-driven 08.5 08.9 05.7 06.1 08.0 08.4 04.9 05.4

Table 2

Brayford dataset results: Model errors for different exploration strategies and spatio-temporal models [%].

Strategy Spatio-temporal model

People presence Visual features

SM LM FT GM SM LM FT GM
Round Robin 23.7 23.7 16.3 20.2 25.7 27.0 12.7 17.9
Random 23.7 23.8 23.0 23.8 25.9 27.0 25.2 20.3
Greedy 20.2 22.3 19.2 20.1 29.9 29.3 24.4 18.6
Monte-Carlo 235 235 16.4 19.3 25.6 27.0 123 16.9
Novelty-driven 234 235 15.2 19.4 25.6 27.0 12.1 17.1

Fig. 3. Examples of Brayford dataset images.

Fig. 4 shows that the FreMEn model error is lower during the
first day, showing that this strategy allows quicker identification of
the environment patterns. Since more than 99% of the cells in the
‘Aruba’ occupancy grids represent empty space or static objects,
the model error (Eq. (2)) is calculated for the cells that change their
occupancy at least once.

The model errors of the ‘Brayford’ dataset as shown in Table 2
again indicate that the most faithful environment representation is
based on frequency-enhanced temporal models (see Section 4.1.1)
in combination with the novelty-driven strategy. The improve-
ment is more prominent in the case of people presence models. The
reason for this might be that the visibility of image features tends
to follow regular patterns given by the daily illumination cycle,
whereas the presence of people can be influenced by unexpected
events. Note that the model errors of the feature-based maps are
higher that the ones reported in [9] because we used a higher
number of visual features in our model.

Fig. 4 shows that initially, the GMM model achieves the lowest
error, but in the long-term, it is outperformed by FreMEn. This is
caused by the fact that the GMM model is tailored to represent
daily periodicities, while the FreMEn model has to identify the
patterns of changes from the data by itself. After several days,
FreMEn identifies several important periodicities (not only the
daily one) and its prediction capability improves, allowing it to
better schedule observations and decrease the model error. Fig. 4
also shows that the novelty-driven strategy performs slightly, but
consistently better than the Monte-Carlo one. In the experiments
performed, we observe that the novelty-driven strategy identifies
one or two unexpected observations per day.

T T T T
FreMEn — Novelty—driven strategy ——

FreMen — Monte—Carlo strategy

GMM - Novelty—driven strategy ——
121 GMM - Monte—Carlo strategy ——
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Fig. 4. Comparison of the average error of the novelty-driven and Monte Carlo
exploration strategies. The remaining models are not displayed due to their similar
performance.

7.2. Exploration vs. exploitation

In the above experiments, the robot’s exploration ratio e was
set to 0.5. Thus, the robot could spend 50% of its time gathering
data about its operational environment. However, such a ratio
is unrealistic—the robot has to spend some time replenishing its
batteries and we have to assume that it should perform other tasks
as well depending on the application. Moreover, we have to assume
that the purpose of the robot is not in creating precise environ-
ment models, but to perform useful tasks. Thus, exploration is
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Environment model error vs. exploration ratio
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Fig. 5. Exploration vs. exploitation analysis: The influence of the fraction of time
spend with exploration on the performance of the exploration strategies.

just an instrument to obtain and maintain knowledge to improve
the robot’s performance. If the robot spends too much time on
exploration, it would not be able to exploit the obtained knowledge
in its everyday activities.

We evaluate the efficiency of the individual exploration strate-
gies with different exploration ratios for predicting person pres-
ence on the Aruba dataset. We combine the Frequency Map En-
hancement models with four different exploration strategies, fix
the exploration ratio to a value between 0 and 1, and let the robot
explore the Aruba environment for two consecutive weeks. The
resulting error of the model obtained is shown in Fig. 5. The results
indicate that if the fraction of the time that the robot can spend on
actual exploration is low, the dynamic models might make wrong
assumptions about the environment changes and perform worse
than their static counterparts—this is especially notable with the
Greedy and Round Robin strategies. However, this effect can be
mitigated by a proper exploration strategy—the graph shows that
both Monte Carlo and novelty-based strategies improve the model
even if the robot cannot spend too much time on exploration.

Note that the initial model error is 10%—this is caused by the
fact that the Aruba dataset represents the presence of people in
10 different areas and the flat has only one inhabitant. Without
any observations, the robot simply assumes that the flat is empty,
which results in 10% error.

7.3. Qualitative evaluation

To gain an insight into the robot’s exploratory behaviour, we
interpret the data gathered during the exploration of the ‘Aruba’
topological map. Here, the robot’s task was to create a spatio-
temporal model of person presence in the individual rooms of
a small apartment. For the purpose of this explanation, let us
focus on the dynamics of three rooms only—the bedroom, the
kitchen and a storage room. Let the robot use the best-performing
exploration method that combines the FreMEn temporal models
and the Monte Carlo exploration strategy. Applying the proposed
spatio-temporal exploration method to this dataset produced the
behaviour in Fig. 6. The top part of Fig. 6 shows the real state of
the environment, where the three binary functions s;(t) represent
the room’s occupancies over time. The second part shows the
robot’s internal model of the environment, i.e. the probabilities
pi(t). The third graph displays the information that is expected to
be obtained by visiting these three locations at a given time. Finally,
the bottom graph shows which locations have been visited at a
particular time—we assume that the exploration ratio e = 0.5,
which reflects the situation where the robot has to spend half of
its time on its charging station. Now let us explain how the robot’s
understanding of the environment changes over time and how this
affects its exploratory behaviour day by day.

7.3.1. Day one

Initially, the robot has no knowledge of the environment and
therefore the probabilities p;(t) of the world states s(t) are equal
to 0.5. This means that the expected information gain from visiting
any of the rooms equals 1 bit at any time of the first day. Thus, the
robot has no room or time preference when scheduling the first
day’s observations.

7.3.2. Day two

After performing the first day’s observations, the environment
models provide enough evidence that the three rooms are not
occupied with the same probability. This is reflected in the second
day’s environment model—see the probability functions p;(t) of
the second day in Fig. 6. Thus the robot expects to gain more
information by visiting the bedroom and kitchen than by going to
the storage room. This is reflected in the second day’s observation
schedule—the last row of Fig. 6 shows that the first two rooms are
visited more often.

7.3.3. Day three

The additional observations obtained during the second day
provide information about the rooms’ dynamics: the robot as-
sumes that the bedroom has a daily periodicity and that the kitchen
is visited five times per day. This causes the expected information
gain to be time-dependent—the third day of the third row of Fig. 6
shows that evening and morning observations of the bedroom
provide more information than in the afternoon. This fact is rather
intuitive: visiting the room at the time of its state transition allows
to refine the room'’s state periodicity. Thus, on the third day, the
bedroom is visited mostly in the evening and morning, while the
afternoon visits are scheduled to the kitchen.

7.3.4. Days four and five

Based on the data gathered during the third day, the robot mod-
ifies its hypothesis about the periodicity of activities in the kitchen
and assumes that it is visited three times per day. During the
following days, the robot tends to visit the kitchen and bedroom
more often, and checks the storage room only occasionally. While
the kitchen is visited mostly in the early afternoon, the bedroom
is visited late evenings and mornings, which allows to refine the
robot’s model of the person’s daily habits.

This example indicates that the combination of a probabilistic
temporal model with an information-based strategy not only al-
lows the robot to obtain knowledge about the environment dy-
namics, but the observations are scheduled in a seemingly logical
way: at first, all the locations are visited often and with the same
frequency. As the spatio-temporal environment model becomes
more refined, the robot tends to visit particular locations only at
times when their states are uncertain.

8. Conclusion

In this paper, we presented a method for life-long spatio-
temporal exploration of dynamic environments. We assume that
the robot’s operational environment is subject to perpetual change,
which requires a method that can model and predict these vari-
ations. The purpose of spatio-temporal exploration is not only to
obtain the environment structure and keep it up-to-date with any
changes, but also to allow the robot to observe and understand the
world dynamics.

We hypothetize that the problem of spatio-temporal explo-
ration can be tackled by combining information-gain-based explo-
ration strategies with probabilistic dynamic environment models.
To verify our approach, we compare the performance of five ex-
ploration strategies and four temporal models on real-world data
gathered over the course of several months. We show that the
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Fig. 6. Spatio-temporal exploration behaviour: The robot uses its probabilistic world model (second row) and spatio-temporal entropy estimates (third row) to schedule
its observations (bottom graph) and learn the environment dynamics (top). As the environment knowledge improves over time, the scheduled observations provide more

information which allows for further refinement of the environment model.

combination of spectral-based temporal models with information-
gain-based novelty-driven strategies results in an intelligent ex-
ploration behaviour that improves as the environment knowledge
becomes more refined.

Analysis of the robot behaviour shows that when introduced
to a new environment, the robot prefers to explore unknown
locations. After it has obtained the spatial models, it starts to revisit
these locations in order to learn about their dynamics. Finally,
the learned dynamics allow the robot to schedule which locations
to visit at which times and adapt this schedule in the case of
unexpected observations.

The evaluations performed in this paper involved several as-
sumptions to simplify the problem. The first assumption was that
the time the robot spends moving to a particular location is negli-
gible compared to the time it takes to make an observation. The
second assumption was that the locations of observations were
predefined and that the robot could position itself with perfect
accuracy. The third assumption is that the observations are error-
free, i.e. there is no noise on the sensory data. While these as-
sumptions were needed for validation purposes in this work due to
the known difficulties of ground-truthing when comparing explo-
ration strategies, more recent work has overcome these limitations
and achieved full 4D metric-based spatio-temporal exploration
[45].

The analysis presented here opens several questions for further
investigation, which we would like to address in the future. In
particular, we will investigate not only the impact of exploration
on the quality of the spatio-temporal models, but its impact on the
efficiency of the robot operation over time. We will investigate how
much time the robot should spend on exploration (represented by
‘exploration ratio’ e) during the initial stages of deployment, when
the environment model is created, and what is the optimal e later
on, when the model is just maintained or when the model needs
to be re-built due to changes in the environment dynamics. We
will also investigate which situations in our datasets influenced
the novelty-driven strategy, so that it performed better than the
Monte-Carlo strategy.
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Warped Hypertime Representations for
Long-term Autonomy of Mobile Robots

Tomas Krajnik, Tomd$ Vintr, Sergi Molina, Jaime P. Fentanes, Gregorz Cielniak, Tom Duckett

Abstract— This paper presents a novel method for introduc-
ing time into discrete and continuous spatial representations
used in mobile robotics, by modelling long-term, pseudo-
periodic variations caused by human activities. Unlike previous
approaches, the proposed method does not treat time and
space separately, and its continuous nature respects both the
temporal and spatial continuity of the modeled phenomena. The
method extends the given spatial model with a set of wrapped
dimensions that represent the periodicities of observed changes.
By performing clustering over this extended representation, we
obtain a model that allows us to predict future states of both
discrete and continuous spatial representations. We apply the
proposed algorithm to several long-term datasets and show that
the method enables a robot to predict future states of repre-
sentations with different dimensions. The experiments further
show that the method achieves more accurate predictions than
the previous state of the art.

I. INTRODUCTION

Advances in autonomous robotics are gradually enabling
deployment of robots in human-populated environments [1].
Human activity tends to cause changes to the environments
it takes place in, and the mobile robots that share these
environments need to be able to cope with such never-ending
changes. However, merely coping is not enough — ideally, a
mobile robot should not only be able to comprehend the
environment structure, but also understand how it changes
over time. Many authors have shown that even simple models
of the environment that adapt to changes improve the overall
ability of mobile robots to operate over longer time peri-
ods [2], [3], [4], [5], [6]. Moreover, the ability of long-term
autonomous operation improves the chances of observing
the temporal changes, and thus to extract more valuable
information about the environment dynamics, resulting in
more accurate spatio-temporal models [1].

Our approach proposes to extend spatial representations
by adding several dimensions representing time, with each
pair of temporal dimensions representing a given periodicity
observed in the gathered data. In particular, we employ
the Frequency Map Enhancement [5] concept to identify
(temporally) periodic patterns in the data gathered. This
approach represents periodic processes in the environment
using Fourier analysis, and the resulting spectral models
obtained from long-term experience can be used to predict
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Fig. 1.
University of Lincoln, UK at various times of a day. See a video at [7].

Spatio-temporal model of people presence in a corridor of the

future environment states. Then, we transform each time
periodicity into a pair of dimensions that form a circle
in 2d space and add these dimensions to the vectors that
represent the spatial aspects of the modelled phenomena.
The model itself is then built using traditional techniques
like clustering or expectation-maximisation over the warped
space-hypertime representation. The resulting multi-modal
model represents both the structure of the space and temporal
patterns of the changes or events. We hypothesize that since
the proposed model respects the spatio-temporal continuity
of the modelled phenomena, it provides more accurate pre-
dictions than models that partition the modeled space into
discrete elements. In this paper, we provide a description
of the proposed method, and provide experimental evidence
of its capability to efficiently represent spatio-temporal data
and to predict future states of the environment. Unlike the
previous works [3], [8], [4], [5], which can only introduce
time into models that represent the environment by a dis-
crete set of binary states, such as visibility of landmarks
or cell occupancy in grids, our method is able to work
with continuous and higher-dimensional variables, e.g. robot
velocities, object positions, pedestrian flows, etc. Moreover,
the method explicitly represents and predicts not only the
value of a given state, but also its probabilistic distribution
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at a particular time and location, which can be useful for
task scheduling and planning [9].

Our experiments, based on real world data gathered over
several weeks, confirm that the method achieved more accu-
rate predictions than both static models and models that aim
to represent time over a discretised space only.

II. RELATED WORK

In mobile robotics, the effects of environment variations
were studied mainly from the perspective of localisation
and mapping, because neglecting the environment change
gradually deteriorates the ability of the robot to determine
its position reliably and accurately. Assuming that the world
is non-stationary, the authors of [2], [10], [11], [12], [6] pro-
posed approaches that create, refine and update world models
in a continuous manner. Furthermore, Ambrus et al. [13]
demonstrated that the ability of continuous remapping not
only allows to refine models of the static environment
structure, but also opens up the possibility to learn object
models from the spatial changes observed [14].

Unlike the aforementioned works, which focused on the
spatial structure and appearance aspects of the changes
observed, other authors [2], [15], [16], [3], [5] focused on
modelling the temporal aspects. For example, [2] and [15]
represent the environment dynamics by multiple temporal
models with different timescales, where the best map for
localisation is chosen by its consistency with current read-
ings. Dayoub et al. [16] and Rosen et al. [8] used statistical
methods to create feature persistence models and reasoned
about the stability of the environmental states over time.
Tipaldi et al. [3] proposed to represent the occupancy of cells
in a traditional occupancy grid with a Hidden Markov Model.
Krajnik et al. [5] represent the probability of environment
states in the spectral domain, which captures cyclic (daily,
weekly, yearly) patterns of environmental changes as well as
their persistence.

The aforementioned approaches demonstrated that con-
sidering temporal aspects (and especially their persistence
and periodicity) in robotic models improves not only mobile
robot localisation [5], [3], [2], but also planning [17], [18]
and exploration [19]. However, these temporal representa-
tions were tailored to model the probability of a single state
over time, and thus were applied only to individual compo-
nents of the discretised models, e.g. cells in an occupancy
grid [3], [19], visibility of landmarks [5], traversability of
edges in topological maps [17] or human presence in a
particular room [18]. Since the spatial interdependence of
these components was neglected, the above models were
actually considering only temporal and not spatial-temporal
relations of the represented environments. This results not
only in memory inefficiency (because of the necessity to
model a high number of discrete states separately) but also
in the inability of the representation to estimate environment
states at locations where no measurements were taken, e.g.
if a certain cell in an occupancy grid is occluded, its state
is unknown even if the neighbouring cells are occupied,
because the cell is part of a wall or ground.

Spatio-temporal relations of discrete environment models
were investigated in [20], [21]. Kuczner et al. [20] proposed
to model how the occupancy likelihood of a given cell in a
grid is influenced by the neighbouring cells and showed that
this representation allows to model object movement directly
in an occupancy grid. A similar approach was proposed
in [21], where the direction of traversal over each cell is
obtained using an input-output Hidden Markov Model con-
nected to neighboring cells. However, these models represent
only local spatial dependencies and suffer from a major dis-
advantage of the discretised models — memory inefficiency.
Therefore, in their latest work, [22] model a given set of
spatio-temporal phenomena (the motion of people and wind
flow) in a continuous domain, building their model by means
of Expectation Maximisation. Moreover, [23] shows how to
use this representation for robot motion planning in crowded
environments.

O’Callaghan and Ramos [24] also argue in favour of
continuous models, showing the advantages of Gaussian
Mixture-based representations in terms of memory efficiency
and utility for mobile robot navigation. In their latest work,
[25] speed up building and updating of the proposed models
by using an elegant combination of kernels and optimization
methods. The speed-up achieved allows to recalculate the
model relatively quickly, which keeps the model updated
with the changes in the robot’s operational environment.

Unlike the work of Ramos et al. [25], which is aimed
primarily at modelling the spatial structure, and [22], which
aims to make short-term predictions of the motion of people,
our aim is to create universal, spatial-temporal models capa-
ble of long-term predictions of various phenomena. Inspired
by the ability of the continuous models [25], [22] to represent
spatio-temporal phenomena and the predictive power of spec-
tral representations [5], we propose a novel method which
allows to introduce the notion of time into state-of-the-art
spatial models used in mobile robotics. Unlike our previous
work [5], which treats environmental states as independent
despite their spatial proximity and is applicable to binary
states only, the proposed method can be applied to continu-
ous, multi-dimensional representations, e.g. object positions,
movements of people, gas concentration, etc. Moreover, the
method explicitly represents and predicts not only the value
of a given state, but also its probabilistic distribution at a
particular time and location, which can be useful for task
scheduling and planning.

III. METHOD
A. Example scenario

As an example, let us consider a robot providing an
information terminal service in an office building or a
conference guide that has to provide directions to certain
events at locations where people commonly gather before
the events. To provide the service efficiently, the robot has to
position itself close to areas with a high level of pedestrian
traffic. However, to avoid causing nuisance to people and
improve robot performance, the robot should arrive at these
locations before they become congested. Thus, the robot
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has to anticipate the likelihood of occurrence of people at
a given time and place based on a model, which is built
from data gathered by the robot’s people detection system.
Such a system provides the robot with x,y € R? positions
of the people in the robot’s field of view. To be able to
navigate to this spot efficiently, the robot should know how
to predict if, and how quickly, it is able to reach the desired
destination from the current position. To do so, it has to
predict which of the potential paths will be blocked (e.g.
due to doors being closed) and how quickly it will be able
to traverse them. Furthermore, the robot has to reason about
its ability to localise itself reliably along the path it plans
to traverse. This means that the robot needs to use past data
from its navigation system, including its velocity v € R along
a given path and success of the path traversal s € {0, 1}. The
number of people o, robot speed v and path traversal success
s around the position (x,y) might be influenced by time, since
people gather in different areas at different times (meeting
rooms, cafeterias, etc.), and the robot speed is influenced
by the congestion of the corridors it moves through and the
doors on the path that are more likely to be open during busy
hours than otherwise.

Thus, one can assume that the values of o, v and s,
which form the state of the environment, will appear with
a different frequency depending on the time 7 and location
x,y. In particular, they are likely to be influenced by patterns
of human activity, which are strongly influenced by the time
of day and the day of the week. Our method provides a
unified way to identify the dependence of these variables on
time by modelling the spatio-temporal distribution of their
occurrences. The problem of finding such distributions is that
while the modelled space is constrained, and thus one can
gather an arbitrary number of measurements from a given
location, time unfolds indefinitely and it is not possible to
obtain measurements with the same ¢, which makes calcu-
lation of the temporal density of some phenomena difficult.
In our case, we assume that the time domain exhibits certain
periodic properties, and project the entire time-line into a
multi-dimensional, but constrained warped space, where the
notion of event density makes sense.

B. Method Overview

Let us assume that a robot already gathered a training
set containing / measurements of a given phenomenon,
obtaining tuples (a;,x;, #;), where i € {1...1}, the vector x;
describes the location of the measurement (e.g. position of
a detected person or obstacle), #; corresponds to the time of
the measurement and a; represents the measurement’s value,
e.g. the number of detected people, likelihood of an obstacle
or robot velocity in the vicinity of (x;,#).

Our method aims to find a p(a|x,t), which would represent
the conditional probability density function of the variable a
given the position x and time ¢. The proposed method is
composed of five stages, which are performed in an iterative
manner:

1) initialization;

2) spatio-temporal clustering;

3) model error estimation;
4) identification of periodicities;
5) and hypertime space extension.

To initialize the algorithm, we first set an index 4, which
characterises the number of periodicities taken into the
temporal model, to zero and we store all measurements
(a;,x;) in "x;. In the spatio-temporal clustering stage, we
cluster the vectors ("x;), obtaining a Gaussian mixture model,
which represents the spatio-temporal distribution of the given
phenomenon and allows to calculate conditional probability
function py(a|x,t). In the model error estimation, we calcu-
late the mean ; of p(a|x;,t;) for all training samples. Then
we calculate the time series "&(t;) as "(t;) = t; — a; and its
mean squared value Ej,. Then, during the identification of pe-
riodicities, we perform spectral analysis of "&(;), extract the
most prominent spectral component, and store its period as
Ty+1. After that, we perform the hypertime space extension,
which extends each vector "x; by 2 dimensions representing
a given periodicity of the temporal domain, i.e.

W% ("%, cos(2ti /Ty, sin(2mt;/Thyi1)). (1)

Then, we increment h by one and repeat the steps of
spatio-temporal clustering and model error estimation on
the now extended vectors "x;, obtaining an new error Ej,.
We compare the model error Ej calculated with the error
obtained in the previous iteration E; | and if E; < Ej,_,
we proceed with identification of periodicities and hypertime
space extension, extending the vector "x; with another two
dimensions representing another potential periodicity of the
modeled phenomena. In cases where the model error starts to
increase, i.e. if Ej > Ej_, we store the model p;_1(a,x,t)
from the previous iteration as p(a,x,f) and terminate the
method.

The resulting model allows to estimate the likelihood of
each value a of a given phenomena at location x and time
t. In our experiments, we show that the function p(a,x,t)
allows to predict the visibility of image features, door states,
robot velocity and number of people occurrences within a
given spatio-temporal volume.

C. Spatio-Temporal Clustering

We represent the probability density function p(a,x,t) by
a mixture of Gaussian models in the hypertime space as
follows:

n
plaxt)=vY wjui(a,xt), @)
=1

where u;(a,x,"t) is a multivariate Gaussian function
of the j’h cluster, w; is the cluster weight, ht =
(cos(2m 1), sin(277-), ... ,co8(2m7-),sin(277-)) is the pro-
jection of time in the hypertime space and 7y is a scaling
constant. Calculation of the model, i.e. computation of
weights, means and covariances of the Gaussian mixture
model is performed by an Expectation Maximisation scheme,
discussed in detail in Chapter IV.
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D. Model error estimation

Projecting the linear time ¢ onto the circular hypertime
space (or its inverse) inevitably changes the scale of the
calculated spatio-temporal density. This is because several
time instants ¢ can project into the same area of hypertime.
Thus, we first need to determine the scaling factor ¥ in such
a way that the mean value of a calculated from the model
(2) over the training set vectors (x;,#;) is equal to the average
value of @; on the training set:

_ Zﬁzlai
Zle Ja 27:1 wildj (a,x;,"ti)da
After calculating the scaling factor ¥, we compute an

estimate of a; at each training test point defined by location
x; and time #; by calculating the mean L;:

14 3

Ui = /ap(avxi,fi)da, “4)

Then, we calculate the error "€(z;) as the difference between
the mean and the measured values a;

hﬁ(t,') = l; — a;. )]

Finally, we calculate the mean squared error of the current
model as

I I
Ep= | Y e2(n) = \| ) (wi—ai)?. (6)
i=1 i=1

We compare the mean squared error E;, with the one cal-
culated in the previous iteration Ej,_. If Ej is smaller than
Ej_1, then we increase the i by one and perform another
iteration of the method.

E. Identification of periodicities and hypertime extension

To identify the periodicities in the error, we use a Fourier-
transform scheme. However, since the data collections for the
experiments were performed by a system operating in real-
world conditions, they were not collected in a (temporally)
regular manner. Thus, we process the time series "&(t;) by
the FreMEn method [5], which is able to find periodicities
in non-uniform and sparse data. In particular, we calculate
the most prominent periodicity 7}, in the error time-series as:

l
Ty =argmax } | ("e () =" &) e 270N, (7)
k=1

where /& is a an average error "(t;). After establishing the
T;,, we extend all vectors of the training set "~'x(#;) by adding
another two components (cos(27t;/T,), sin(2xt;/Ty,)), i.e.

hy; (h_lxi,cos(Zmi/Th), sin2z5;/Ty,)). (8)

Thus, at the start of out method, each vector %x; contains
only the spatial information, i.e. °x; = (a;,X;), but at the end,
the vector contains 2h additional dimensions modeling the
periodicities observed in the training data.

IV. DISCUSSION OF CLUSTERING

While the hypertime extension, error estimation and pe-
riodicity estimation steps of the method are quite straight-
forward, deterministic and computationally inexpensive, the
way we build the model of the probability distribution
over the hypertime space is key to the method’s predictive
efficiency. The main issue of the hypertime space is its spar-
sity, because the time, which is linear and one-dimensional,
is projected onto a single-dimensional curve lying on a
multi-dimensional hypersphere. This causes problems with
the numerical stability of many algorithms that we tested.
Thus, we dedicated a significant effort into testing various
clustering methods, their initialisations and metrics. Since
this letter is concerned with the idea of using the hypertime
space to allow robots to take into account cyclic environment
variations during their long-term operation, we will give
a short overview of the methods tested on the scenarios
described in Section V. A thorough comparison of the
aforementioned methods and settings is beyond the scope
of this article and will be presented in a separate paper.

We evaluated different clustering methods and metrics to
model distributions in the spatio-temporal hyperspace. The
Gustafson—Kessel algorithm [26] with fuzzy membership
degrees [27], which uses Mahalanobis distance, worked well
on a space with two temporal and two spatial dimensions.
However, as the number of modelled periodicities (and
thus, the number of temporal dimensions) grew, the method
became unstable and did not provide meaningful results.
This confirms our previous results [28], which showed that
Gustafson—Kessel does not achieve good performance in
high-dimensional spaces. We also evaluated other distri-
bution modeling methods described in [29]. In particular,
we thoroughly evaluated the performance of fuzzy k-means
clustering [30] and classical k-means [31]. Surprisingly, the
only clustering method able to partition the hypertime-space
into meaningful clusters was classical k-means [31]. We also
attempted to model the spatio-temporal hyperspace by a mix
of Gaussian distributions, determined by an Expectation-
Maximisation scheme similar to [25], [22]. While these
achieved good results in most cases, they sometimes exhib-
ited numerical instabilities similar to the Gustafson—Kessel
algorithm [26]. However, the effects of numerical instability
are possible to detect through eigenvalue analysis of the
covariance matrices and if needed, the EM can be restarted
with different initialization or with the covariances matrices
restricted to diagonal-only.

We also evaluated a variety of different metrics, e.g.
Euclidean, Minkowski, Chebyshev, etc., as well as their
squared and square rooted variants. The Minkowski metric is
recommended for clustering in higher dimensions [32], but it
performed no better than Euclidean distance when compared
on hypertime space. As mentioned earlier, we also evaluated
Mahalanobis distance without satisfactory results. Inspired
by [33][34], we experimented with the mixtures of cosine
distance for hypertimes and the aforementioned metrics for
other variables.
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Finally, in our experiments we compare two clustering
methods, which provided the most satisfactory results, the
HyperTime Expectation Maximisation (HyT-EM) and Hyper-
Time K-Means (HyT-KM).

The HyT-EM method is based on the Expectation Max-
imisation scheme implementation from the OpenCV library.
As the method requires to specify the number of clusters, we
indicate the the method name as HyT-EM _k, where k is the
number of clusters used during the experiments (Section V).
As mentioned before, the only problem of the method is its
occasional numerical instability, which, if detected, is solved
by automated restart with different initial positions of the
clusters.

The HyT-KM method is based on the NumPy package,
popular for scientific computing in the Python language.
HyT-KM first initialises the cluster centres using k-means,
while using the cosine distance for temporal and Euclidean
distance for spatial dimensions. After initialisation, it calcu-
lates the covariace matrices of the clusters and then it pro-
ceeds with the standard Expectation Maximisation procedure,
while using the cosine distance for temporal dimensions.
Unlike HyT-EM, HyT-KM does not require to specify the
number of clusters in advance. Instead, the algorithm tries
to analyse the temporal structure of the hypertime-space prior
to the hypertime expansion step. In particular, it starts with
n =1 clusters and calculates the sum of amplitutes 7x(n) and
Ty(n+1) of the frequency spectrum of the error "g(t;)

K |
Te(n) =Y.
=1i=1
If Tx(n) > Tx(n+ 1), the model with n+ 1 clusters is stored
and the number of clusters 7 is incremented by 1. If Ty (n) <
Tx(n+ 1), the method simply proceeds with the hypertime
expansion step.

|("e(t;) —" &) e~ 12l Tk, ©9)

V. EXPERIMENTS

The purpose of the experimental evaluation is to assess
the predictive capability of the proposed method and its
utility for different robotic tasks. The performance of the
method is evaluated in four different scenarios, which require
predictions of variables of different dimensionalities. The
data for these experiments were collected by robotic sensors
in real world conditions over periods of several weeks. These
scenarios correspond to our original motivational example
from Section III-B, where we discussed how a long-term
operating robot will benefit from the predictive capabilities
of models that explicitly represent temporal behaviour of
environment states with different dimensions. To evaluate the
efficiency of our method, we compare five different temporal
models: Mean, which predicts a value as an average of
its past measurements, Hist_n, which divides each day into
n intervals and predicts the given variable as an average
in a relevant time of a day, FreMEn_m, which extracts m
periodic components from the variable’s history and uses
these periodicities for prediction, HyT-EM _k, which uses the
expectation-maximisation of k-component Gaussian Mixture
Model over the hypertime space, and finally HyT-KN, as

described in Section IV. The experimental evaluation is per-
formed by an automated system [35], which first optimises
each method’s parameters (number of intervals n, number of
periodicities m, and number of clusters k) and then runs a
series of pairwise t-tests to determine which methods perform
statistically significantly better than other ones. To enable the
reproducibility of the results, the evaluation system and the
datasets are available online [36].

A. Door state

The first scenario concerns a single binary variable, which
corresponds to the state of a university office door. The door
was continuously observed by an RGB-D camera for 10
weeks to obtain the training set, and for another 10 weeks to
obtain 10 testing sets, each one week long. Since the RGB-D
data processing was rather simple, the data contains noise,
because people moving through the door caused the system
to indicate incorrectly that the door was closed.

To compare the efficiency of the predictions, we cal-
culated the mean squared error € of the various tempo-
ral models’ predictions p(¢) to the ground truth s(¢) as
e=/Yr (p(t)—s(t))%/|s(t)]. The results indicate that both
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Fig. 2. Door state prediction error. The left figure shows the MSE for the
training (week 0) and testing (weeks 1-9) datasets. An arrow from model A
to model B in the right figure indicates that A’s prediction error is statistically
significantly lower than prediction error of model B.

hypertime-based models outperformed the other ones, in-
cluding FreMEn [5]. Both methods indicated that the most
prominent periodicies corresponded to one day, four hours
and one week.

B. Topological localisation

In this scenario a robot has to determine its location in
an open-plan university office based on the current image
from its onboard camera and a set of pre-learned appear-
ance models of several locations. Since the appearance of
these locations changes over time, it is beneficial to utilise
appearance models that explicitly represent the appearance
variations [37], [5], [8], [6]. This experiment compares
the impact of different temporal models, which predict the
visibility of environmental features at these locations, on
the robustness of robot localisation. To gather data about
the changes in feature visibility, a SCITOS-G5 robot visited
eight different locations of the university office every 10
minutes for one week, collecting a training dataset with
more than 8000 images. After one week, the robot visited
the same locations every 10 minutes for one day, collecting
1152 time-stamped images used for testing. The training set
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images were then processed by the BRIEF method [38],
which shows good robustness to appearance changes [39].
The extracted features belonging to the same locations were
matched and we obtained their visibility over time, which
was then processed by the temporal models evaluated. Thus,
we obtained a dynamic appearance-based model of each
location that can predict which features are likely to be
visible at a particular time.

During testing, the robot uses these models to calculate the
likelihood of the features’ visibility at each of the locations
at the time it captured an image by its onboard camera (or
extracted a time-stamped image from the testing set). In
particular, it selects the n most likely-to-be-visible features
at each location and time, matches these features to the
features extracted from its onboard camera (or testing set)
image, and determines the model with the most matches
as its current location. The localisation error is calculated
as the ratio of cases when the robot incorrectly estimated
its location to the total number of images in the testing
set. The dependence of the average localisation error on the
particular temporal model and number of features n used for
localisation is shown in Figure 3. The results indicate that the

Localisation error rate vs. number of features used
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Fig. 3. Temporal model performance for feature-based topological local-
isation. The left figure shows the dependence of localisation error rate on
the number of features predicted by a given temporal model. An arrow from
A to B in the right indicates that A’s localisation error rate is statistically
significantly lower than localisation error rate of model B.

localisation robustness of the methods that take into account
the rhythmic nature of the appearance changes outperform
the Mean method, which relies on the most stable image
features. Moreover, the methods that model these cyclic
changes in a continuous manner perform better than the Hist
method which models different times of the day in separate,
as shown in Figure 3.

C. Velocity prediction

This scenario concerns the ability of our representation
to predict the velocity of a robot while navigating through
a given area, which depends on how cautiously it has to
move due to the presence of humans. Thus, this experiment
is concerned with the ability of our method to predict a one-
dimensional continuous variable (robot velocity) for a given
time and location.

The velocities and times of navigation for our evaluation
were obtained from a database obtained with a SCITOS-
G5 mobile platform, which gathered data in an open plan

research office for more than 10 weeks. Typically, the av-
erage velocity of the robot did not show much variation,
but in cases it had to navigate close to workspaces and
through doors, the velocity varied significantly. To evaluate
the ability of our approach to predict the robot velocity,
we split the dataset into an 8-weeks long training set and
two testing sets of 1-week duration. As in the case of door
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Fig. 4. Navigation velocity prediction error. The left figure shows the mean
squared error for the training and testing sets. An arrow from A to B in
the right indicates that A’s prediction error is statistically significantly lower
than velocity prediction error of model B.

state prediction, we calculated the mean square error of the
predictions provided by our models, and compared them to
find out which of the methods provide the most accurate
predictions. Our results indicated that both Hypertime-based
methods outperformed the other ones, as shown in Figure 4.

D. Human presence

Finally, we validated the proposed approach on 2-
dimensional data indicating the positions of people in several
corridors of the Isaac Newton Building at the University
of Lincoln. Data collection was performed by a mobile
robot equipped with a Velodyne 3d laser rangefinder, which
was placed at a T-shaped junction so that its laser range-
finder was able to scan the three connecting corridors si-
multaneously. To detect and localize people in the 3d point
clouds provided by the scanner, we used an efficient and
reliable person detection method [40]. Since we needed to
recharge the robot occasionally, we did not collect data on
a 24/7 basis and recharged the robot batteries during nights,
when the building is vacant and there are no people in the
corridors. Thus, our dataset spanned from early mornings
to late evening over several weekdays. Each day contains
approximately 28000 entries, which correspond to hundreds
of walks by people through the monitored corridor. To

Prediction error rate of individiual models
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Fig. 5. Human presence prediction results. The left figure shows how the
mean squared error reduced for a particular model compared to the Mean
model. An arrow from A to B in the right indicates that A’s prediction error
is statistically significantly lower than velocity prediction error of model B.
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quantitatively evaluate the model quality, we again split the
gathered data into training and test sets, and learn the model
from the training set only. Then, we partition the timeline
of the test data into a spatio-temporal 3d grid. For each
cell g, we count the number of detections d, that occurred
and compare this value with the value p, predicted by a
given spatio-temporal model. To better visualise the methods’
prediction improvements, we show the reduction of the mean
square error compared to the Mean model in Figure 5. To
make a comparison with other models, we apply the FreMEn
method on each of the grid cells independently and then
predict the most likely number of events at a given time
in a particular cell. Since the error is dependent on the
partitioning used, we tested the method for grids of various
cell sizes ranging from 5 to 20 cm and 5 to 30 minutes.

To demonstrate the model’s ability to estimate the spatio-
temporal distribution over time, we let it predict the most
likely occurrence of people for different times. Figure 1 and
video [7] show that the predicted distributions of the people
depend on time and follow the shape of the corridor (which
is not part of the training data).

VI. CONCLUSION

We presented a novel approach for spatio-temporal mod-
eling for robots that are required to operate for long periods
of time in changing environments. The method models the
time domain in a multi-dimensional hyperspace, where each
pair of dimensions represents one periodicity observed in the
data. This multi-dimensional, warped time model is used to
extend the state space representing a given phenomenon. By
projecting the robot’s observations into this space-hypertime
and clustering them, we create a continuous, spatio-temporal
model (distribution) of the phenomenon observed by the
robot. Knowledge of the spatio-temporal distribution is then
used to predict the occurrence of a given phenomenon at a
given time.

Using data collected by a mobile robot over several weeks,
we show that the method can represent the spatio-temporal
dynamics of binary and continuous variables, and use the
representation to make predictions of the future environment
states, resulting in significantly better performance than the
previous state of the art.

One of the major problems we have encountered is the
instability of clustering methods on the multi-dimensional
hypertime space. Thus, in the future, we will evaluate the
performance of different clustering algorithms on the pro-
posed representation. Furthermore, the observed distribution
is heavily influenced by the way in which the robot samples
the environment, i.e. where and when it takes the mea-
surements. Thus, we will study spatio-temporal exploration
methods, which will allow a mobile robot to automatically
select a location and time to obtain data useful to refine and
improve the spatio-temporal model.

Finally, to allow use of the method by other researchers,
we provide its baseline open source code and datasets at
http://fremen.uk.
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1 Introduction

Precise and reliable position estimation remains one of
the central problems of mobile robotics. While the prob-
lem can be tackled by Simultaneous Localization and
Mapping approaches, external localization systems are
still widely used in the field of mobile robotics both for
closed-loop mobile robot control and for ground truth
position measurements. These external localization sys-
tems can be based on an augmented GPS, radio, ultra-
sound or infrared beacons, or (multi-)camera systems.
Typically, these systems require special equipment, which
might be prohibitively expensive, difficult to set up or
too heavy to be used by small robots. Moreover, most
of these systems are not scalable in terms of the number
of robots, i.e., they do not allow to localize hundreds of
robots in real time. This paper presents a fast vision-
based localization system based on off-the-shelf compo-
nents. The system is precise, computationally efficient,
easy to use, and robust to variable illumination.

The core of the system is a detector of black-and-
white circular planar ring patterns (roundels), similar
to those used for camera calibration. A complete local-
ization system based on this detector is presented. The
system provides estimation of the roundel position with
precision in the order of millimeters for distances in the
order of meters.

The detection with tracking of a single roundel pat-
tern is very quick and the system is able to process sev-
eral thousands of images per second on a common desk-
top PC. This high efficiency enables not only tracking of
several hundreds of targets at a camera frame-rate, but
also implementation of the method on computationally
restricted platforms. The fast update rate of the localiza-
tion system allows to directly employ it in the feedback
loop of mobile robots, which require precise and high-
frequency localization information.

The system is composed of low-cost off-the-shelf com-
ponents only — a low-end computer, standard webcam,
and printable patterns are the only required elements.



The expected coverage, precision, and image processing
speed of the system can be estimated from the camera
resolution, computational power, and pattern diameter.
This allows the user to choose between high-end and
low-end cameras, estimate if a particular hardware plat-
form would be able to achieve the desired localization
frequency, and calculate a suitable pattern size for the
user’s specific application.

Ease of the system setup and use are also driving
factors of the proposed implementation, which does not
require user-set parameters or an intricate set-up pro-
cess. The implementation also contains an easy tool for
camera calibration, which, unlike other calibration tools,
does not require user interaction. At the same time, the
implementation is proposed as a library, which can be
integrated into commonly used computer vision frame-
works, such as OpenCV.

The main intention of this paper is to present the
system principle, its theoretical properties and real per-
formance characteristics with respect to the intended ap-
plication. Therefore, we present a model of the localiza-
tion arising from theoretical analyses of the vision system
and experimental evaluation of the system performance
in real scenarios with regard to its practical deployment.

2 Related work

External localization systems are widely used in the field
of mobile robotics, either for obtaining ground truth pose
data or for inclusion in the control loop of robots. In both
scenarios, it is highly desirable to have good precision
and high-frequency measurements. Here, both of these
aspects are analysed in related works and are specifically
addressed in the proposed system.

Localization systems for mobile robots comprise an
area of active research; however, the focus is generally
on internal localization methods. With these methods,
the robot produces one or more estimates of its posi-
tion by means of fusing internal sensors (either extero-
ceptive or proprioceptive). This estimation can also be
generally applied when either a map of the environment
exists a priori or when the map is being built simultane-
ously, which is the case of SLAM approaches [1]. When
these internal localization systems are studied, an exter-
nal positioning reference (i.e., the ground truth) without
any cumulative error is fundamental for a proper result
analysis. Thus, this research area makes use of external
localization systems.

While the most well-known external localization ref-
erence is GPS, it is also known that it cannot be used
indoors due to signal unavailability. This fundamental
limitation has motivated the design of several localiza-
tion principles, which can be broadly divided into two
major groups by means of the type of sensors used: ac-
tive or passive.

In the former group, several different technologies are
used for the purpose of localization. One example [2] of
active sensing is the case of a 6DoF localization system
comprised of target modules, which include four LED
emitters and a monocular camera. Markers are detected
in the image and tracked in 3D, making the system ro-
bust to partial occlusions and increasing performance
by reducing the search area to the vicinity of the ex-
pected projection points. Experiments with this system
were performed using both ground and aerial robots. The
mean error of the position estimation is in the order of
1 cm, while the maximum error is around 10 cm. The au-
thors note that for uncontrolled lighting scenarios passive
localization systems appear to be more suitable.

Another active sensor approach is the NorthStar [3]
localization system, which uses ceiling projections as a
non-permanent ambient marker. By projecting a known
pattern, the camera position can be obtained by repro-
jection. The authors briefly report the precision of the
system to be around 10 cm.

In recent works, the most widely used approach is
the commercial motion capture system from ViCon [4].
This system is comprised of a series of high-resolution
and high-speed cameras, which also have strong infra-
red (IR) emitters. By placing IR reflective markers on
mobile robots, sub-millimeter precision can be achieved
with updates up to 250Hz. Due to these qualities, Vi-
Con has become a solid ground-truth information source
in many recent works and, furthermore, has allowed de-
velopment of closed-loop aggressive maneuvers for UAVs
inside lab environments [5]. However, this system is still
a very costly solution, and therefore, it is not applicable
to every research environment. This issue has motivated
several works proposing alternative low-cost localization
systems.

) ARToolKit patterns b) ARTag patterns

f\ o
&'

(d) The TRIP tag

(c) SyRoTek
pattern

(e) The proposed
pattern

Fig. 1: Patterns used in passive vision-based global lo-
calization systems.



Several passive vision-based localization methods were
also proposed in recent literature, using simple planar
printable patterns, which reduce significantly the cost
and difficulty of use and setup. Several of these works
employ augmented-reality oriented markers, which not
only permit obtaining the pose of the target but can
also encode additional information like target ID. In this
area, the software libraries most widely used for this pur-
pose are ARTag [6] and ARToolKit+ [7], both based on
its predecessor ARToolKit [8], see examples of patterns
in Figure 1. These target detectors were used in several
works in order to obtain localization information about
mobile robots, either explicitly as a part of a pose esti-
mation system [9,10] or as ground-truth data [11].

In [9], ARToolKit markers are used for obtaining the
pose of several ground robots. The homography from
3D-t0-2D space (ground floor) is computed by defining
the work area by placing four ad-hoc markers, which are
manually detected in the image. In more recent work, the
authors proposed the ARTag [6] system that was later
extensively analysed in [12]. However, the analysis is fo-
cused on detection and confusion rates, and it does not
report the real accuracy in position estimation. Similar
systems are explored in [13], but details of their precision
are not reported.

One particular system, which is based on AR mark-
ers similar to ARTag and ARToolKit, is ArUco [14]. The
main aspects of this method are: easy integration into
C++ projects, based exclusively on OpenCV and a ro-
bust binary ID system with error correction which can
handle up to 1024 individual codes. The detection pro-
cess of AR markers in ArUco consists of: an adaptive
thresholding step, contour extraction and filtering, pro-
jection removal and code identification. When the intrin-
sic camera parameters are known, the extrinsic parame-
ters of the target can be obtained. Due to the free avail-
ability of the implementation and lack of performance
and precision reports, this system is analyzed in the pre-
sented work, see Section 6.5.

Since the previous pattern detectors were conceived
for augmented-reality applications, other works propose
alternative target shapes, which are specifically designed
for vision-based localization systems with high precision
and reliability. Due to several positive aspects, circular
shaped patterns appear to be the best suited as fiducial
markers in external localization systems. This type of
pattern can be found (with slight variations) in several
works [15-18].

The SyRoTek e-learning platform [19] uses a ring
shaped pattern with a binary tag (see Figure lc) to
localize up to fourteen robots in a planar arena. The
pattern symmetry is exploited to perform the position
and orientation estimation separately, which allows to
base the pattern localization on a two-dimensional con-
volution. Although this convolution-based approach has
proven to be reliable enough to achieve 24/7 operation,
its computational complexity still remains high, which

lead to its implementation on alternative platforms such
as FPGA [20].

In [16], a planar pattern consisting of a ring surround-
ing the letter “H” is used to obtain the relative 6DoF
robot pose with an on-board camera and IMU (Inertial
Measurement Unit) to resolve angular ambiguity. The
pattern is initially detected by binarization using adap-
tive thresholding and later processing for connected com-
ponent labeling. For classifying each component as be-
longing to the target or not, a neural network (multilayer
perceptron) is used. The input to the neural network is a
resized 14 x 14 pixel image. After testing for certain ge-
ometric properties, false matches are discarded. Positive
matches corresponding to the outer ring are processed
by applying the Canny edge detector and ellipse fitting,
which allows computation of the 5DoF pose. Recognition
of the “H” letter allows to obtain the missing yaw angle.
The precision in 3D position is in the order of 1cm to
7 cm depending on the target viewing angle and distance,
which was at the maximum around 1.5 m.

Probably the most similar approach to the proposed
system in this work is the TRIP localization system [17].
In TRIP, the pattern comprises of a set of several con-
centric rings, broken into several angular regions, each
of which can be either black or white. The encoding
scheme, which includes parity checking, allows the TRIP
method to distinguish between 3% patterns. For detect-
ing the tags, adaptive thresholding is performed and
edges are extracted. TRIP only involves processing edges
corresponding to projections of circular borders of the
ring pattern, which are detected using a simple heuristic.
These edges are used as input to an ellipse fitting method
and then the concentricity of the ellipses is checked. TRIP
achieves a precision similar to [16] in position estima-
tion (the relative error is between 1% and 3%), but only
a moderate performance (around 16 FPS at the resolu-
tion 640 x 480) is achieved using an 1.6 GHz machine.
The authors report that the adaptive thresholding step
is the most demanding portion of the computation. To
the best of our knowledge, there is no publicly available
implementation.

Finally, a widely used, simple and freely available cir-
cular target detector can be found in the OpenCV li-
brary. This “SimpleBlobDetector” class is based on tra-
ditional blob detection methods and includes several op-
tional post-detection filtering steps, based on character-
istics such as area, circularity, inertia ratios, convexity
and center color. While this implementation is originally
aimed for circular target detection, by tuning the pa-
rameters it is possible to find elliptical shapes similar
to the ones proposed in the present work and thus it is
compared to the proposed implementation.

In this work, a vision-based external localization sys-
tem based on a circular ring (roundel) pattern is pro-
posed. An example of the pattern is depicted in Fig-
ure le. The algorithm allows to initiate the pattern search
anywhere in the image without any performance penalty.



Therefore, the search is started from the point of the last
known pattern position. Since the algorithm does not
contain any phase that processes the entire image, suc-
cessful tracking causes the method to process only the
area occupied by the pattern. Therefore, the algorithm’s
computational complexity is independent of the image
size. This provides a significant performance boost, which
allows to track thousands of patterns in real-time using
a standard PC. By performing an initial unattended cal-
ibrating step, where the reference frame is defined, pose
computation of ground robots moving on a plane is per-
formed with millimeter precision using an off-the-shelf
camera.

The real-world performance of the proposed method
makes it highly competitive with the aforementioned state-
of-the-art methods. Moreover, its computational com-
plexity is significantly lower, which makes the method
superior for scenarios with embedded computational re-
sources and real-time constraints. These findings are sup-
ported by the experimental results and a comparison
with the selected localization methods presented in Sec-
tion 6.

3 Pattern detection

The core of the proposed computationally efficient local-
ization system is based on pattern detection. Fast and
precise detection is achieved by exploiting properties of
the considered pattern that is a black and white roundel
consisting of two concentric annuli with a white central
disc, see Figure 1.

The low computational requirements are met by the
pattern detection procedure based on on-demand thresh-
olding and flood fill techniques, and gathering statistical
information of the pattern on the fly. The statistical data
are used in consecutive tests with increasing complexity,
which determine if a candidate area represents the de-
sired circular pattern.

The pattern detection starts by searching for a black
segment. Once such a segment is detected and passes the
initial tests, the segment detection for a white inner disc
is initiated at the expected pattern center.

Notice, that at the beginning, there is no prior infor-
mation about the pattern position in the image; hence,
the search for the black segment is started at a ran-
dom position. Later, in the subsequent detections, when
a prior pattern position is available, the algorithm starts
detection over this area. For a successfully re-detected
(tracked) pattern, the detection processes only pixels be-
longing to the pattern itself, which significantly reduces
the computation burden. Since the method is robust (see
following sections for detection limits), tracking is gen-
erally successful and thus the method provides very high
computational performance.

After the roundel is detected, its image dimensions
and coordinates are identified. Then, its three-dimensional

position with respect to the camera is computed from its
known dimensions and camera re-projection techniques,
and its coordinates are transformed to a coordinate frame
defined by the user, see Section 4.

In this section, a detailed description of the pattern
detection based on an efficient thresholding is presented
together with an estimation of the pattern center and di-
mensions and a compensation of the incorrect diameter
estimation, which has a positive influence to the local-
ization precision. Moreover, a multiple pattern detection
capability is described in Section 3.6.

3.1 Segmentation

The pattern detection is based on an image segmenta-
tion complemented with on-demand thresholding that
searches for a contiguous set of black or white pixels us-
ing a flood-fill algorithm depicted in Algorithm 1. First,
a black circular ring is searched for in the input im-
age starting at an initial pixel position pg. The adaptive
thresholding classifies the processed pixel using an adap-
tively set value 7 as either black or white. If a black pixel
is detected, the queue-based flood-fill algorithm proce-
dure is initiated to determine the black segment. The
queue represents the pixels of the segment and is sim-
ply implemented as a buffer with two pointers gssqr¢ and
Gend-

Once the flood fill is complete, the segment is tested
for a possible match of the outer (or inner) circle of
the pattern. At this point, these tests consist of a min-
imum size (in terms of the number of pixels belonging
to the segment) and a roundness measure within accept-
able bounds. Notice, that during the flood-fill search,
extremal pixel positions can be stored. This allows to
establish the bounding box of the segment (b, and b,)
at any time. Besides, after finding a segment, the queue
contains positions of all the segment’s pixels. Hence, ini-
tial simple constraints can be validated quickly for a fast
rejection of false positives.

In the case where either test fails, the detection for
further segments continues by starting from the next
pixel position (i.e., a pixel at the position py + 1). How-
ever, no redundant computation is performed since the
previous segment is labeled with a unique identifier.

The first roundness test is based on the pattern’s
bounding box dimensions and number of pixels. Theo-
retically, the number of pixels s of an elliptic ring with
outer and inner diameters d,,d; and dimensions b, b,

should be

dg — di

0
s = Zbubv d% (1)
Therefore, the tested segment dimensions and area should

satisfy the inequality

T Pexp
4

Ptol > bubv -1 )

(2)



Algorithm 1: Flood-fill segmentation

Algorithm 2: Pattern detection

Input: (p, pewp, class): p — starting pixel position; pesp
— expected area to bounding box dimensions
ratio; class — searched segment type (white or
black)

Output: (u, v, by, by, u, valid): (u,v) — segment center;
(bu,by) — bounding box; u — average
brightness; valid — validity

Sid < Sia +1

qold — Gend

pixel_class[p] < S;q // mark pixel as processed and
queue[qmd =+ +} —p // push its position to the queue

// #1 perform the flood fill search

while Gend > Qdstart do

q < queue[qsm,«t + —|—] // pull pixel from the queue

// and check its neighbours

foreach offset € {+1,—1,4w, —w} do

r<q +offset

if pixel_class[r] = unknown then

| pixel_class[r] < classify(Image[r], 7)

// increment segment ID
// store previous queue end

if pixel_class|r] = class then
queue(gend + +] 1
pixel_class(r] < S;q
update Umin, Umaz, Umin, Umaz TTOM 7o, 7o

valid < false
// # 2 test for the pattern size and roundness

S <= Qend — Gold

if s> min_size then

U <— (umaz + umzn)/2

vV (Umacc + vmin)/z

by < (Umaz — Umin) + 1 // estimate segment width

by (Umaz — Umin) + 1 // estimate segment height

p pezpﬂ'bubv/(lls) —1

if —prot < p < ptor then
o L gent ! Inagelj]

valid + true

// segment center x-axis
// segment center y-axis
// calculate roundness

// mean brightness
// mark segment as valid

where pesp equals 1 for white and 1 — d?/d2 for black
segments. The value of p;,; represents a tolerance range,
which depends on the camera radial distortion and pos-
sible pattern deformation and spatial orientation.

If a black segment passes the roundness test, the sec-
ond flood-fill search for the inner white segment is initi-
ated from the position corresponding to the segment cen-
troid. If the inner segment passes the minimum size and
roundness tests, further validation tests are performed.
These involve the concentricity of both segments, their
area ratio, and a more sensitive circularity measure (dis-
cussed in the following sections). If the segments pass
all these complex tests, the pattern is considered to be
found and its centroid position will be used as a starting
point pg for the next detection run. The overall pattern
detection algorithm is depicted in Algorithm 2.

3.2 Efficient thresholding

Since the segmentation looks only for black or white seg-
ments, the success rate of the roundel detection depends

Input: (po, 7, Image): po — position to start search; 7 —
threshold; Image being processed

Output: (¢, po, 7): ¢ — the pattern data; po — position
to start the next search; 7 — an updated
threshold

8id < 0; 1 < po

// #1 search throughout the image

repeat

if pixel_class[i] = unknown then

if classify(Image[i], 7) = black then

| pixel_class[i] « black

// initialize

// initiate pattern search

if pixel_class[i] = black then

// search for outer ring

Gend < (start < 0

Couter — flood-fill _seg (%, pouter, black)

if valid(couter) then

// search for inner ellipse

j + center(Couter)

Cinner — flood-fill_seg(j, pinner, white)
if valid(Cinner) then

// test area ratio (no. of pixels):

Souter = |Couter|s Sinner = |Couter|
d2—d?
if Souter ~ Zo i then
Sinner d?

check segmlents for concentricity
compute ellipse semiaxes e, €1
if gend & mlege1| then
assign segment ID or
compensate illumination
mark segment as valid
break

i+ (i+ 1) mod sizeof(Image)
until i # po;

// #2 set the thresholding value
if valid(cinner) then

L T (Nouter + Ninner)/Q

// go to next pixel

// hide pattern in multiple pattern detection
paint over all inner ellipse pixels as black;

else
| 7 < binary search sequence

// #3 perform the cleanup
if only two segments examined then
| reset pixel_class[] inside bounding box of couter

else
reset entire pixel_class
P

on the threshold parameter 7, especially under various
lighting conditions. Therefore, we proposed to adaptively
update 7 whenever the detection fails according to a bi-
nary search scheme over the range of possible values.
This technique sets the threshold 7 consecutively to val-
ues {1/2,1/4,3/4,1/8,3/8,5/8 ...} up to a pre-defined
granularity level, when 7 is reset to the initial value.

When the pattern is successfully detected, the thresh-
old is updated using the information obtained during
detection in order to iteratively improve the precision of



segmentation:

_ Houter 42’ Hinner , (3)

where fiouters finner correspond to the mean brightness
value of the outer and inner segments, respectively.

The computationally intensive full image threshold-
ing is addressed by on-demand processing over each pixel
analyzed during the detection. At the very first access,
the RGB values of the image are read and a pixel is
classified as either black or white and the classification
result is stored for further re-use in the subsequent steps.
Moreover, whenever the tracking is successful, only the
relevant pixels are thresholded and processed by the two-
step flood fill segmentation. Clearing the per-pixel classi-
fication memory area is also efficiently performed by only
resetting the values inside the pattern’s bounding box.
As a result, the detection step is not directly dependent
on the input image resolution, which provides a signifi-
cant performance gain. If the tracking is not successful,
extra memory accesses resulting from this on-demand
strategy are negligible compared to a full-image thresh-
olding approach.

3.3 Pattern center and dimensions

After the black and white segments pass all the initial
tests, a more sophisticated roundel validation is per-
formed. The validation is based on a more precise round-
ness test using estimation of the ellipse (pattern) semi-
axes. All the information to calculate the ellipse cen-
ter u,v and the semiaxes eg, e; is at the hand, because
all the pattern pixels are stored in the flood-fill queue.
Hence, the center is calculated as the mean of the pixel
positions. After that, the covariance matrix C, eigenval-
ues Ao, A1, and eigenvectors vg,vy are established. Since
the matrix C is two-dimensional, its eigen decomposition
is a matter of solving a quadratic equation. The ellipse
semiaxes eg, e; are calculated simply by

e; = 2 \/)Tivi. (4)

The final test verifying the pattern roundness is per-
formed by checking if the inequality

€g||e
Pprec > ’7T'| OH 1|

-1 )

holds, where s is the pattern size in the number of pixels.
Unlike in the previous roundness test (2), the tolerance
value of pprec can be much lower because (4) establishes
the ellipse dimensions with subpixel precision.

Here, it is worth mentioning that if the system runs
on embedded hardware, it might be desirable to calcu-
late C using integer arithmetic only. However, the integer
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Fig. 2: Undesired effects affecting the pattern edge.

arithmetic might result in a loss of precision, therefore
C should be calculated as

-1
1% UiU; UiV; UU UV
C= ;z; <uivi viv; )] \wwov )’ (6)
ie
where u; and v; are the pattern’s pixel coordinates stored

in the queue and wu, v denote the determined pattern
center.

3.4 Pattern identification

The ratio of the patterns’ inner and outer diameters does
not have to be a fixed value, but can vary between the
individual patterns. Therefore, the variable diameter ra-
tio can be used to distinguish between individual circular
patterns. If this functionality is required, the system user
can print patterns with various diameter ratios and use
these ratios as ID’s.

However, this functionality requires to relax the toler-
ance ranges for the tests of inner/outer segment area ra-
tio, which might (in an extreme case) cause false positive
detections. Variable inner circle dimensions also might
mean a smaller inner circle or a thinner outer ring, which
might decrease the maximal distance at which the pat-
tern is detected reliably. Moreover, missing a priori knowl-
edge of the pattern’s diameter ratio means that compen-
sation for incorrect diameter estimation is not possible,
which might slightly decrease the method’s precision.

3.5 Compensation of incorrect diameter estimation

The threshold separating black and white pixels has a
significant impact on the estimation of the pattern di-
mensions. Moreover, the pixels on the black/white bor-
der are affected by chromatic aberration, nonlinear cam-
era sensitivity, quantization noise, and image compres-
sion, see Figure 2. As a result, the borderline between
the black ring and its white background contains a sig-
nificant number of misclassified pixels.

The effect of pixel misclassification is observed as an
increase of the ratio of white to black pixels with increas-
ing pattern distance. The effect causes the black ring to
appear thinner (and smaller), which has a negative im-
pact on the distance estimation. However, the inner and
outer diameters of the pattern are known, and there-
fore, the knowledge of the true d, and d; can be used



to compensate for the aforementioned effect. First, we
can establish the dimensions of the inner white ellipse
ep; and ey; in the same way as in Section 3.3. We assume
the pixel misclassification enlarges the inner ellipse semi-
axes €gj, €1; and shrinks the outer semiaxes ego, €10 by
a value of ¢. Since the real inner d; and outer d, pattern
diameters are known, the true ratio of the areas can be
expressed as

d;  (eoi —t)(e1 —t)
il PR s @

where ¢ can be calculated as a solution of the quadratic
equation

(1 —7)t* —t(epier; +Te00e10) + €0i€1i — T€0010 = 0. (8)

The ambiguity of the solution can be resolved simply by
taking into account that the corrected semiaxes lengths
ep; —t, e1; —t must be positive. The compensation of the
pattern diameter reduces the average localization error
by approximately 15 %.

3.6 Multiple target detection

The described roundel detection method can also be used
to detect and track several targets in the scene. How-
ever, a single threshold 7 is not well suited to detecting
more patterns because of illumination variances. Besides,
other differences presented across the working area may
affect the reflectance of the pattern and thus result in
different gray levels for different patterns, which in turn
requires a different 7 value for each pattern. Individual
thresholding values not only provide detection robust-
ness but also increase precision by optimizing pixel clas-
sification for each target individually.

Multiple targets can be simply detected in a sequence
one by one, and the only requirement is to avoid detec-
tion of the already detected pattern. This can be easily
avoided by modifying the input image after a success-
ful detection by painting over the corresponding pixels,
i.e., effectively masking out the pattern for subsequent
detection runs.

Detection of multiple targets can also be considered
in parallel, e.g., for obtaining additional performance
gain, using multi core processor. In this case, it is neces-
sary to avoid a possible race condition and mutual exclu-
sion has to be used for accessing the classification result
storage.

An initial implementation of the parallel approach us-
ing OpenMP and multi-processor system did not yield a
significant speedup. Furthermore, due to the high perfor-
mance of detection of a single pattern, the serial imple-
mentation provides better performance than the parallel
approach. Therefore, all the presented computational re-
sults in this paper are for the serial implementation.

4 Pattern localization

The relative pattern position to the camera module is
calculated from the parameters established in the pre-
vious step. We assume that the radial distortion of the
camera is not extreme and the camera intrinsic param-
eters can be established by the method [21] or similar.
With this assumption, the pattern’s position is computed
as follows:

1. The ellipse center and semiaxes are calculated from
the covariance matrix eigenvectors and transformed
to a canonical camera coordinate system.

2. The transformed parameters are then used to estab-
lish coeflicients of the ellipse characteristic equation,
which is a bilinear form matrix (also called a cubic).

3. The pattern’s spatial orientation and position within
the camera coordinate frame is then obtained by means
of eigen analysis of the cubic.

4. The relative coordinates are transformed to a two-
or three-dimensional coordinate frame defined by the
user.

A detailed description of the pattern position estimation
is presented in the following sections.

4.1 Ellipse vertices in the canonical camera system

The ellipse center u’, v/, and semiaxes eg, €] are estab-
lished in a canonical camera form. The used canonical
form is a pinhole camera model with unit focal lengths
and no radial distortion. The transformation to a canon-
ical camera system is basically a transform inverse to the
model of the actual camera.

First, we calculate the image coordinates of the ellipse
vertices ag 1 and co-vertices bg 1, and transform them to
the canonical camera coordinates ag ;,bg ;. The canon-
ical coordinates of the (co)vertices are then used to es-
tablish the canonical center and canonical semiaxes. This
rather complicated step is performed to compensate for
the radial distortion of the image at the position of the
detected ellipse.

Since the ellipse center u and semiaxes eg,e; are
known, calculation of the canonical vertices ag ; and co-
vertices b{,)l is done simply by adding the semiaxes to
the ellipse center and transforming them:

36,1 =9 ((uEeow —cz)/fo;(vE €oy — Cy)/fy)
b6,1 =9 (utewr —cz)/fo,(vE ely —¢y)/fy)’

where ¢’ is the radial undistortion function and f; 4, ¢z
are the camera focal lengths and optical center, respec-
tively. Using the canonical position of the ellipse vertices,
the ellipse center w’,v" and axes ey, €} are then calcu-

lated as . . ,
ey = (ag —ay)/2
ey = (bg —bj)/2 :
u, = (ag +aj + by +b))/4



After this step, we have all essential variables to calculate
the ellipse characteristic equation.

4.2 Ellipse characteristic equation

Notice that each point w,v lying on an ellipse satisfies
the characteristic equation of an ellipse:

Vi T /

U qa 9b 4d u T

v db 4c Qe v ] =X QX =0, (9)
1 qd Qe 4f 1

where Q is called a conic. Thus, the parameters of the
matrix Q are calculated from the ellipse center and axes
as follows:

o = €/ |hl2 + €huch /47
qp = +69u69v/‘e9|2 - €9u€9v/|e/1|2
qe = +ep,eou/l€1]* + epuen,/ €0l )

10
Qd = —UcGa = Vel (10)
fe = —ULqy — Veqe

qf = +Qau;2 + QCvg + 2qbu/cvé -1

4.3 Pattern position

Once the conic parameters Q are known, the position
and orientation of the pattern can be obtained by means
of eigenvalue analysis [22]. Let the Q matrix eigenval-
ues and eigenvectors be g, A1, A2 and qg, q1, 42, respec-
tively. Since Q represents an ellipse, its signature is (2, 1)
and we assume that Ay > A1 > 0 > Xo. According to [16],
the position of the circle can be calculated as:

d, Ao — A1 A1 — Ao
e=t—2— [ qoday/ 2 Fqadoy /22,
X %—/\0/\2 <QO 2 Mo — o q2A70 )\o—)\2>

where d,, is the circular pattern diameter. The ambiguity
of the sign can be resolved by taking into account that
the pattern is located within the camera field of view.
Thus, if the first component of the x. vector is negative,
the vector x is simply inverted.

4.4 Transformation to the global coordinates

The position x. of the circular pattern established in the
previous step is in a camera centered coordinate frame.
Depending on the particular application scenario, our
system allows to transform the pattern coordinates to a
3D or 2D coordinate frame defined by the user. The user
just places four circular patterns in the space covered
by the camera and provides the system with their real
positions.

4.4.1 Global coordinate frame — 3D case

In the case of the 3D localization, the three patterns
at positions xg, X1, X2 define the coordinate origin and
x and y axes, respectively. The transformation between

the global x = (z,y,2)"
(Ze, Ye, zc)T coordinate systems can be represented as

and camera centered x, =

x =T (xc — to),

where tg equals xg and T is a similarity transformation
matrix.

The user can define the coordinate system simply by
putting three “calibration” patterns in the camera field
of view and designating the pattern that defines the co-
ordinate system origin tg and the x and y axes. Using
the pattern positions (let us define them as xg, %1, X2,
respectively), the system calculates the transformation
between the camera and global coordinate systems, i.e.,
the vector tg and matrix T. Establishing the translation
vector t is straightforward — it corresponds to the cam-
era coordinates of the pattern at the global coordinate
origin, i.e., t = Xg.

The x and y axes of the coordinate frame are defined
by vectors t; = X1 — Xg and t3 = x5 — Xq, respectively.
Since we assume an orthonormal coordinate system, the
z axis vector can be simply calculated as a cross product
ts = t1 X t2. From an algebraic point of view, the matrix
T represents a transformation of the vector x' = x —t
to a coordinate system defined by the basis tq,t2,ts.
Therefore, the matrix T can be calculated simply as

-1
tlm tQm t3m
t1y oy T3y
tlz t2z t3z

T = (11)

Having established the vector t and matrix T, any point
in the camera coordinate frame can be transformed to
the coordinate frame defined by the user.

When the user places four patterns in the camera field
of view, four independent coordinate transformations are
calculated using each pattern triplet. The pattern posi-
tion z’ is then calculated as their mean, which results in
increased system accuracy.

4.4.2 Global coordinate frame — 2D case

Two-dimensional localization can be generally more pre-
cise than full three-dimensional localization. This is be-
cause the estimation of the pattern position depends
mainly on the pattern distance, especially in cases when
the pattern image is small. Estimation of the pattern
distance can be simply avoided if all the patterns are lo-
cated only in a plane, e.g., ground robots operating on a
floor.

In this case, the transformation from the image coor-
dinates to an arbitrary world plane is a homography, and
(homogeneous) spatial coordinates x of the patterns can



be calculated directly from their canonical coordinates u’
simply by x = Hu', where H is a 3x3 homography ma-
trix. Similarly to the case of three-dimensional localiza-
tion, the user can define H just by placing four patterns
in the camera field of view and providing the system with
their positions in the desired coordinate frame.

5 Sensor Model

In this section, we present three mathematical models
that can be used to estimate the expected performance
of the system. The main purpose of these models is to
support the selection of the most suitable camera, pro-
cessing hardware, and pattern size according to the par-
ticular application scenario. The first model calculates
the localization system coverage from the pattern dimen-
sions, camera resolution, and field of view. The second set
of equations provides estimation of the localization pre-
cision based on the camera parameters, pattern dimen-
sions, and required coverage. Finally, the third model es-
timates the necessary computational power to track the
given number of patterns at the desired frame rate.

5.1 Localization system coverage

Regarding the practical deployment of the localization
system, its most critical property is its coverage or “op-
erational space”, i.e., the space where the pattern is re-
liably detected and localized. The dimensions of the op-
erational space are affected by the camera focal length
and radial distortion, image resolution, pattern diame-
ter, and pattern spatial orientation.

Cmax

C7.

@/Cmm

Fig. 3: Geometry of the operational space.

For the sake of simplicity, the effect of radial distor-
tion on the shape of the operational space is neglected
and an ideal pinhole camera is assumed. Considering
this ideal model, the operational space has a pyramidal
shape with its apex close to the camera, see Figure 3.

The parameters of the operational space are the min-
imal and maximal detectable distances v.nin, Vmaz and
base dimensions vy, v,.

A pattern can be detected if it “fits” in the image and
its central part and black ring are recognizable. There-
fore, the pattern image dimensions must be lower than
the camera resolution, but higher than a certain value.
To estimate the dimensions, we assume the camera focal
lengths f;, f, and radial distortion parameters have been
established by a calibration tool', e.g., MATLAB cali-
bration toolbox or similar software based on [21]. Then,
the width and height wp, h,, of the pattern in pixels can
be calculated by

d d
Wp = fx;o cos(¢), hy = fy;o cos(1), (12)
where x is the pattern distance from the image plane,
d, is the pattern diameter, and ¢ and 1 represent the

pattern tilt.

5.1.1 Minimal localization distance

The minimal distance v,,;,, at which the pattern can be
detected regardless of its orientation, is given as

VUmin = do, Max (& fi) , (13)

w’ h
where w and h is the image horizontal and vertical res-
olution in pixels, respectively. One has to realize that
the fractions f,/w and fy,/h correspond to the camera
field of view. Hence, the camera field of view remains the
same regardless of the current resolution settings and the
distance v,,;, can be considered as independent of the
camera resolution.

5.1.2 Maximal localization distance

The pattern has to be formed from a sufficient number
of pixels to be detected reliably. Therefore, the pattern
pixel dimensions have to exceed a certain value that we
define as D. The value of D has been experimentally es-
tablished as 12. We also found that D might be lower
than this threshold for exceptionally good lighting con-
ditions; however, D = 12 represents a conservative value.
Having D, the maximal detectable distance v/, .. of the
pattern can be calculated as
Voo = 35 min(fz cos(¢), f, cos(¥)). (14)
Notice a higher camera resolution increases the focal
lengths f; and fy; so, setting the camera resolution as
high as possible maximizes the area covered by the lo-
calization system.
On the other hand, (14) does not take into account
the camera radial distortion and it is applicable only

1 Such a tool is also a part of the proposed system available
online at [23].
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when the pattern is located near the optical axis. The
radial distortion causes the objects to appear smaller as
they get far away from the optical axis. Thus, the dis-
tance v, at which the pattern is detected along the
optical axis is higher than the maximal detectable dis-
tance vy,q, of the pattern located at the image corners.
Therefore, the dimension v,,., of the operational space
is smaller than v/, by a certain factor and v, can be
calculated as

Umaz = d—[; min(k, fz cos(p), ky fy cos(v)), (15)
where k, and k, represent the effect of the radial distor-
tion. The values of k;, and k, can be estimated from the
differential of the radial distortion function close to an
image corner:

dg(raz,
kz:1+w:1+2k1rr+4k2(7“§+7"z7“5)+“'
X
dg(rz, |
k-y:1_5-9(;77“‘1’):1+2k1ry+4/€2(7”2+7"y7"925)+~"
Y

where r,, and r, can be obtained from the camera optical
axis and focal lengths as ¢,/ f5 and ¢,/ f,. For a consumer
grade camera, one can assume that the radial distortion
would not shrink the pattern more than by 10 %; so, a
typical value of k; , would be between 0.9 and 1.0.

5.1.8 Base dimensions

Knowing the maximal detectable distance v, the di-
mensions of the localization area “base” v, and v, can
be calculated as

U’maz U’maz
v, = w0 9, v, = h2meT 9,
x Yy

(16)

where w and h are the horizontal and vertical resolutions
of the camera used, respectively. Considering a typical
pattern, the value of d, is much smaller than the local-
ization area and can be omitted.

With Equations (13), (15), and (16) the user can cal-
culate the diameter of the pattern and camera parame-
ters from the desired coverage of the system. It should be
noted that the presented model considers a static config-
uration of the module and the detected pattern. Rapid
changes of the pattern’s relative position may cause im-
age blur, which might affect v,,,, and restrict the oper-
ational space.

5.2 Localization system precision

Another important property of the localization system is
the precision with which the system provides estimation
of the pattern position. The precision of the localization
is directly influenced by the amount of noise in the image
and uncertainty in the camera parameters. The position

estimation error also depends on the system operational
mode, i.e., it is different for the three-dimensional and
two-dimensional position estimations. The expected lo-
calization precision is discussed in the following sections
for both the 2D and 3D cases.

5.2.1 Two-dimensional localization by homography

For the 2D localization, the pattern position is estimated
simply from its center image coordinates. In the case of
an ideal pinhole camera, the calibration procedure de-
scribed in Section 4.4 should establish the relation be-
tween the image and world planes. Therefore, the preci-
sion of the position estimation is affected mainly by the
image radial distortion. Since the uncertainties of the
radial distortion parameters are known from the cam-
era calibration step, the error of radial distortion for z
and y can be estimated from the differential of the radial
distortion function

Ne = z(e1r + €21 + €573 + 2e3y) + e4(r + 222)

1
ny = ylerr + ear? + €573 + 2e42) + e3(r + 2y?) (17)

where 7, and 7, are the position relative errors, k; are
camera distortion parameters, €; are their uncertainties,
and r = 22 + y2. The overall relative error of the two-
dimensional localization can be expressed as

NMhom = Mrad = \/ 77925 + 775

Note that (17) does not take into account the cam-
era resolution. Therefore, the model suggests that higher
resolution cameras will not necessarily achieve better lo-
calization precision. This is further investigated in Sec-
tion 6.2.2, where experimental results are presented. Also,
note that in the standard camera calibration implemen-
tations, values of ¢; are meant as 99.7 % confidence in-
tervals. To calculate the average error, i.e., the standard
deviation, one has to divide npon, by three.

(18)

5.2.2 Full three-dimensional localization

In the full 3D localization, the main source of the local-
ization imprecision is incorrect estimation of the pattern
distance. Since the pattern distance is inversely propor-
tional to its diameter in pixels, smaller patterns will be
localized with a higher error. The error in the diameter
measurement is caused by quantization noise and by the
uncertainty in the identification of the camera’s intrin-
sic parameters, especially in the parameters of the image
radial distortion. One can roughly estimate the expected
error in the pattern distance estimation as

A zfy
773D=TZ+A60 dJ;

where Af is the error of the focal length estimation, Ae
represents the error of the ellipse axis estimation due to

+ Nrad (19)
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image noise, and 7,4q is the relative error of the radial
distortion model. While Af and 7,44 can be calculated
from the camera calibration parameters, Aeg is influ-
enced by a number of factors that include camera ther-
mal noise, lighting, motion blur etc. However, its current
value can be estimated on the fly from the variance of
the calibration ( see Section 4.4.1 ) patterns’ diameters.

In our experiments, the typical value of Aey was
around 0.15 pixels. This means that for a well-calibrated
camera, the major source of distance estimation error is
the ratio of image noise to the pattern projection size.
Since the pattern image size (in the number of pixels)
grows with the camera resolution, the precision of local-
ization can be increased simply by using a high resolution
camera or a larger pattern.

5.3 Computational requirements

From a practical point of view, it is also desirable to es-
timate the necessary computational hardware needed to
achieve a desired frame rate, especially for an embedded
solution. The time needed to process one image can be
roughly estimated from the number of patterns, their ex-
pected size, image dimensions, tracking failure rate, and
the computer speed. For the sake of simplicity, we can
assume that the time to process one frame is a linear
function of the amount of processed pixels:

t = (ko + k1(sp(1 — o) + s;0)) no, (20)
where kg represents the number of operations needed per
pattern regardless of its size (e.g., a coordinate transfor-
mation), kq is a constant corresponding to the number
of operations per pixel per pattern, s, is the average size
of the pattern in pixels, « is the expected failure rate
of the tracking, s; is the image size in pixels, n is the
number of tracked patterns, and o is the number of op-
erations per second per processor core given as a ratio
o = ¢/m of the entire processor MIPS (Million Instruc-
tions Per Second) m and the number of processor cores
c. The constant kg has been experimentally estimated as
5.10% and k; as 900. The average size s, of a pattern
can be calculated from the camera parameters, pattern
diameter, and average distance from the camera by (12).
Thus, if the user wants to track 50 patterns with 30 pixel
diameter using a machine with two cores and 53 GIPS
(Giga Instructions Per Second), the expected processing
time per image would be 1.2ms, which would allow to
process about 800 images per second.

The speed of the localization algorithm depends on
the failure rate of the tracking «. Typically, if the pattern
displacement between two frames is smaller than the pat-
tern radius, the tracking mechanism causes the method
to process only the pixels belonging to the pattern. This
situation corresponds to a being equal to zero. Thus, as-
suming that the pattern is not moving erratically, the
method’s computational complexity is independent of

the processed image size. Moreover, the smaller the pat-
tern image dimension, the faster the processing rate. Of
course, equation (20) gives only a coarse estimate, but it
might give the user a basic idea of the system processing
speed. Equation (20) has been experimentally verified
and the results are presented in Section 6.3.

6 Experiments

This section is dedicated to presentation of the experi-
mental results verifying the mathematical models estab-
lished in Section 5. First, the model of the operational
space defined by (15) and (16) is tested to see if it cor-
responds to a real situation. After that, the real achiev-
able precision of the localization is evaluated according
to the model (17) and (19). Then, the real computational
requirements of the algorithm are measured using differ-
ent computational platforms and the model in (20) is
validated. Finally, the performance of the proposed lo-
calization system is also evaluated according to the pre-
cise motion capture system and compared with the AR
tag based approach ArUco [14] and the simple OpenCV
circle detector.

6.1 Operational space for a reliable pattern detection

The purpose of this verification is to validate the model
describing the area covered by the localization system. In
Section 5.1, the covered space is described as a pyramid
with base dimensions vy,v, and a height denoting the
maximal detectable distance v,,qz.

6.1.1 Maximal detection distance

A key parameter of the operational space is the maxi-
mal distance for reliable pattern detection v,,,, that is
described by (14). The following experimental setup has
been used to verify the correctness of this model. Two
different cameras have been placed on a mobile platform
SCITOS-5 with precisely calibrated odometry. The pro-
posed localization system was set up to track three cir-
cles, each with a different diameter. The platform was set
to move away from the circles at a constant speed and its
distance from the patterns was recorded whenever a par-
ticular pattern was not detected. The recorded distances
are considered as the limit v, ,, of the system opera-
tional space. The same procedure was repeated with the
patterns being slanted by forty degrees.

During this experiment, the patterns were located ap-
proximately at the image center. As previously noted in
Section 5.1.2, additional correction constants &, k, have
been introduced in Section 5.1.2 to take into account
radial distortion effects, which cause the detected pat-
tern to appear smaller when located at the image edges.
The augmented model considering the radial distortion
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Table 1: Maximal distance for a reliable pattern detec-
tion

Distance [m]

Camera  Pattern Measured Predicted
type do[em)] 0°  40° 0°  40°
. 2.5 1.4 1.3 1.6 1.3

Logitech

Qogllffo 5.0 33 28 32 25
7.5 4.4 3.9 4.9 3.7

Olympus 2.5 6.8 6.2 6.7 5.1
VR-340 5.0 13.2 114 134 10.3
7.5 19.8 16.8 20.1 15.4

was verified in an additional experiment using a pattern
with diameter 2.5 cm positioned at the image corner. In
this case, the maximal detected distance was reduced by
7% for a Logitech QuickCam Pro camera and by 5% for
an Olympus VR-340. These results are in a good accor-
dance with the model introduced in Section 5.1.2, where
the values of k. and k, were estimated to be between 0.9
and 1.0.

6.1.2 Base dimensions

The dimensions of the coverage base are modeled by (16),
which provides the dimensions of the expected cover-
age v, and v,. This model was verified using a similar
setup to the previous experiment. The camera was placed
to face a wall at a distance established in the previous
experiment and four patterns were placed at the very
corners of the image. This procedure was repeated for
three different sizes of the pattern. The operation space
dimensions, both measured and calculated by (16), are
summarized in Table 2.

Table 2: Dimensions of the operational space

Dimensions [m]
Measured Predicted

Umaz 'Uy Uz

do

[cm]
VUmaz Uy V2

2.5 16 21 16 1.5 19 14
5.0 3.0 39 3.0 3.0 40 3.0
7.5 45 59 4.5 44 58 44

6.2 Localization precision

The real localization precision, which is probably the
most critical parameter of the localization system, was
established experimentally using a dataset collected in

Fig. 4: Side view of the experiment

Fig. 5: Top view of the experiment

the main entrance hall of the Faculty of Mechanical Engi-
neering at the Charles square campus of the Czech Tech-
nical University. The entrance hall offers enough space
and its floor tiles form a regular rectangular grid with di-
mensions 0.625 x 1.250 m. The regularity of the grid was
verified by manual measurements and the established
precision of the tile placement is around 0.6 mm.

We placed several patterns on the tile intersections
and took five pictures with three different cameras from
two different viewpoints (see Fig. 4 and 5). The cam-
eras used were a Creative Live! webcam, Olympus VR-
340, and Canon 550D set to 1280x 720, 4608 x 3456, and
5184 x 3456 pixel resolutions, respectively. The viewpoints
were chosen at two different heights; so, the images of the
scene were taken from a “side” and a “top” view.

First, three or four of the patterns in each image were
used to define the coordinate system. Then, the result-
ing transformation was utilized to establish the circle
global positions. Since the circles were placed on the tile
corners, their real positions were known precisely. The
Euclidean distances of these known positions to the ones
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Table 3: Precision of 3D position estimation

Table 4: Precision of 2D position estimation

Image Abs. [cm] Rel. [%)] Image Abs. [cm] Rel. [%)]
camera view €avg €mazx Npred Navg Nmax camera view €avg €mazx Npred Navg Nmax
Webcam  side 5.7 195 1.04 090 2.96 Webcam side 0.23 0.62 0.03 0.04 0.08
Webcam  top 3.7 121 068 0.61 1.83 Webcam  top 0.18 0.68 0.04 0.03 0.09
VR-340 side 1.9 6.5 0.47  0.35 1.02 VR-340 side 0.64 140 0.11 0.12 0.22
VR-340  top 3.2 11.0 0.54 0.50 1.39 VR-340  top 0.68 2.08 019 0.11 0.32
C-550D  top 2.5 74 030 043 1.46 C-550D  top 0.15 0.33 0.03 0.03 0.07

estimated by the system were considered as the measure
of the localization error.

6.2.1 Three-dimensional localization precision

In this test, the system was set to perform full three-
dimensional localization. In this model, the most signifi-
cant cause of the localization error is the wrong distance
estimation of the pattern (as noted in Section 5.2.2). The
distance measurement is caused by an imperfect estima-
tion of the pattern semiaxes lengths, see (19). The equa-
tion indicates that a camera with a higher resolution
would provide a better precision.

The measured and predicted average and maximal
localization errors for the individual pictures are shown
in Table 3. The table also contains the predicted average
localization error n,,eq calculated by (3) for a comparison
of the model and the real achieved precision.

6.2.2 Two-dimensional localization precision

In the case of indoor ground robot localization, we can
assume that the robots move in a plane. The plane where
the robots move and the image plane form a homography,
which was previously defined by four reference patterns
during the system setup. The real achievable precision
of two-dimensional localization was measured within the
same experimental scenario as the previous full 3D case.
The average and maximal measured localization errors
are depicted in Table 4. Similar to the previous case, the
table contains the predicted mean error 7,,.q calculated
by (17).

The results indicate that the assumption of ground
plane movement increases the precision by an order of
magnitude. Moreover, the results also confirm that in-
creasing the image resolution does not necessarily in-
crease the localization precision. Rather, the precision of
localization is influenced mostly by the camera calibra-
tion imperfections. This fact confirms the assumptions
presented in Section 5.2.1.

6.3 Computational requirements

The purpose of this experiment was to evaluate the es-
timation of the computational requirements provided by
the model proposed in Section 5.3. Thus, the hypothesis
is to test if the algorithm processing speed estimation
(20) conforms to the proposed assumptions. Moreover,
in this experiment, we also verify if the algorithm com-
plexity depends only on the pattern size rather than on
the image resolution.

6.3.1 Processing time vs. image and pattern dimensions

The model of computational requirements assumes that
once the circles are reliably tracked, the system process-
ing time is independent of the image size. In such a case,
the image processing time is a linear function of the over-
all number of pixels belonging to all the patterns. Three
synthetic datasets were created to verify this assumption.
The first dataset consists of images with variable reso-
lution and one circular pattern with a fixed size. The
image resolutions of the second dataset are fixed, but
the pattern diameter varies. Both pattern and image di-
mensions of the third dataset images are fixed; however,
the number of patterns in each image ranges from one to
four hundred. Each image of each dataset was processed
one thousand times and the average time to track all
the roundels in the image was calculated. The average
processing time is shown in Figure 6.

The presented results clearly show that the image
processing time is proportional to the number of pixels
occupied by the tracked circular patterns and does not
depend on the processed image dimensions. Moreover,
the results demonstrate the scalability of the algorithm,
which can track four hundred robots more than one hun-
dred times per second. The aforementioned tests were
performed on a single core of the Intel iCore5 CPU run-
ning at 2.5 GHz and accompanied with 8 GB of RAM.

6.3.2 Processing time using different platforms

From a practical point of view, processing images at a
speed exceeding the camera frame rate is not necessary.
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Fig. 6: Influence of the number of tracked patterns, pat-
tern and image sizes on the method’s speed.

Rather, the algorithm might be deployed on systems with
slower processing units. Thus, one should be able to es-
tablish what kind of computational hardware is needed
for a particular setup. This can be roughly estimated
using the time to process one image by means of (20).
Three real world datasets and five different platforms,
including two credit-card sized computers, were used to
verify the model in a realistic setup.

— The “small” dataset consists of one thousand images
of a static pattern, which occupies approximately seven
hundred pixels, i.e., 0.1 % of the image’s total area.
The “large” dataset is similar, but with a larger,
sixty-pixel diameter pattern, occupying approximately
0.3 % of image pixels.

The algorithm performance with these two datasets
(“small” and “large”) is relevant in scenarios where
the tracked objects are moving slowly and the camera
is in a static position.

The “fast” dataset contains 130 images of a fast mov-
ing pattern with a variable size. The dataset was
tailored to cause failure of the tracking mechanism
in one case. Thus, the performance of the algorithm
with this dataset is similar to cases when the camera
is not stationary or the tracked objects are moving
quickly.

The average processing time per image for each dataset
was measured and calculated by (20). The results sum-
marized in Table 5 indicate the correctness of the model
described in Section 5.3.

6.4 Comparison with a precise localization system

The real achievable precision of the localization system
has been reported in Section 6.2; however, only for ex-
periments with static targets, where the patterns were
placed at the predefined positions. Such a setup provides
verification of the precision for scenarios where the sys-
tem tracks slowly moving robots. On the other hand,

Table 5: Required image processing time

Processing time [ms]

CPU Measured Predicted
Dataset: small large fast small large fast
i-5 2450M 0.04 0.10 037 0.04 0.12 0.35
Atom N270 030 0.72 3.25 0.33 0.89 2.68
Pentium M 0.20 045 1.44 0.17 0.48 145
Odroid U2 0.27 089 27 029 079 2.86
Raspb. Pi 1.10 4.00 15.8 1.34 3.66 11.0

Table 6: Localization accuracy of a moving target

Mode Abs. [cm] Rel. [%]
€avg €mazx Navg Nmazx
2D 1.2 4.2 0.4 1.5
3D 3.1 11.2 1.2 4.4

rapid movement of the tracked targets introduces addi-
tional effects, which might have a considerable impact on
the system precision. First, the captured images can be
affected by motion blur and deformation caused by the
camera’s rolling shutter. Besides, there might be a delay
in position estimation because standard USB cameras
deliver the images with a delay caused by the interface’s
limited bandwidth. Therefore, we consider an additional
experiment to evaluate the impact of these factors on
the real performance of the presented global localiza-
tion system. We consider a precise reference system and
set up our localization system in an area where a high-
precision motion capture system is installed and which is
able to track multiple targets?. The motion capture sys-
tem provides positions of the tracked targets 250 times
per second with a precision up to 0.1 mm; so, it can be
considered as a ground truth for our position measure-
ments.

Four reference targets were placed in the area and a
common coordinate system was calculated for both sys-
tems. After that, four sequences of targets moving at
speeds up to 1.2m/s were recorded by a Logitech Quick-
CamPro and the commercial motion capture system. Eu-
clidean distances of target positions provided by both
systems were taken as a measure of our system accu-
racy. The mean precisions of two- and three-dimensional
localization were established as 1.2cm and 3.1cm, re-
spectively, see Table 6. Although the system’s relative
accuracy is lower that in the static tests presented in
Section 6.2, centimeter precision is still satisfactory for
many scenarios. The error is caused mostly by the image
blur because of a long exposure rate set by the camera

2 Human Performance Centre at the University of Lincoln
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Table 7: Localization precision comparison

Relative error [%]

mode WhyCon ArUco OpenCV
view avg mar avg maxr avg Mar

2D side 0.12 0.19 0.20 041 0.52 1.03
top 0.12 032 0.22 037 0.77 1.62

3D side 0.31 1.10 0.63 2.52 - -
top 033 1.04 1.08 2.90 - -

internal control. Careful setting of the camera exposure
and gain parameters might suppress this effect. In fact,
such a tuning has been made for localization of flying
quadrotors, see Section 7.1.

It is also worth to mention that even though the com-
mercial system is able to localize rapidly moving targets
with a higher precision, its setup took more than thirty
minutes while the presented system is prepared in a cou-
ple of minutes (just placing four patterns to establish the
coordinate system).

6.5 Comparison with other visual localization systems

The advantages and drawbacks of the presented local-
ization system are demonstrated by a comparison of its
performance with the well-established localization ap-
proaches based on AR markers and OpenCV. The per-
formance of AR-based markers has been measured us-
ing the ArUco [14] library for detection and localiza-
tion of multiple AR markers (similar to the ones used
in ARTag and ARToolKit systems). A comparison with
the OpenCV circular pattern detection is based on the
OpenCV’s “SimpleBlobDetector” class. The precision,
speed, and coverage of all three systems was established
in a similar way as described in the previous sections.
For the sake of simplicity, we will refer to the presented
system as WhyCon.

6.5.1 Precision comparison

The localization precision of the ArUco-, OpenCV-, and
WhyCon-based localization methods was obtained ex-
perimentally by the method described in Section 6.2. The
comparison was performed on 4608x3456 pixel pictures
taken by an Olympus VR-340 Camera from two different
(side and top) viewpoints.

The achieved results are presented in Table 7. The
WhyCon position estimation error is significantly lower
than the error of ArUco and OpenCV in both the two-
and three-dimensional localization scenarios. Moreover,
we found that the OpenCV’s blob radius calculation was
too imprecise to reliably estimate the pattern distance
and could not be used for the full 3D localization.

6.5.2 Performance comparison on different platforms

The computational performance of the three evaluated
systems was compared for three different platforms. The
methods’ performance was compared using two datasets
similarly to the evaluation scenario described in Sec-
tion 6.3.2. The slow dataset contains an easy-to-track
pattern while for the fast datasets about 1 % of the im-
ages are tailored to cause a tracking failure.

Table 8: Image processing time comparison

Processing time [ms]

CPU ArUco OpenCV WhyCon
Dataset: fast  slow fast slow fast slow
i5 2450M 19 19 63 62 0.35 0.04
Pentium M 121 119 329 329 1.00 0.18
Odroid U2 148 149 371 366 0.93 0.28
Raspb. Pi 875 875 1795 1759 6.59 1.21

The results presented in Table 8 indicate that the
proposed algorithm is capable of finding the patterns
approximately one thousand times faster than the tra-
ditional methods. Even in the unfavorable case where
the patterns cannot be reliably tracked, the method out-
performs ArUco and OpenCV hundred times. The per-
formance ratio is even better for small embedded plat-
forms with limited computational power. This property
is favorable for deployment in the intended applications,
especially under real-time requirements.

6.5.3 Range and coverage comparison

The AR fiducial markers are primarily intended for aug-
mented reality applications and in a typical scenario, the
localized marker is situated close to the camera. There-
fore, the AR marker-based systems are not tuned for
a reliable detection of distant patterns with small im-
age dimensions. Thus, the range and coverage of the AR
marker-based systems would be lower compared to Why-
Con. On the other hand, OpenCV’s circular blob detec-
tor can detect small circular patterns.

To estimate the ArUco and OpenCV detectors maxi-
mal range, we have established the minimal size (in pix-
els) that the tags need to have in order to be detected
reliably. The sizes that correspond to the minimal pat-
tern diameter D in the Equation (15) were established
in a similar way as described in Section 6.1.1. While the
OpenCV detector can find blobs larger than 12 pixels,
the ArUco detector requires the AR marker side to be
longer than 25 pixels. Therefore, ArUco’s maximal detec-
tion range is less than a half of WhyCon’s or OpenCV’s
range.
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7 Practical deployment

In this section, we present an overview of several research
projects where the proposed circle detection algorithm
has been successfully employed. This practical deploy-
ment demonstrates the versatility of the presented local-
ization system. A short description of each project and
comment about the localization performance is presented
in the following sub-sections.

7.1 UAV formation stabilization

In this setup, the circle detection algorithm was consid-
ered for a relative localization and stabilization of UAV
formations operating in both indoor and outdoor envi-
ronments. A group of quadrotors are supposed to main-
tain a predefined formation by means of their relative
localization. Each quadrotor UAV carries a circular pat-
tern and an embedded module [24] running the localiza-
tion method, see Figure 7.

Fig. 7: Decentralized localization of quadrotor forma-
tion performed by the presented method. Courtesy of
the GRASP laboratory, PENN.

Thus, each UAV is able to detect other quadrotors
in its vicinity and maintain a predefined relative posi-
tion. Although the UAV’s movements are relatively fast,
we did not observe significant problems caused by im-
age blur and the system detected the patterns reliably.
This scenario demonstrates the ability to reliably detect
circular patterns despite their rapid movements and vari-
able lighting conditions. Moreover, it proved its ability
to satisfy real-time constraints when running on com-
putationally constrained hardware. The precision of the
relative localization was in the order of centimeters [24].

7.2 Birds-eye UAV-based localization system

The algorithm has also been used for relative localization
of ground robots, which were supposed to maintain a pre-
defined formation shape even if they lack direct visibility
among each other. In this setup, one robot of the forma-
tion carried a heliport with the Parrot AR.Drone [25]
quadrotor, which can take off and observe the formation
from above using a downward-pointing camera. Each
ground robot had a roundel pattern, which is ellipti-
cal rather than circular to provide also an estimate of
the robot orientation. Using the roundel detection algo-
rithm, the position and heading of the ground robots are
provided by the flying quadrotor while it maintains its
position above the formation.

Fig. 8: Mixed UAV-UGYV robot formation.

Moreover, the heliport was designated by a circular
pattern, which makes it possible to autonomously land
the quadrotor after the mission end, see Figure 8. Despite
the relatively low resolution (168x144) of the UAV’s
downward-looking camera and its rapid movements, the
overall localization precision was approximately 5 cm.

7.3 Autonomous docking of modular robots

The Symbrion and Replicator projects [26] investigate
and develop novel principles of adaptation and evolu-
tion of symbiotic multi-robot organisms based on bio-
inspired approaches and modern computing paradigms.
The robot organisms consist of large-scale swarms of
robots, which can dock with each other and symbioti-
cally share energy and computational resources within
a single artificial life form. When it is advantageous to
do so, these swarm robots can dynamically aggregate
into one or many symbiotic organisms and collectively
interact with the physical world via a variety of sensors
and actuators. The bio-inspired evolutionary paradigms
combined with robot embodiment and swarm-emergent
phenomena enable the organisms to autonomously man-
age their own hardware and software organization.
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Fig. 9: Symbrion/Replicator robots during docking.

In these projects, the proposed localization algorithm
has been used as one of the methods for detecting power

sources and other robots, see Figure 9. The method demon-
strated its ability to position the robot with a sub-millimeter,

precision, which is essential for a successful docking. The
method’s deployment in this scenario demonstrated not
only its precision, but also its ability to run on compu-
tationally constrained hardware.

7.4 Educational robotics

SyRoTek [19] is a remotely accessible robotic laboratory,
where users can perform experiments with robots using
their Internet connectivity. The robots operate within
a flat arena with reconfigurable obstacles and the sys-
tem provides an overview of the arena from an overhead
camera. The project has been used for education and re-
search by several institutions in Europe and Americas.
An important component of SyRoTek is the localization
system providing estimation of the real robots’ positions.

20@2 10

Fig. 10: A top-down view to the SyRoTek arena.

Originally the localization was based on a convolution
algorithm. Even though it is computationally demanding

and rather imprecise, it demonstrated suitability for 24/7
operation. After replacement of this original localization
system by the presented roundel-based system, the pre-
cision of the localization was improved. Moreover, the
computational requirements were decreased as well [27].
In this deployment, the roundel pattern is formed from
ellipses where the inner ellipse has slightly different di-
mensions, see Figure 10, which allows to distinguish be-
tween individual robots. This use case demonstrates the
ability of the system to operate in 24/7 mode. In addi-
tion, using different dimensions of the inner ellipse allows
to distinguish between 14 SyRoTek robots.

7.5 Ground truth assessment in mobile robot navigation

BearNav (originally SURFNav) is a visual based naviga-
tion system for both ground [28] and aerial mobile [29]
robots. The method is based on convergence theorem [30],
which states that map-based monocular navigation does
not need full localization, because if the robot heading
is continuously adjusted to turn the robot towards the
desired path, its position error does not grow above cer-
tain limits even if the position estimation is based only on
proprioceptive sensing affected by drift. The aforemen-
tioned principle allows to design reliable and computa-
tionally inexpensive camera-based navigation methods.

Fig. 11: Reconstructed trajectory of a mobile robot.

The presented roundel based localization system was
used to provide a continuous and independent measure-
ment of the robot position error, which allowed to ver-
ify the convergence theorem and benchmark the indi-
vidual navigation algorithms in terms of their precision,
see Figure 11. The system proved to be useful especially
for aerial robots [29], which, unlike the ground robots,
cannot be simply stopped for a manual position mea-
surement.

7.6 Autonomous charging in long-term scenarios
The STRANDS project [31] aims to achieve intelligent

robot behaviour in human environments through adap-
tation to, and the exploitation of, long-term experience.
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The project approach is based on a deeper understanding
of ongoing processes affecting the appearance and struc-
ture of the robot’s environment. This will be achieved by
extracting qualitative spatio-temporal knowledge from
sensor data gathered during months of autonomous oper-
ation. Control mechanisms that will exploit these struc-
tures to yield adaptive behaviour in highly demanding
scenarios will be developed.

Rohot
STATioN

Fig. 12: SCITOS-5 platform near its charging station.
Notice the three o’s of the label.

The circle detection method is used in the project as
an initial solution of localization-related problems before
more sophisticated implementations take its place. One
of such deployments is localization of the robot during its
approach to a charging station, which has been solved by
placing three patterns in the charging area, see Figure 12.

8 Conclusion

We present a fast and precise vision-based system in-
tended for multiple robot localization. The system’s core
component is based on a novel principle of circular roundel
detection with computational complexity independent of
the processed image size. The resulting system allows to
localize swarms composed of several hundreds of robots
with millimeter (2D) or centimeter (3D) precision, while
keeping up with standard camera frame rates. In ad-
dition, we provide a model to calculate the sufficient
camera and computer parameters to achieve the desired
localization precision, coverage and update rate, which

support potential users to decide which kind of equip-
ment is needed for their particular setup.

The most notable features of the system are its low
computational requirements, ease of use, and the fact
that it works with cheap, off-the-shelf equipment. The
system has been deployed already in a number of inter-
national mobile robotic projects concerning distributed
quad rotor localization [24], visual based autonomous na-
vigation [30], decentralized formation control [25], long-
term scenarios [31], evolutionary swarm [26], and educa-
tional [19] robotics. Since the system has already proved
to be useful in a variety of applications, we publish its
source code [23]; so, other roboteers can use it for their
projects. The experiments indicate that the presented
system is three orders of magnitude faster than tradi-
tional methods based on OpenCV or AR markers while
being more precise and capable of detecting the markers
at a greater distance.

In the future, we plan to increase the precision and
coverage of the system by using multiple cameras. We
will plan to improve the tracking success rate by pre-
dicting the position of the target by considering the dy-
namics of the tracked object.
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