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Recently, it has been established that two-dimensional bosonic symmetry-protected topological (SPT) phases
with on-site unitary symmetry G can be completely classified by the group cohomology H 3(G,U(1)). Later, group
supercohomology was proposed as a partial classification for SPT phases of interacting fermions. In this work, we
revisit this problem based on the algebraic theory of symmetry and defects in two-dimensional topological phases.
We reproduce the partial classifications given by group supercohomology, and we also show that with an additional
H 1(G,Z2) structure, a complete classification of SPT phases for two-dimensional interacting fermion systems
with a total symmetry group G × Zf

2 is obtained. We also discuss the classification of interacting fermionic SPT
phases protected by time-reversal symmetry.

DOI: 10.1103/PhysRevB.97.205109

I. INTRODUCTION

As a result of the Pauli exclusion principle, noninteract-
ing fermions have rich structures in their ground-state wave
functions and a complete classification of symmetry-protected
topological (SPT) phases of free fermions has been achieved by
using ideas like Anderson localization [1] and K theory [2].
A variety of materials have been experimentally discovered
to realize these nontrivial SPT phases, such as time-reversal-
invariant topological insulators and superconductors [3–6].
On the other hand, recent studies show that SPT phases also
exist in interacting boson systems and can be systematically
classified by (generalized) group cohomology theory [7–9].
Strong interaction is a necessity for the occurrence of bosonic
SPT phases.

Despite the remarkably successful classifications of nonin-
teracting Hamiltonians, the nonperturbative effects of interac-
tions in fermionic SPTs still remain an important theoretical
question. In many cases, the free-fermion classifications are
shown to be stable against interaction effects, e.g., the Z2 clas-
sification of time-reversal-invariant topological insulators [10].
A breakthrough by Fidkowski and Kitaev [11] demonstrated
that in one-dimensional fermionic systems with time-reversal
symmetry T 2 = 1, the noninteracting Z classification breaks
down to Z8 when strong interactions are present [11,12]. The
result was then generalized to two dimensions with an onsite
Z2 symmetry [13–18] and three-dimensional time-reversal-
invariant topological superconductors [19–24]. Recently sev-
eral general classification schemes have been proposed for
fermionic SPT phases, including group supercohomology
[25,26], spin cobordism[27], and invertible topological field
theories [28,29].

In this work, we pursue an alternative route to clas-
sify fermionic SPT (fSPT) phases in two dimensions (2D).

Following previous works on bosonic SPT phases, to char-
acterize fSPT phases we introduce extrinsic defects carrying
symmetry fluxes into the fSPT state. The classification is
obtained by studying the topological properties of the defects,
such as their fusion rules and braiding statistics. Similar ideas
have proven to be quite successful in classifying bosonic SPT
phases in 2D [30–33]. The mathematical objects that classify
2D fSPT phases can be summarized as three group coho-
mologies of the symmetry group: H 1(G,Z2), BH 2(G,Z2), and
H 3(G,U(1)). H 1(G,Z2) classifies fSPT phases with unpaired
Majorana edge modes. BH 2(G,Z2) was previously derived
in the group supercohomology classification [25], and we
clarify its physical meaning as the fractionalized symmetry
quantum numbers carried by fermion-parity π fluxes. Finally,
H 3(G,U(1)) is the known classification of bosonic SPT phases
[7]. To gain more physical intuition for the above results, let
us consider the simplest case with G = Z2 which has a Z8

[17,27,28] classification. In this case,H 3(Z2,U(1)) = Z2 gives
the classification of bosonic SPT phases when all fermions
form bosonic moleculars and/or spins; BH 2(Z2,Z2) = Z2

classifies the fractionalized Z2 quantum numbers carried by
fermion-parity π fluxes; and finally H 1(Z2,Z2) = Z2 indi-
cates whether the Z2-symmetry fluxes carry unpaired Majo-
rana zero modes. All together, there are eight fSPT phases and
further analysis suggests a Z8 group structure.

II. GENERALITIES

First of all, let us clarify the meaning of the symmetry
group G in a fermionic system. A fundamental symmetry of
fermionic systems that can never be broken is the conservation
of total fermion parity, denoted by Zf

2 . In addition to this
symmetry, we assume the system has an onsite symmetry
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group G. The total symmetry group of the system is actually
Zf

2 × G.1 For most of our paper, we assume G is unitary and
finite. We will consider antiunitary time-reversal symmetry in
the end.

Our approach to the problem is based on the algebraic
theory of two-dimensional gapped quantum phases [34]. Given
a gapped phase in two dimensions, one can classify the low-
energy localized quasiparticle excitations into superselection
sectors (topological charges). Different topological charges
cannot be transformed into each other by applying local
operators. Fusion and braiding of the topological charges are
described by the mathematical framework of unitary braided
tensor category (UBTC) [34,35]. From this point of view, a
bosonic SPT phase has no topologically nontrivial quasipar-
ticle excitations, and the corresponding UMTC is just the
trivial one: C = {I }, where I stands for the vacuum sector.
In a fermionic system, states with even and odd numbers of
fermions belong to different superselection sectors, and no
terms in the Hamiltonian can ever mix these two sectors.
Therefore, we model a gapped fermion SPT phase abstractly by
the (premodular) UBTC Cf = {I,ψ}, where I stands for trivial
bosonic excitations (sometimes referred to as the vacuum) and
ψ represents a single fermionic excitation. ψ still represents a
local excitation, but is distinct from the (bosonic) vaccum. The
fusion rule is obviously ψ × ψ = I .

To classify fSPT phases with a unitary symmetry G, we
exploit the idea of gauging the symmetry [17,30,31] and
use topological properties of the extrinsic pointlike defects
carrying symmetry fluxes to distinguish different fSPT phases.
The defining feature of symmetry defects is a generalized
Aharonov-Bohm effect: When a quasiparticle excitation is
transported around a g defect with g ∈ G, it must be trans-
formed by the local symmetry operation corresponding to g.
They can be introduced into the system by explicitly modifying
the Hamiltonian along the defect branch cut; see Ref. [32]. We
then enlarge our algebraic theory of quasiparticle excitations
to include these defects. Defects by construction carry group
labels, but they can also have their own topological charge
labels. We therefore collect all defects labeled by the same
group element g ∈ G into a g sector Cg, and define the so-called
G extension CG as CG = ⊕

g∈G Cg. Notice that the g = 1 sector
C1 is just the original theory Cf . Similar to anyon models,
the most fundamental property of defects is their fusion rules,
i.e., how the topological charges are combined. But because
defects also carry group labels, their fusion rules must respect
the group multiplication structure (i.e., G graded); namely, for
ag ∈ Cg,bh ∈ Ch, we have

ag × bh =
∑
cgh

N
cgh

agbh
cgh, (1)

where N
cgh

agbh
are non-negative integers indicating the number

of ways defects ag and bh can combine to produce charge cgh.
In order to completely define the G extension, we need to

study more subtle structures, such as the associativity of defect

1In this definition, we exclude symmetries such as the U(1) symme-
try of fermion number conservation, of which Zf

2 is a subgroup.

fusion and braiding transformations of defects. These are cap-
tured in a consistent mathematical formalism called G-crossed
braided fusion category, and we refer the readers to Ref. [32] for
a thorough discussion. In our case, we follow a more physically
intuitive argument to avoid solving complicated algebraic
equations. In particular, we will make use of the “invertibility”
property of SPT phases: For each SPT state there is a unique
“conjugate” state such that by stacking them up one obtains
the trivial state [28]. Furthermore, given two SPT states, one
can stack them together to get another SPT state, which is
defined as their sum. More precisely, given two SPT phases
described by Hamiltonians H1 and H2, their sum is defined as
the ground state of H1 ⊕ H2. For g ∈ G, we define the enlarged
symmetry operation U (g) = U1(g) ⊗ U2(g), where U1,2(g) are
the corresponding symmetry operations in the subsystems. In
other words, SPT phases can be naturally endowed with an
Abelian group structure. We will denote the Abelian group of
fSPT phases with a given symmetry group G by G .

III. CLASSIFYING DEFECT FUSION RULES

The G-grading structure of the fusion rules of defects has
a profound consequence: One can show that all sectors Cg
have the same total quantum dimensions: D2

g = D2
1 = 2 where

D2
g = ∑

ag∈Cg
d2

ag
[32,36]. In our case, D2

g = 2 leaves us with
only two options: (a) There are two Abelian defects in Cg and
they differ by fusing with ψ . We denote them by σ±

g . (b) There
is a single non-Abelian defect in Cg with quantum dimension√

2. We denote it by σg.
First we show that the possible non-Abelian fusion rules

have one-to-one correspondence with H 1(G,Z2), i.e., group
homomorphisms from G to Z2. Assume for both g,h ∈ G the
defects are non-Abelian. To be able to construct the fusion
outcome of σg × σh ∈ Cgh, we immediately see that the defects
in the gh sector must be Abelian just to match the quan-
tum dimension. There are still three possibilities: σg × σh =
2σ+

gh,σg × σh = 2σ−
gh, and σg × σh = σ+

gh + σ−
gh. The former

two are impossible for the following reason: Assuming σg ×
σh = 2σ+

gh and using the symmetry of the fusion coefficients,2

we must have σ+
gh × σg−1 = 2σh. The left-hand side has dimen-

sion
√

2 while the right-hand side already has dimension 2
√

2,
which is clearly impossible. So we conclude that σg × σh =
σ+

gh + σ−
gh. On the other hand, if the g sector has a non-Abelian

defect but the h sector has Abelian ones, the only available
fusion rule is σg × σ±

h = σgh, implying that the defect in the
gh sector is also non-Abelian.

What we have just established is that whether the g sector
is non-Abelian or not gives a homomorphism from G to Z2.
In addition, the fusion rule of the non-Abelian defects implies
that they have quantum dimensions

√
2. The inverse statement

is quite obvious. Given any such homomorphism, we can
write down fusion rules accordingly. Physically, a non-Abelian
defect with quantum dimension d = √

2 is associated with an

2Generally, we have Nc
ab = Nc

ab = Na

cb
[34,35], where a is the

antiparticle of a, namely the unique topological charge which satisfies
a × a = I + · · · . In our case, the G-graded fusion rule implies that
σg = σg−1 .
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odd number of Majorana zero modes localized at the defect
[34], which implies a topological degeneracy 2n−1 when there
are 2n such defects.

We also need to determine the fusion rules of the G sectors
consisting of all Z2-even group elements (i.e., those elements
whose defects are Abelian), denoted by Ge in the following.
For any g,h ∈ Ge, we need to specify whether σ+

g × σ+
h is σ+

gh

or σ−
gh = ψ × σ+

gh. We can generally write

σ+
g × σ+

h = ψn(g,h) × σ+
gh, (2)

where n(g,h) = 0,1. Since fusion must be associative, com-
paring (σ+

g × σ+
h ) × σ+

k and σ+
g × (σ+

h × σ+
k ) yields

n(g,h) + n(gh,k) = n(g,hk) + n(h,k) mod 2. (3)

Formally, this means that (−1)n(g,h) is a Z2-valued 2-cocycle:
(−1)n(g,h) ∈ Z2(Ge,Z2). However, we also realize that the
definition of σ+

g is completely arbitrary and has no physical
meaning. One can always redefine σ̃+

g = ψmg × σ+
g . In terms

of σ̃±
g , we find

ñ(g,h) = mg + mh − mg,h + n(g,h) mod 2. (4)

n(g,h) related by such redefinitions should be considered phys-
ically indistinguishable. The equivalence classes are classified
by the second group cohomology H 2(Ge,Z2). As we will
show later, the cohomology class can also be understood as
the projective local symmetry transformations on the fermion-
parity fluxes.

IV. CLASSIFYING FSPT PHASES

As we mentioned before, to get a complete classification
of fSPT phases we need to have the algebraic data of the
defects, which can be obtained by solving a set of consistency
conditions [32]. Given a particular fusion rule of defects, there
may be more than one distinct set of algebraic data. On the other
hand, for certain fusion rules it is possible that the consistency
conditions do not allow any solutions, in which case the fusion
rules do not correspond to any two-dimensional fSPT phases;
i.e., there are obstructions [32,37].

A. Abelian fSPT phases

For simplicity, let us start our analysis from the cases
where all the defects are Abelian; i.e., we choose the trivial
homomorphism from G to Z2. Such fSPTs will be referred to
as Abelian fSPTs. We have shown that the defect fusion rules
in this case correspond to 2-cocycles ω ∈ H 2(G,Z2). One can
actually systematically solve all the algebraic equations, and
it turns out that the sufficient and necessary condition for the
existence of a solution can be summarized as follows: Define
a U(1)-valued 4-cocycle

O(g,h,k,l) = (−1)n(g,h)n(k,l). (5)

The obstruction vanishes if and only if O is cohomologically
trivial. We notice that Eq. (5) agrees exactly with the result of
group supercohomology [25].3 Following Ref. [25], we denote

3A similar result has been obtained in Ref. [38] by considering the
symmetry transformation on the boundary.

the obstruction-free subgroup of H 2(G,Z2) by BH 2(G,Z2),
and the group of all Abelian fSPT states by G+.

We briefly sketch the derivation of (5) (see Appendix B for
details). The central quantity responsible for the obstruction is
the F symbols of defects, defined diagrammatically as

σλ1
g σλ2

h σλ3
k

= F σ
λ1
g σ

λ2
h σ

λ3
k

σλ1
g σλ2

h σλ3
k

(6)

They can be thought as the basis transformation for the state
space defined by the fusion of three defects σλ1

g × σ
λ2
h × σ

λ3
k .

To a large extent, F symbols can be determined by the
consistency conditions that they have to satisfy (known as
the Pentagon equations). We obtain the following general
parametrization of defect F symbols:

Fσ
λ1
g σ

λ2
h σ

λ3
k = ν(g,h,k)λn(h,k)

1 . (7)

Here λ = ± labels the two defects in the same sector, and ν is a
U(1) 3-cochain to be determined. Plugging (7) into the general
Pentagon equation, we get

dν = O, (8)

which implies that O belongs to the trivial cohomology
class in H 4(G,U(1)), thus the obstruction vanishing condition.
Once the obstruction vanishes, different solutions of ν are
given by 3-cocycles in H 3(G,U(1)). Physically, these solutions
correspond to stacking bosonic G SPT phases on top of the
fSPT phase [32,37].

We can further study the group structure of the Abelian
fSPT phases. First of all, we observe from the derivation that
H 3(G,U(1)) is a normal subgroup of G+ with BH 2(G,Z2)
being the quotient group. Let us denote the group G+ by
(n,ω) where n is an obstruction-free 2-cocycle and [ω] ∈
H 3(G,U(1)). Consider two such fSPT phases (n,ω) and
(n′,ω′). When we stack them on top of each other, the new
fSPT phase can be seen to correspond to the 2-cocycle n + n′.
One of course expects that n + n′ is also obstruction free, and
let us check it explicitly:

(−1 )(n+n′)(g,h)(n+n′)(k,l) = d(νν ′)(−1)n(g,h)n′(k,l)+n′(g,h)n(k,l).

(9)

We apply the following identity [39]:

n(g,h)n′(k,l) + n′(g,h)n(k,l) = [d(n ∪1 n′)](g,h,k,l). (10)

Here a linearized 3-cochain n ∪1 n′ is defined as

(n ∪1 n′)(g,h,k) = n(gh,k)n′(g,h) + n(g,hk)n′(h,k). (11)

Therefore, we can define the group structure as follows:
Each phase is mathematically labeled by a triplet n,νn,ω,
such that (dνn)(g,h,k,l) = (−1)n(g,h)n(k,l), and ω is a 3-cocycle.
Notice that of course there are many choices of ν, but one
arbitrarily picks one for a fixed n as a reference point, and thus
our notation νn. It is obviously convenient to set ν0 = 1. The
addition rule we just derived implies that νn+n′ differs from
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νnνn′ (−1)n∪1n
′
by a 3-cocycle. Therefore, we should define

(n,νn,ω) ⊕(n′,νn′ ,ω′) =
[
n + n′,νn+n′ ,ωω′ νnνn′

νn+n′ (−1)n∪1n
′
]
.

(12)

This result was also obtained in Ref. [40].

B. Non-Abelian fSPT phases

Next we consider the non-Abelian fSPT phases. First we
show that given a nontrivial Z2 homomorphism of G there
exists at least one non-Abelian fSPT, by explicitly constructing
the defect theory. The fusion rules of the Z2-odd G sectors
are fixed by the homomorphism, and we choose a trivial 2-
cocycle in H 2(Ge,Z2), i.e., n(g,h) ≡ 0 for the fusion rules
of the Z2-even Abelian sectors. We define a map ϕ from the
topological charges of the defect theory to those of the familiar
Ising topological phase, which has three topological charges
{Ĩ ,ψ̃,σ̃ }:

ϕ(σ+
g ) = Ĩ ,ϕ(σ−

g ) = ψ̃,ϕ(σh) = σ̃ . (13)

All the algebraic data follow from this map and the data of
the Ising category [34]. We will refer to the corresponding
fSPT state as the root non-Abelian fSPT state. In fact, such a
root fSPT state can be realized with noninteracting fermions:
Consider a spin-1/2 superconductor, where spin↑ (↓) fermions
form a px + ipy (px − ipy) superconductor. With a group
homomorphism ρ : G → Z2 = {0,1}, we define the symmetry
transformation Rg on the system as

Rg =
{

(−1)N↑ ρ(g) = 1
1 ρ(g) = 0

. (14)

Here N↑ is the number of spin ↑ fermions.
We now argue other non-Abelian fSPT phases with the

same Z2 homomorphism can all be generated from the root
phase. We make use of the fact that a non-Abelian defect must
localize an odd number of Majorana zero modes. Consider
two non-Abelian fSPT states fSPT1 and fSPT2 corresponding
to the same Z2 homomorphism of G. Denote the sum fSPT3 =
fSPT1 + fSPT2 as the SPT phase obtained by stacking them.
Suppose we create a g defect. If g is a Z2-even element, the
defect is already Abelian both in fSPT1 and fSPT2, so is in
fSPT3. If g is a Z2-odd element, because fSPT1 and fSPT2

have the same Z2 homomorphisms the defect localizes an
even number of Majorana zero modes altogether, and can
only be an Abelian one. Therefore all defects in fSPT3 are
Abelian. It immediately follows that any non-Abelian fSPT
state is equivalent to the sum of the “root” state of the same
Z2 homomorphism and an Abelian fSPT state. This provides
a complete classification of the non-Abelian fSPT phases.

C. Group structure of fermionic SPT phases

Now we consider further the Abelian group structure of
fSPT phases. First let us set up the notations: We define G as
the Abelian group of all fSPT phases with symmetry G, and G+
as the subgroup of G consisting of all Abelian fSPT phases. We
also denote GB = H 3(G,U(1)) as the group of G-symmetric
bosonic SPT phases.

From our discussion, we immediately see that G+ is a
normal subgroup of G with H 1(G,Z2) being the quotient
group:

G /G+ = H 1(G,Z2). (15)

Furthermore, we see that the root non-Abelian fSPT is
essentially aZ2 fSPT. Notice that given a homomorphism from
G to Z2, we can define a Z2 2-cocycle on G by pulling back
the nontrivial 2-cocycle in H 2(Z2,Z2). Namely, given a ho-
momorphism f : G → Z2 = {0,1}, let ω(g,h) = (−1)f (g)f (h).
We thus conjecture that the addition of two root non-Abelian
fSPT with the same homomorphism yields an Abelian fSPT
given by this 2-cocycle ω.

We now consider the group G+. Again, GB is a normal
subgroup of G+:

G+/GB = BH 2(G,Z2). (16)

The group structure of the Abelian fSPTs has been given
in Eq. (12). For our examples below, it is useful to notice that
simplification occurs when summing two identical fSPTs. In
this case, n ∪1 n = 0, and Eq. (12) simplifies to

(n,ν,ω) ⊕ (n,ν,ω) = (0,1,ν2). (17)

We can also get the result by directly examining the structure of
defectF symbols: The square of the defectF symbols is ν2, and
d(ν2) = 0, i.e., ν2 ∈ Z3(G,U(1)). This implies that “adding
up” two Abelian fSPTs given by the same class in H 2(G,Z2)
results in a bosonic SPT phase labeled by ν2 [24,41].

V. GAUGING THE FERMION PARITY

We have established the classification of fSPT phases with
unitary symmetries. However, it is clear that the approach
cannot be extended to antiunitary symmetries, and we would
like to have more direct physical characterization of the SPT
phases. In the following we propose an alternative approach
to characterize and classify fSPT phases: We gauge the Z2

fermion-parity symmetry, and we will show that the nontrivial
symmetry action on the Z2 fermion-parity fluxes can be used
to characterize fSPT phases.

For fSPT states, it is easy to see that the gauged theory
has four anyons {I,e,m,ψ}, where m is the Z2 gauge flux,
ψ is the fermion, and e = m × ψ can be considered as the
(bosonic) Z2 charge, which is also a Z2 gauge flux for the ψ

fermions. The topological order is identical to that of aZ2 toric
code lattice model. Importantly, the gauged theory preserves
the G symmetry and is therefore a G-symmetry enriched Z2

gauge theory. Therefore, a symmetric adiabatic path between
two fSPT phases maps exactly to a symmetric adiabatic
path between the corresponding Z2 topological phases, and
consequently if the two symmetry-enriched Z2 topological
phases are distinct, the original fSPTs must be distinct too.4 In
this approach, we can consider antiunitary symmetries, or the
fermions carrying projective representations of the symmetry
group.

4A caveat here is that two distinct fSPT phases can correspond to the
same symmetry-enriched toric code after gauging the fermion parity.
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Symmetry enrichment in the toric code model can be
analyzed using the general theory developed in Ref. [32] (see
also Ref. [42] for related discussions). First of all, one needs to
specify the symmetry action on the topological charge labels of
anyons. It is easy to see that besides a trivial action, there is aZ2

action that permutes the e and m particles. These two possible
actions on the label set form a Z2 topological symmetry group.
Therefore, the symmetry action on the charge labels is specified
by a group homomorphism ρ from G to Z2. It is clear that this
is the same Z2 homomorphism that classifies the non-Abelian
fusion rules of symmetry defects in fSPT states.

Once the symmetry actionρ on charge labels is specified, we
can classify patterns of symmetry fractionalization, i.e., anyons
carrying projective representations of the symmetry group.
This is captured by the group cohomology H 2

ρ (G,Z2 × Z2),
where the subscript ρ indicates that G has a nontrivial action on
the coefficients. However, we have an additional restriction that
ψ should not carry any nontrivial projective representations
(i.e., ψ transforms linearly). As we now explain, this leads to
a H 2(G,Z2) classification. In the following, we will proceed
heuristically. We refer the readers to Ref. [32] for more rigorous
discussions.

Let us consider the symmetry action on a general quasipar-
ticle state on a sphere or disk without loss of generality, and as-
sume that the permutation ρ is trivial for simplicity. The global
symmetry operator Rg can be decomposed into operators
localized on each quasiparticle Ug(a). They only form projec-
tive representations of G, i.e., Ug(a)Uh(a) = ηa(g,h)Ugh(a);
however, ηa(g,h) must be consistent with fusion rules:

ηa(g,h)ηb(g,h) = ηc(g,h),if Nc
ab > 0. (18)

This stems from the fact thatRgRh = Rgh must hold on vacuum
state. In particular, we have η2

e = η2
m = 1,ηψ = ηeηm.

On the other hand, from the associativity of operator
products UgUhUk, we have

ηa(h,k)ηa(g,hk) = ηa(g,h)ηa(gh,k). (19)

So naively, one may conclude that gauge-inequivalent classes
of η are classified by H 2(G,Z2 × Z2). However, since we
are considering symmetry-enriched toric code from gauging
a fSPT phase, the ψ quasiparticle has to form a linear
representation, implying ηψ can be chosen to 1 and therefore
ηe = ηm. So the actually classification is just H 2(G,Z2).

We also notice that any Abelian phase on anyon a that
satisfies a relation like (18) must be the braiding phase of a
(fixed) Abelian anyon with a, which actually holds for any
topological phase following from modularity. The fact that we
have ηe = ηm means ηe (ηm) is the braiding phase of either I

or ψ with e(m). Physically, we can think of Ug(a) as taking the
σ+

g defect around a. If ηe = ηm = −1, the only possibility is
that when σ+

g fuses with σ+
h , we obtain σ+

gh and also a fermion
ψ which when taking a full braid around e(m) generates the
phases ηe(ηm). Therefore, if we write ηe(g,h) = ηm(g,h) =
(−1)n(g,h) with n(g,h) = 0,1 being the linearizedZ2 2-cocycle,
we have

σ+
g × σ+

h = ψn(g,h)σ+
gh. (20)

Therefore we recover the previous classification. We notice
that this also provides a physical characterization ofH 2(G,Z2),

through local projective symmetry actions on the Z2 fermion
parity flux in a fermionic system, which can be measured in
numerical simulations [43,44].

VI. EXAMPLES

In this section, we apply the general theory to G = Zn,Z2 ×
Z2, and ZT

2 .

A. G = Zn

We label the group elements of Zn by a = 0,1, . . . ,n − 1
and the group multiplication is written additively, i.e., a + b =
[a + b] where [a] is a mod n. First we have H 1(Zn,Z2) =
H 2(Zn,Z2) = Z(n,2). For odd n, there are only bosonic SPT
phases classified by H 3(Zn,U(1)) = Zn.

For even n, first of all there is a unique homomorphism from
Zn toZ2, namely f : a → (−1)a . Applying the rule developed
in Sec. IV C, the “square” of the root non-Abelian fSPT has
ω(a,b) = (−1)ab.

For the Abelian fSPTs, the nontrivial 2-cocycle in
H 2(Zn,Z2) is given by

ω(a,b) = e
iπ
n

([a]+[b]−[a+b]). (21)

To see this is a nontrivial cocycle, it suffices to notice that
ω([ n

2 ],[ n
2 ]) = −1 is a gauge-invariant quantity since we are

considering Z2 coefficients. Since H 4(Zn,U(1)) is trivial,
there are no obstructions. We can also explicitly find the

fermionic 3-cocycle: ν(a,b,c) = e
iπ

n2 a([b]+[c]−[b+c]). We notice
that ν(a,b,c) is the square root of the generating U(1) 3-
cocycle in H 3(ZN,U(1)) = ZN . This implies that two fSPT
corresponding to the nontrivial 2-cocycle can be stacked to
form the generating bosonic SPT. Therefore, the Abelian fSPT
phases with Zn symmetry form a Z2n group.

Back to the non-Abelian fSPT. By comparing the 2-
cocycles, we see that for n ≡ 2 (mod 4), the square of the non-
Abelian fSPT yields the nontrivial Abelian fSPT. Otherwise if
n ≡ 0 (mod 4), the result is a bosonic SPT. We can further fix
the bosonic SPT by using the method of anyon condensation,
the details of which will be reported elsewhere.

Using these results, we completely determine the group
structure of fSPT phases with G = Zn:

G =
⎧⎨
⎩
Zn n is odd
Z2 × Z2n n ≡ 0 (mod 4)
Z4n n ≡ 2 (mod 4)

. (22)

Physically, the nontrivial Abelian fSPT is characterized by
the “half” ZN charge of the fermion parity flux. Alternatively,
we have the following fusion rules for ZN defects:

σN
[1] = ψ. (23)

Here [1] denotes the generator of the ZN group.
Let us also discuss physical realizations of these fermionic

SPT phases. A model for the “root” non-Abelian SPT phase
has been presented in Sec. IV B. For the nontrivial Abelian
SPT phase, we can consider a model of spin-1/2 fermions,
where spin-up (down) fermions form a Chern insulator with
Chern number 1 (−1). In the presence of Sz conservation, one
can say that the spin Chern number is 1. The model actually
has U(1)↑ × U(1)↓ symmetries. Now we break U(1)↑ down to
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ZN , i.e., number of spin-up fermions only conserved up to N .
The defect fusion rule Eq. (23) can be understood using the
spin Hall response: A ZN symmetry defect is nothing but a 2π

N

flux of U(1)↑. Spin-up fermions have U(1)↑ Hall conductance
σH = e2

h
, which means that a 2π

N
flux must trap 1

N
electric

charge. Therefore, if we insert N 2π
N

= 2π flux, a unit charge
is accumulated corresponding to a fermion, which is Eq. (23).
This is, of course, nothing but Laughlin’s famous argument.

B. G = Z2 × Z2

We can easily see that H 1(G,Z2) = Z2
2, corresponding to

non-Abelian fSPTs protected by any of the threeZ2 subgroups.
We now determine the group structure for G = Z2 ×

Z2 = {1,X,Y,XY }. We have H 1(G,Z2) = Z2
2. The three

nontrivial classes can be understood as X being odd, or
Y being odd. Then H 2(G,Z2) = Z3

2. The three generat-
ing classes can be labeled by (1) ω(X,X) = ω(XY,XY ) =
−1,ω(Y,Y ) = 1, (2) ω(Y,Y ) = ω(XY,XY ) = −1, ω(X,X) =
1, and (3) ω(X,Y )/ω(Y,X) = −1. The first two only require
X (or Y ) to be nontrivial, and as we already explained for Z2

symmetry the fermion-parity flux carries a half Z2 charge for
the subgroup generated by X (or Y ). Therefore, combined with
H 1 classes and the bosonic SPT phases, we get a Z8 × Z8

classification. The more interesting Abelian fSTP, labeled
by ω(X,Y )/ω(Y,X) = −1, is physically characterized by an
irreducible two-dimensional representation on the fermion-
parity π flux. This part gives Z4 classification. In summary,
we find Z8 × Z8 × Z4 classification for G = Z2 × Z2.

C. G = ZT
2 = {1,T }

We now discuss time-reversal symmetry. Our method of
symmetry extension does not apply because the time-reversal
symmetry is antiunitary. However, we can still consider gaug-
ing the fermion parity and study the symmetry action in the
gauged model. Since after gauging one has a bosonic Hilbert
space, the time-reversal symmetry operator satisfies T 2 = 1.
We can then distinguish two cases, where the fermion ψ is a
Kramers singlet (T 2 = 1) or a doublet (T 2 = −1).

First let us specify the symmetry action ρ on the charge
labels. There are two possibilities: (a) T does not change charge
labels at all. (b) T exchanges e and m. Interestingly, in the latter
case ψ must have T 2 = −1 [23,45]. Therefore we immediately
see that there is a 2D fSPT with T 2 = −1 fermions, in which
the local fermion parity of a π vortex changes under the time-
reversal operation [20,46,47], and there are no other symmetry
fractionalization classes due to H 2

ρ (ZT
2 ,Z2 × Z2) = Z1.

Let us consider the symmetry fractionalization class of
the trivial action on the charge labels, which is classified
by H 2(ZT

2 ,Z2 × Z2) = Z2 × Z2. Physically, the four classes
correspond to four possible ways of assigning T 2 = ±1 to
the four charges. For the two classes with ψ being a Kramers
doublet, one of the e or m charges has to be a Kramers singlet,
which means that the π vortex is trivial in the fSPT. Therefore
they do not correspond to any nontrivial fSPT phases. We
are then left with one nontrivial fractionalization class with
ψ being a Kramers singlet and both e and m being Kramers
doublets. However, this fractionalization class is known to
be anomalous; i.e., there is an obstruction to realizing it in

two dimensions [48,49] and thus it does not correspond to a
fSPT in 2D. Together with the fact that H 3(ZT

2 ,U(1)) = Z1,
we conclude that there is only one nontrivial 2D fSPT phase
with ZT

2 symmetry, the class DIII topological superconductor.
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APPENDIX A: REVIEW OF GROUP COHOMOLOGY

In this section, we provide a brief review of group coho-
mology for finite groups. Given a finite group G, let M be
an Abelian group equipped with a G action ρ : G → Aut(M),
which is compatible with group multiplication. In particular,
for any g ∈ G and a,b ∈ M , we have

ρg(ab) = ρg(a)ρg(b). (A1)

(We leave the group multiplication symbols implicit.) Such an
Abelian group M with G action ρ is called a G module.

Let ω(g1, . . . ,gn) ∈ M be a function of n group elements
gj ∈ G for j = 1, . . . ,n. Such a function is called an n cochain
and the set of all n cochains is denoted as Cn(G,M). They
naturally form a group under multiplication,

(ωω′)(g1, . . . ,gn) = ω(g1, . . . ,gn)ω′(g1, . . . ,gn), (A2)

and the identity element is the trivial cochainω(g1, . . . ,gn) = 1.
We now define the “coboundary” map d : Cn(G,M) →

Cn+1(G,M) acting on cochains to be

dω(g1, . . . ,gn+1) = ρg1 [ω(g2, . . . ,gn+1)]

×
n∏

j=1

ω(−1)j (g1, . . . ,gj−1,gj gj+1,gj+1, . . . ,gn+1)

×ω(−1)n+1
(g1, . . . ,gn). (A3)

One can directly verify that ddω = 1 for any ω ∈ Cn(G,M),
where 1 is the trivial cochain in Cn+2(G,M). This is why d is
considered a “boundary operator.”

With the coboundary map, we next define ω ∈ Cn(G,M) to
be an n cocycle if it satisfies the condition dω = 1. We denote
the set of all n cocycles by

Zn
ρ(G,M) = ker[d : Cn(G,M) → Cn+1(G,M)]

= { ω ∈ Cn(G,M) | dω = 1 }. (A4)

We also define ω ∈ Cn(G,M) to be an n coboundary if it
satisfies the condition ω = dμ for some (n − 1) cochain μ ∈
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Cn−1(G,M). We denote the set of all n coboundaries by

Bn
ρ (G,M) = im[d : Cn−1(G,M) → Cn(G,M)]

= {ω ∈ Cn(G,M)|∃μ∈Cn−1(G,M) : ω = dμ}.
(A5)

Clearly, Bn
ρ (G,M) ⊂ Zn

ρ(G,M) ⊂ Cn(G,M). In fact,
Cn,Zn, and Bn are all groups and the coboundary maps are
homomorphisms. It is easy to see that Bn

ρ (G,M) is a normal
subgroup of Zn

ρ(G,M). Since d is a boundary map, we think
of the n coboundaries as being trivial n cocycles, and it is
natural to consider the quotient group

Hn
ρ (G,M) = Zn

ρ(G,M)

Bn
ρ (G,M)

, (A6)

which is called the nth group cohomology. In other words,
Hn

ρ (G,M) collects the equivalence classes of n cocycles that
only differ by n coboundaries.

APPENDIX B: OBSTRUCTION TO ABELIAN
G-CROSSED EXTENSIONS

In this section, we derive the obstruction to a consistent
Abelian G extension. We first briefly review the algebraic
theory of symmetry defects, known as the G-crossed braided
extension of a braided tensor category [32]. For simplicity, we
assume all defects (as well as anyons in the original theory) are
Abelian. The collection of all defects is called the G extension:

CG =
⊕
g∈G

Cg. (B1)

We will use the diagrammatic formulation (for a review, see
Refs. [32,34]). The basic data of the G extension include the
following:

(1) G-graded fusion rules, i.e., ag × bh = ∑
cgh

N
cgh

agbh
cgh.

(2) F symbols for associativity of fusion.

ag bh ck

e

dghk

α

β
=

f,μ,ν

F
agbhck
dghk (e,α,β)(f,μ,ν)

ag bh ck

f

dghk

μ

ν

(B2)
The F symbols can be viewed as changes of bases for the states
associated with quasiparticles.

(3) G action on labels, defined by maps ρg, which acts on
the topological charge labels in the following way: ρh(ag) ∈
Chgh−1 . We write ρh(ag) as hag. Diagrammatically, this means
that when topological charge lines cross, the labels should
change accordingly:

hag bh

bh ag

(B3)

In our derivation we just need the obvious fact that ρ1(ag) = ag.

(4) G action on fusion spaces, defined by unitary transfor-
mations Uk(ag,bh; cgh):

xk
k̄b

k̄cgh

bhag

μ

=
ν

[Uk (a, b; c)]μν xk

k̄cgh

cgh

bhag

ν

(B4)

Importantly, we have the normalization condition U1 ≡ 1.
(5) Natural isomorphisms ηxk (g,h) on topological charges,

which define the projective G actions:

xk

¯ gx

¯ḡh xk

cgh

bhag

μ

= ηx (g,h)
xk

¯ḡh xk

cgh

bhag

μ

(B5)

Similarly, η are normalized: ηx(1,h) = ηx(g,1) = 1.
(6) G-crossed R symbols, defined by the following dia-

grammatic relation:

cgh

bhag

μ =
ν

Ragbh
cgh μν

cgh

bhag

ν (B6)

These data satisfy a set of coherence conditions. For our
purpose, we have to solve the pentagon equations and a gener-
alization of hexagon equations, called heptagon equations (see
Fig. 1), to find consistent F and R symbols.

The pentagon equation leads to the following general
parametrization of F symbols:

Fσ
λ1
g σ

λ2
h σ

λ3
k = ν(g,h,k)θ

1−λ1
2 (h,k). (B7)

Notice that because we are considering Abelian fusion rules,
all labels in the definition (B2) of F symbol are uniquely de-
termined by the three outgoing lines and therefore suppressed
here. ν(g,h,k) is a U(1) 3-cochain, and θ is a Z2 2-cocycle.
And they should satisfy

(dν)(g,h,k,l) = θng,h (k,l). (B8)

This implies that the right-hand side must be a 4-coboundary.
We now use G-crossed heptagon equations to find θ .
Let us first consider the heptagon equation with the three

outgoing lines being σλ
g ,ψ , and ψ (from left to right).

Rσλ
g ψFσλ

g ψψRψψ = Fψσλ
g ψRσλ

g ×ψ,ψF σλ
g ψψ. (B9)

Since Rψψ = −1, we have

Rσ−
g ψ = −Rσ+

g ψ. (B10)

Let us consider the heptagon equation with the three out-
going lines being σλ1

g ,σ
λ2
h , and ψ (from left to right). Because

ψ ∈ C1, the action on the vertex is trivial. We have

Rσ
λ1
g ψFσ

λ1
g ψσ

λ2
h Rσ

λ2
h ψ = Fψσ

λ1
g σ

λ2
h Rσ

λ1
g ×σ

λ2
h ,ψF σ

λ1
g σ

λ2
h ψ.

(B11)
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a cb

e

d

R

a cb

e

d

F

a cb

d

g R
a cb

d

g

F
a cb

d

kf

U

a cb

d

R

a cb

f

d

F

a h̄ḡcb

e

d

R−1

a h̄ḡcb

e

d

F

a h̄ḡcb

d

g R−1

a h̄ḡcb

d

g

F
a h̄ḡcb

d

f

η

a h̄ḡcb

d

R−1

a h̄ḡcb

f

d

F

FIG. 1. Heptagon equations which ensure consistency between
G-crossed braiding and fusion of defects.

Following the general parametrization and the normaliza-

tion condition of ν, we have Fσ
λ1
g ψσ

λ2
h = Fσ

λ1
g σ

λ2
h ψ = 1 and

Fψσ
λ1
g σ

λ2
h = θ (g,h). Therefore

θ (g,h) = Rσ
λ1
g ψRσ

λ2
h ψ

Rσ
λ1
g ×σ

λ2
h ,ψ

. (B12)

Now we set λ1 = λ2 = +, notice σ+
g × σ+

h = ψn(g,h) × σ+
gh,

and arrive at

θ (g,h) = (−1)ng,h
Rσ+

g ψRσ+
h ψ

Rσ+
ghψ

. (B13)

We can further show that Rσ+
g ψ = ±1 by considering the

heptagon equation for inverse braiding with the three outgoing

g1

1

g2

3

g3 g4

4

g1

1

g2 g3

2

g4

4 g1 g2 g3 g4

2
5

4

g1 g2

3

g3

6

g4

4

g1 g2 g3

6
5

g4

4

FIG. 2. The Pentagon equation enforces the consistency between
different sequences of F moves starting and ending with the same
fusion trees.

lines being ψ,ψ,σλ
g . This is basically what we need; i.e., θ is

Z2-cohomologically equivalent to (−1)n.
Therefore, the necessary condition for the extension to exist

is that the 4-cocycle

O(g,h,k,l) = (−1)ng,hnk,l (B14)

is in the trivial cohomology class, i.e., [O] = 0. Once the
obstruction vanishes, different solutions of ν are related to each
other by a 3-cocycle.

APPENDIX C: PROJECTIVE PENTAGON EQUATION

In this section, we give a different derivation of the
obstruction mapping, which is closer in spirit to the group
supercohomology theory.

Instead of considering all the defects σ±
g , we take a repre-

sentative, e.g., σ+
g from each g sector. To account for the fusion

rules, we allow the fusion space to be fermionic, i.e.,Z2 graded.
In our case, the fermion parity of the fusion space of σg and σh
is completely determined by g and h: It is just (−1)n(g,h). More
general constructions of fermionic TQFTs have been studied
in [50,51].

With this modification, now the F move becomes an
operator possibly connecting states with different fermion
parities:

g

1
2

h k

= ν(g,h,k)fn(gh,k)
2 f

n(g,h)
1 f

−n(h,k)
3 f

−n(g,hk)
2

g

2

h

3

k

(C1)

Here when we write f we really mean the fermionic creation
operator while f −1 means the annihilation one.

Let us substitute the fermionic F moves into the pentagon
equation, represented diagrammatically in Fig. 2. We will not
explicitly write the ν factors since they just give the standard
4-coboundary, and focus on the fermionic part. First evaluate
the upper path of the Pentagon equation:

f
n(g1g2g3,g4)
4 f

n(g1g2,g3)
3 f

−n(g3,g4)
2 f

−n(g1g2,g3g4)
4 f

n(g1g2,g3g4)
4

× f
n(g1,g2)
1 f

−n(g2,g3g4)
5 f

−n(g1,g2g3g4)
4

= f
n(g1g2g3,g4)
4 f

n(g1g2,g3)
3 f

−n(g3,g4)
2 f

n(g1,g2)
1

× f
−n(g2,g3g4)
5 f

−n(g1,g2g3g4)
4 . (C2)

Then the lower path gives

f
n(g1g2,g3)
3 f

n(g1,g2)
1 f

−n(g2,g3)
6 f

−n(g1,g2g3)
3

× f
n(g1g2g3,g4)
4 f

n(g1,g2g3)
3 f

−n(g2g3,g4)
5 f

−n(g1,g2g3g4)
4

× f
n(g2g3,g4)
5 f

n(g2,g3)
6 f

−n(g3,g4)
2 f

−n(g2,g3g4)
5 . (C3)

We move the first f
s(g1g2g3,g4)
4 to the left and then f

−s(g1,g2g3g4)
4

to the right and the fermionic signs resulting is the following:

(−1)n(g1g2g3,g4)[n(g1g2,g3)+n(g1,g2)−n(g2,g3)−n(g1,g2g3)]

× (−1)−n(g1,g2g3g4)[n(g2g3,g4)+n(g2,g3)−n(g3,g4)−n(g2,g3g4)] (C4)

From the 2-cocyle condition

ω(g1,g2g3)ω(g2,g3) = ω(g1g2,g3)ω(g1,g2), (C5)
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together with ω = (−1)n, we have

n(g1,g2g3) + n(g2,g3) = n(g1g2,g3) + n(g1,g2) (mod 2).

(C6)

Therefore the term (C4) is identically 1.
After this manipulation, the expression (C3) can be greatly

simplified:

f
n(g1g2g3,g4)
4 f

n(g1g2,g3)
3 f

n(g1,g2)
1 f

−n(g3,g4)
2 f

−n(g2,g3g4)
5 f

−n(g1,g2g3g4)
4 .

(C7)

So the upper and lower paths (C7) just differ by exchanging
f

n(g1,g2)
1 and f

−n(g3,g4)
2 which results in a sign:

O(g1,g2,g3,g4) = (−1)n(g1,g2)n(g3,g4). (C8)

In order to satisfy the pentagon equation, this sign has to be
compensated by dν:

(dν)(g,h,k,l) = (−1)n(g,h)n(k,l). (C9)

This is the obstruction-free condition.
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