Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter October 15, 2016

Remote vital parameter monitoring in neonatology – robust, unobtrusive heart rate detection in a realistic clinical scenario

  • Nikolai Blanik EMAIL logo , Konrad Heimann , Carina Pereira ORCID logo , Michael Paul , Vladimir Blazek , Boudewijn Venema , Thorsten Orlikowsky and Steffen Leonhardt

Abstract

Vital parameter monitoring of term and preterm infants during incubator care with self-adhesive electrodes or sensors directly positioned on the skin [e.g. photoplethysmography (PPG) for oxygen saturation or electrocardiography (ECG)] is an essential part of daily routine care in neonatal intensive care units. For various reasons, this kind of monitoring contains a lot of stress for the infants. Therefore, there is a need to measure vital parameters (for instance respiration, temperature, pulse, oxygen saturation) without mechanical or conductive contact. As a non-contact method of monitoring, we present an adapted version of camera-based photoplethysmography imaging (PPGI) according to neonatal requirements. Similar to classic PPG, the PPGI camera detects small temporal changes in the term and preterm infant’s skin brightness due to the cardiovascular rhythm of dermal blood perfusion. We involved 10 preterm infants in a feasibility study [five males and five females; mean gestational age: 26 weeks (24–28 weeks); mean biological age: 35 days (8–41 days); mean weight at the time of investigation: 960 g (670–1290 g)]. The PPGI camera was placed directly above the incubators with the infant inside illuminated by an infrared light emitting diode (LED) array (850 nm). From each preterm infant, 5-min video sequences were recorded and analyzed post hoc. As the measurement scenario was kept as realistic as possible, the infants were not constrained in their movements in front of the camera. Movement intensities were assigned into five classes (1: no visible motion to 5: heavy struggling). PPGI was found to be significantly sensitive to movement artifacts. However, for movement classes 1–4, changes in blood perfusion according to the heart rate (HR) were recovered successfully (Pearson correlation: r=0.9759; r=0.765 if class 5 is included). The study was approved by the Ethics Committee of the Universal Hospital of the RWTH Aachen University, Aachen, Germany (EK 254/13).

References

[1] Abbas KA, Heimann K, Jergus K, Orlikowsky T, Leonhardt S. Neonatal non-contact respiratory monitoring based on real-time infrared thermography. Biomed Eng Online 2011;10:93.10.1186/1475-925X-10-93Search in Google Scholar PubMed PubMed Central

[2] Abbas KA, Heimann K, Orlikowsky T, Leonhardt S. Neonatal infrared tomography imaging: analysis of heat flux during different clinical scenarios. Infrared Phys Technol 2012;55: 538–548.10.1016/j.infrared.2012.07.001Search in Google Scholar

[3] Bartocci M, Bergqvist LL, Lagercrantz H, Anand KJ. Pain activates cortical areas in the preterm newborn brain. Pain 2006;122:109–117.10.1016/j.pain.2006.01.015Search in Google Scholar PubMed

[4] Blanik N. Remote space- and time resolved skin perfusion detection using Photoplethysmography Imaging (PPGI). In [41], 175–203.Search in Google Scholar

[5] Blanik N, Pereira C, Czaplik M, Blazek V, Leonhardt S. Remote photopletysmographic imaging of dermal perfusion in a porcine animal model. The 15th International Conference on Biomedical Engineering, IFMBE Proceedings Vol. 43, 2014:92–95, doi: 10.1007/978-3-319-02913-9_24.Search in Google Scholar

[6] Blanik N, Venema B, Blazek V, Leonhardt S. Remote pulse oximetry imaging – fundamentals and applications. Lékař a technika – Clinician and Technology 2014;3:5–11.Search in Google Scholar

[7] Blazek V, Kumar VJ, Leonhardt S, Rao MM. Studies in skin perfusion dymacis – photoplethysmography and its applications in medical diagnostics. India: Springer, in press.Search in Google Scholar

[8] Cennini G, Arguel J, Akşit K, Van Leest A. Heart rate monitoring via remote photoplethysmography with motion artifacts reduction. Opt Express 2010;18:4867–4875.10.1364/OE.18.004867Search in Google Scholar PubMed

[9] Cordes A, Foussier J, Pollig D, Leonhardt S. A portable magnetic induction measurement system (PIMS). Biomed Technik 2012;57:131–138.10.1515/bmt-2011-0064Search in Google Scholar PubMed

[10] Cordes A, Heimann K, Leonhardt S. Magnetic induction measurements with a six channel coil array for vital parameter monitoring. Conf Proc IEEE Eng Med Biol Soc 2012;2012: 602–604.10.1109/EMBC.2012.6346003Search in Google Scholar PubMed

[11] Cordes A, Leonhardt S. Development of the new Multichannel Simultaneous Magnetic Induction Measurement System (MUSIMITOS 2+). 13th International Conference on Electrical Bioimpedance and the 8th Conference on Electrical Impedance Tomography, IFMBE Proceedings Volume 17, Bath, England, 2007:448–451.Search in Google Scholar

[12] DIN EN 60601-2-21:1995-12: Medical electrical equipment - part 2-21: Particular requirements for the basic safety and essential performance of infant radiant warmers, ISO IEC 60601-2-21:1994.Search in Google Scholar

[13] Estepp JR, Blackford EB, Meier CM. Recovering pulse rate during motion artifact with a multi-imager array for non-contact imaging photoplethysmography. IEEE International Conference on Systems, Man and Cybernetics (SMC), 2014:1462–1469, doi: 10.1109/SMC.2014.6974121.Search in Google Scholar

[14] Foreman SW, Thomas KA, Blackburn ST. Individual and gender differences matter in preterm infant state development. J Obstet Gynecol Neonatal Nurs 2008;37:657–665.10.1111/j.1552-6909.2008.00292.xSearch in Google Scholar PubMed PubMed Central

[15] Froelicher V, Myers J. Exercise and the Heart. Philadelphia: Elsevier 2006:ix, 108–112. ISBN 1-4160-0311-8.10.1016/B978-1-4160-0311-3.50004-8Search in Google Scholar

[16] Heimann K, Blanik N, Pereira C, Wester MK, Blazek V, Orlikowsky T. Photoplethysmographie Imaging (PPGI) – Eine kontaktlose Mess-Methode zur funktionellen Erfassung der lokalen Hämodynamik des Frühgeborenen. 41. Jahrestagung der Gesellschaft für Neonatologie und Pädiatrische Intensivmedizin, Stuttgart, 21.-23. Mai 2015.Search in Google Scholar

[17] Heimann K, Ebert AM, Abbas A, Heussen N, Leonhardt S, Orlikowsky T. Thermoregulation of premature infants during and after Skin-to-Skin Care. Z Geburtsh Neonatol 2013;217:220–224.10.1055/s-0033-1361175Search in Google Scholar PubMed

[18] Heimann K, Jergus K, Abbas A, Heussen N, Leonhardt S, Orlikowsky T. Infrared thermography for detailed registration of thermoregulation in premature infants. J Perinat Med 2013;41:613–620.10.1515/jpm-2012-0239Search in Google Scholar PubMed

[19] Heimann K, Steffen M, Bernstein N, et al. Kontaktlose Überwachung von Atemtätigkeit und Herzaktion mittels Magnetischer Bioimpedanzmessung im Neugeborenen-Tiermodell. Biomedizinische Technik 2009;54:337–345.10.1515/BMT.2009.044Search in Google Scholar PubMed

[20] Hülsbusch M. A functional imaging technique for optoelectronic assessment of skin perfusion. Ph.D. Thesis, RWTH Aachen University, Germany (2008).Search in Google Scholar

[21] Hülsbusch M, Blazek V. Contactless mapping of rhythmical phenomena in tissue perfusion using PPGI. Proc SPIE Vol. 4683 2002:110–117.10.1117/12.463573Search in Google Scholar

[22] Huppertz-Kessler CJ, Verveuer D, Pöschl J. Intensivmedizinisches Reizumfeld und Stressoren – welchen Einfluss haben sie auf die Gehirnentwicklung frühgeborener Kinder? Klin Padiatr 2010;222:236–242.10.1055/s-0030-1265743Search in Google Scholar

[23] Köny M. Entscheidungsunterstützungssysteme für den anästhesiologischen Arbeitsplatz der Zukunft auf Basis vernetzter Medizingeräte. Ph.D. Thesis, RWTH Aachen University, Germany (2015).Search in Google Scholar

[24] Latini G, Dipaola L, De Felice C. First day of life reference values for pleth variability index in spontaneously breathing term newborns. Neonatology 2011;101:179–182.10.1159/000331774Search in Google Scholar PubMed

[25] Lee H, Rusin CG, Lake ED, et al. A new algorithm for detecting central apnoea in neonates. Physiol Meas 2012;33:1–17.10.1088/0967-3334/33/1/1Search in Google Scholar PubMed PubMed Central

[26] Lentner C. Heart and Circulation. In: Lentner C, editor. Geigy scientific tables, Vol. 5, Basel, 1990.Search in Google Scholar

[27] Marlier L, Gaugler C, Messer J. Olfactory stimulation prevents apneea in premature newborns. Pediatrics 2005;115:83–88.10.1542/peds.2004-0865Search in Google Scholar PubMed

[28] Mirmiran M, Baldwin RB, Ariagno RL. Circardian and sleep development in preterm infants occurs indepently from the influences of environmental lightning. Pediatr Res 2003;53:993–938.10.1203/01.PDR.0000061541.94620.12Search in Google Scholar PubMed

[29] Nöcker-Ribaupierre M. Hrgs. Hören – Brücke ins Leben. Musiktherapie mit früh- und neugeborenen Kindern. Forschung und klinische Praxis. Vandenhoeck & Ruprecht, Göttingen; 2003.Search in Google Scholar

[30] Obladen M, Maier RF, Stiller B. Neugeborenenintensivmedizin: Evidenz und Erfahrung. Heidelberg: Springer 2006.Search in Google Scholar

[31] Philbin MK. The influence of auditory experience on the behaviour of newborn infants. J Perinatol 2000;20:S77–S87.10.1038/sj.jp.7200453Search in Google Scholar PubMed

[32] Poets CF, von Bodman A. Placing preterm infants for sleep: first prone, then supine. Arch Dis Child Fetal Neonatal Ed 2007;92:F331–F332.10.1136/adc.2006.113720Search in Google Scholar PubMed PubMed Central

[33] Roos R, Genzel-Boroviczény O, Proquitté H. Checkliste Neonatologie. Stuttgart, Germany: George Thieme Verlag 2015.10.1055/b-003-106497Search in Google Scholar

[34] Sato S, Ishida-Nakajima W, Ishida A, et al. Assessment of a new piezoelectric transducer sensor for non-invasive cardiorespiratory monitoring of newborn infants in the NICU. Neonatology 2010;98:179–119.10.1159/000283994Search in Google Scholar PubMed

[35] Steffen M, Leonhardt S. Non-contact monitoring of heart and lung activity by magnetic impedance measurement, 39. Jahrestagung der Deutschen Gesellschaft für Biomedizinische Technik, Nürnberg 2005.Search in Google Scholar

[36] Steffen M, Heimann K, Bernstein N, Gonzalo D, Leonhardt S. Kontaktloses Monitoring von Vitalparametern bei Neugeborenen, 41. Jahrestagung der Deutschen Gesellschaft für Biomedizinische Technik im VDE – BMT 2007, Aachen.Search in Google Scholar

[37] Steffen M, Heimann K, Bernstein N, Leonhardt S. Multichannel simultaneous magnetic induction measurement system (MUSIMITOS). Physiological Measurement 2008;29:291–306.10.1088/0967-3334/29/6/S25Search in Google Scholar PubMed

[38] Teichmann D, Kuhn A, Leonhardt S, Walter M. The MAIN Shirt: a textile-integrated magnetic induction sensor array. Sensors 2014;14:1039–1056.10.3390/s140101039Search in Google Scholar PubMed PubMed Central

[39] Webster JG. Design of pulse oxymeters. London: Institute of Physics Publishing, The Institute of Physics 1997.10.1887/0750304677Search in Google Scholar

[40] Wieringa FP, Mastik F, van der Steen AFW. Contactless multiple wavelength photoplethysmographic imaging: a first step toward “SpO2 camera” technology. Ann Biomed Eng 2005;33:1034–1041.10.1007/s10439-005-5763-2Search in Google Scholar PubMed

[41] Wu T. PPGI: new development in noninvasive and contactless diagnosis of dermal perfusion using near infrared light. J GCPD e.V. 2003;7:17–24.Search in Google Scholar

[42] Wu T, Blazek V, Schmitt HJ. Photoplethysmography imaging: a new noninvasive and noncontact method for mapping of the dermal perfusion changes. Proc SPIE 2000;4163:62–70.10.1117/12.407646Search in Google Scholar

[43] Yu C, Liu Z, McKenna T, Reisner AT, Reifman J. A method for automatic identification of reliable heart rates calculated from ECG and PPG waveforms. J Am Med Inform Assoc 2006;13:309–320.10.1197/jamia.M1925Search in Google Scholar PubMed PubMed Central

Received: 2016-1-25
Accepted: 2016-9-1
Published Online: 2016-10-15
Published in Print: 2016-12-1

©2016 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 17.11.2024 from https://www.degruyter.com/document/doi/10.1515/bmt-2016-0025/html
Scroll to top button