The Ganymede Laser Altimeter (GALA) on ESA's JUICE mission: Overview of the instrument design.

K. Lingenauber, H. Hussmann, H. Michaelis, J. Oberst, M. Kobayashi, N. Namiki, N. Thomas, K. Seiferlin, L. M. Lara & the GALA team

International Workshop on Instrumentation for Planetary Missions (IPM-2014)

Knowledge for Tomorrow

05. Nov. 2014, NASA GSFC

Ganymede: Global Shape and Topography

The 500-km altitude orbit allows for <u>excellent global coverage of the entire satellite</u>. Polar regions are well covered; resolution decreases for equatorial regions.

Global topography up to degree and order 20 to 44 (depending on operation scenario).

Ground-tracks from 0° to 10° longitude. 1° corresponds to 46 km at the equator.

Grid size between 2° (degree 44) and 4.3° (degree 20)

Providing a <u>global topographic model by GALA is essential</u> because of limited coverage with stereo imaging.

DLR.de • Chart 3 The Ganymede Laser Altimeter (GALA) • Kay Lingenauber • IPM-2014 • 05. Nov. 2014

Ganymede: Regional and Local Topography

Example: Cryo-volcanism on Ganymede

The lack of topographic data and of the topographic relationships between different geologic units has prevented determining the relative roles of tectonic and volcanic resurfacing.

<u>Topographic data is key in understanding the evolution of Ganymede (e.g. volcanically</u> resurfaced areas on Ganymede have shown to be smooth and lower-lying w.r.t. to the surroundings in contrast to tectonically resurfaced areas).

Here GALA will essentially contribute to explore the evolution of this body.

Pappalardo et al., 2004

Ganymede: Regional and Local Topography

<u>Characterize the different geologic units on Ganymede</u> (and Europa) and study specific examples of their topography in terms of horizontal and vertical scale of the surface features

> Example: Arbela Sulcus (bright and dark-terrain boundary) Tectonism on Ganymede

GALA coverage assuming continuous nadir operation

DLR.de • Chart 5 The Ganymede Laser Altimeter (GALA) • Kay Lingenauber • IPM-2014 • 05. Nov. 2014

Ganymede: Tidal Deformation and Subsurface Ocean

Does Ganymede have a subsurface ice-l Radial displacement at the 3 ocean? What is its extension? sub-jovian point. HP-ice 2 1 GALA will be able to detect an ocean amplitude, m silicates 0 and to constrain the ice thickness on the order of tens of km. -1 core -2 Improvement of ice thickness -3 ocean determination by combining h_2 and k_2 no ocean -4 2 3 5 6 0 1 4 analysis. time, days Maximum tidal double-amplitudes, m 90 60 latitude, degrees 0 0 0 0 0 0 -60 -90

n

60

120

180

longitude, degrees

240

300

360

7

87654321

Periodic variation of the tidal potential during one tidal cycle (one orbit of 7.15 days around Jupiter).

Surface Roughness and Local Slopes

Ganymede's surface is very rough. Regional and local differences and their relation to geologic features and surface age are widely unknown.

GALA will determine the <u>surface roughness on a few 10s of meters scale</u>. This is also essential data for selection of possible future landing sites.

Ganymede's rough surface

Example for smooth terrain on Ganymede

Europa flybys

- Search for <u>regional topographic depressions</u>, in particular for chaos terrain and regions which might contain liquid water in the shallow subsurface
- Obtain <u>height profiles</u> along possibly active regions
- Determine slopes and tilts of ice blocks in chaos terrain
- Obtain profiles of double-ridges and triple-bands

Liquid reservoirs and the formation of chaos terrain (Schmidt et al., 2011)

Callisto flybys

- Determine <u>global shape</u> parameters
- Search for regional topographic depressions, in particular for ring basins and large craters
- Obtain height profiles along different terrains (mainly different types of craters)
- <u>Correlate surface roughness</u> with degradation and erosion of craters
- Correlation between albedo and elevation

GALA coverage

JUICE Mission timeline & GALA activity

Launch	June 2022	
Interplanetary transfer (EVEE)	7.6 years	Ranging from & to Earth during cruise
Jupiter orbit insertion	Jan. 2030	
Jupiter equatorial phase #1	11 months	
2 Europa flybys	36 days	GALA can operate at altitudes < 1600 km*
Jupiter high-latitude phase incl. Calisto flyby's	6 months	GALA can operate at altitudes < 1100 km*
Jupiter equatorial phase #2	11 months	
Ganymede phases:		
Elliptic #1	30 days	
High altitude (5000 km)	90 days	GALA can operate at altitudes < 1400 km*
Elliptic #2	30 days	
Circular GCO-500 (500 km)	130 days	

* under optimal conditions (0° slope, high albedo) and for high SNR

Instrument Key Parameters for Science Return

Block Diagram of the GALA Instrument

Instrument Performance

- Transmitter
 - Transversal pumped Nd:YAG laser at 1064 nm
 - Two cold-redundant laser resonators with 17 mJ at 30 Hz nominal, active Q-switch
 - Pulse width: 5.5 ns; Divergency: 100 μrad
- Receiver
 - Cassegrain telescope, 30 cm diameter
 - Backend-Optics, Bandpass filter, SiAPD
 - Analogue pre-amplifier w/ digitizer
 - Digital rangefinder for ToF measurement, waveform analysis etc.
 - Several data modes
- Electronics with digital processing module and power converter
- Resources: 52 W Power, 15 kg

Radiation environment is challenging

- JUICE is a "radiation mission": instrument design is constrained by radiation aspects
- In contrast to other missions, radiation is dominated by electrons. New techniques for analysis and shielding design are needed.
- Selection of EEE parts, detector and optics is affected.

Distance from the Earth
 → low data budget

570 krad behind

TID depth dose for the entire JUICE mission incl. Factor of Safety of 2

GALA Heritage: BELA onboard BepiColombo

Fig. 5 Hyperbolas (dotted) and ellip the two focal points F1 and F2, locat (left side). The baffle contour (thick | nating manner, the dashed and dotte nel (parallel dashed-dotted lines).

GALA Heritage: Japanese Laser Altimeters

- Hayabusa Lidar
 2003 2010, NEA mission
- Kaguya Laser Altimeter 2007 – 2009, Lunar mission
- Hayabusa2 Lidar Launch 2015, NEA mission

Kaguya LALT

Hayabusa2 LIDAR

Summary

- GALA uses the classical laser altimeter design (ToF measurement of sub-sequent pulses)
- Obtain Ganymede's global shape and topography on different scales, surface roughness, local slopes. Global coverage of Ganymede's surface
- Measure Ganymede's tidal deformation and determine h_2 up to an accuracy of better than 1%.
 - → quantify the thickness of ice shell and depth of the ocean beneath with an accuracy of approx. 10 km.
- Flyby's at Europa and Callisto
- Interplanetary laser-ranging
- Next steps
 - PDR in Mid 2016, CDR in Oct. 2017
 - Flight Model Delivery in Mid 2019
 - Launch in June 2022

