Jump to content

Rhodococcus: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
Tom.Bot (talk | contribs)
m Task 3: +{{Taxonbar|from=Q288311}} (3 sig. taxon IDs); WP:GenFixes, using AWB
No edit summary
 
(39 intermediate revisions by 22 users not shown)
Line 1: Line 1:
{{Short description|Genus of bacteria}}
{{Italic title}}
{{Italic title}}
{{Automatic taxobox
{{Taxobox
| image=Rhodococcus_species.jpg
| name = ''Rhodococcus''
| image_caption=''Rhodococcus'' sp.
|image=Rhodococcus_species.jpg
| taxon = Rhodococcus
|image_caption=''Rhodococcus'' sp.
| authority = [[Friedrich Wilhelm Zopf|Zopf]] 1891
| regnum = [[Bacteria]]
| type_species = ''[[Rhodococcus rhodochrous]]''
| phylum = [[Actinobacteria]]
| type_species_authority = (Zopf 1891) Tsukamura 1974 (Approved Lists 1980)
| ordo = [[Actinomycetales]]
| subdivision_ranks = Species
| subordo = [[Corynebacterineae]]
| subdivision = See text.
| familia = [[Nocardiaceae]]
| synonyms =
| genus = '''''Rhodococcus'''''
* "''Prescottella''" <small>Jones et al. 2013</small>
| genus_authority = [[Friedrich Wilhelm Zopf|Zopf]] 1891
* "''Prescottia''" <small>Jones et al. 2013</small>
* "''Spelaeibacter''" <small>Kim et al. 2022</small>
| synonyms_ref =<ref name="LPSN">{{cite web|vauthors=Euzéby JP, Parte AC |url=https://lpsn.dsmz.de/genus/rhodococcus |title=''Rhodococcus'' |access-date=June 25, 2022 |publisher=[[List of Prokaryotic names with Standing in Nomenclature]] (LPSN)}}</ref>
}}
}}


'''''Rhodococcus''''' is a genus of aerobic, nonsporulating, nonmotile [[Gram-positive]] bacteria closely related to ''[[Mycobacterium]]'' and ''[[Corynebacterium]]''.<ref name=Alice>{{cite journal |author1=van der Geize R. |author2=L. Dijkhuizen |last-author-amp=yes | title = Harnessing the catabolic diversity of rhodococci for environmental and biotechnological applications | journal = Microbiology | year = 2004 | volume = 7 | pages = 255–261 | url = | pmid=15196492 | issue = 3 | doi = 10.1016/j.mib.2004.04.001}}</ref><ref name= BurkovskiA>{{cite book | author = Burkovski A (editor). | title = Corynebacteria: Genomics and Molecular Biology | publisher = Caister Academic Press | year = 2008 | url=http://www.horizonpress.com/cory | id = [http://www.horizonpress.com/cory ] | isbn = 978-1-904455-30-1}}</ref> While a few species are pathogenic, most are benign, and have been found to thrive in a broad range of environments, including soil, water, and [[eukaryotic]] cells. Some species have large genomes, including the 9.7 megabasepair genome (67% G/C) of ''Rhodococcus'' sp. RHA1.<ref name = Betty />
'''''Rhodococcus''''' is a genus of aerobic, nonsporulating, nonmotile [[Gram-positive]] bacteria closely related to ''[[Mycobacterium]]'' and ''[[Corynebacterium]]''.<ref name=Alice>{{cite journal |author1=van der Geize R. |author2=L. Dijkhuizen |name-list-style=amp | title = Harnessing the catabolic diversity of rhodococci for environmental and biotechnological applications | journal = Microbiology | year = 2004 | volume = 7 | pages = 255–261 |url=https://www.rug.nl/research/portal/en/publications/harnessing-the-catabolic-diversity-of-rhodococci-for-environmental-and-biotechnological-applications(a1dfa0fd-dd65-4c1d-b9b4-bfa98038dcbe).html| pmid=15196492 | issue = 3 | doi = 10.1016/j.mib.2004.04.001|hdl=11370/a1dfa0fd-dd65-4c1d-b9b4-bfa98038dcbe }}</ref><ref name= BurkovskiA>{{cite book | editor = Burkovski A. | title = Corynebacteria: Genomics and Molecular Biology | publisher = Caister Academic Press | year = 2008 |url=http://www.horizonpress.com/cory | id = [http://www.horizonpress.com/cory ] | isbn = 978-1-904455-30-1}}</ref> While a few species are pathogenic, most are benign, and have been found to thrive in a broad range of environments, including soil, water, and [[eukaryotic]] cells. Some species have large genomes, including the 9.7 megabasepair genome (67% G/C) of ''Rhodococcus'' sp. RHA1.<ref name = Betty />


Strains of ''Rhodococcus'' are important owing to their ability to catabolize a wide range of compounds and produce bioactive steroids, [[acrylamide]], and [[acrylic acid]], and their involvement in fossil fuel biodesulfurization.<ref name=Betty>{{cite journal | doi = 10.1073/pnas.0607048103 | vauthors = McLeod MP, Warren RL, Hsiao WW, Araki N, Mihre M, Fernandes C, Miyazawa D, Wong W, Lillquist AL, Wang D, Dosanjh M, Hara H, Petrescu A, Morin RD, Yang G, Stott JM, Schein JE, Shin H, Smailus D, Siddiqui AS, Marra MA, Jones SJ, Holt R, Brinkman FS, Miyauchi K, Fukuda M, Davies JE, Mohn WW, Eltis LD | title = The complete genome of Rhodococcus sp. RHA1 provides insights into a catabolic powerhouse | journal = PNAS | date = October 17, 2006 | volume = 103 | pages = 15582–15587 | url = | issue=42 | pmid = 17030794 | pmc = 1622865 }}</ref> This genetic and catabolic diversity is not only due to the large bacterial chromosome, but also to the presence of three large linear plasmids.<ref name = Alice /> ''Rhodococcus'' is also an experimentally advantageous system owing to a relatively fast growth rate and simple developmental cycle, but is not well characterized.<ref name = Betty />
Strains of ''Rhodococcus'' are important owing to their ability to catabolize a wide range of compounds and produce bioactive steroids, [[acrylamide]], and [[acrylic acid]], and their involvement in fossil fuel biodesulfurization.<ref name=Betty>{{cite journal | doi = 10.1073/pnas.0607048103 | vauthors = McLeod MP, Warren RL, Hsiao WW, Araki N, Mihre M, Fernandes C, Miyazawa D, Wong W, Lillquist AL, Wang D, Dosanjh M, Hara H, Petrescu A, Morin RD, Yang G, Stott JM, Schein JE, Shin H, Smailus D, Siddiqui AS, Marra MA, Jones SJ, Holt R, Brinkman FS, Miyauchi K, Fukuda M, Davies JE, Mohn WW, Eltis LD | title = The complete genome of Rhodococcus sp. RHA1 provides insights into a catabolic powerhouse | journal = PNAS | date = October 17, 2006 | volume = 103 | pages = 15582–15587 | issue=42 | pmid = 17030794 | pmc = 1622865 | bibcode = 2006PNAS..10315582M | doi-access = free }}</ref> This genetic and catabolic diversity is not only due to the large bacterial chromosome, but also to the presence of three large linear plasmids.<ref name = Alice /> ''Rhodococcus'' is also an experimentally advantageous system owing to a relatively fast growth rate and simple developmental cycle, but is not well characterized.<ref name = Betty />


Another important application of ''Rhodococcus'' comes from bioconversion, using biological systems to convert cheap starting material into more valuable compounds, such as its ability to metabolize harmful environmental pollutants, including [[toluene]], [[naphthalene]], herbicides, and PCBs. ''Rhodococcus'' species typically metabolize [[aromatic]] substrates by first oxygenating the aromatic ring to form a diol (two alcohol groups). Then, the ring is cleaved with intra/extradiol mechanisms, opening the ring and exposing the substrate to further metabolism. Since the chemistry is very stereospecific, the diols are created with predictable chirality. While controlling the chirality of chemical reaction presents a significant challenge for synthetic chemists, biological processes can be used instead to faithfully produce chiral molecules in cases where direct chemical synthesis is not feasible or efficient. An example of this is the use of ''Rhodococcus'' to produce [[indene]], a precursor to the [[AIDS]] drug [[indinavir]], a protease inhibitor, and containing two of the five chiral centers needed in the complex.<ref name=Cat>{{cite journal | author = Treadway, S.L., K.S. Yanagimachi, E. Lankenau, P.A. Lessard, G. Stephanopoulos and A.J. Sinskey | title = Isolation and characterization of indene bioconversion genes from Rhodococcus strain I24 | journal = Appl. Microbiol. Biotechnol | year = 1999 | volume = 51 | pmid = 10422226 | pages = 786–793 | url = | doi = 10.1007/s002530051463 | issue=6}}</ref>
Another important application of ''Rhodococcus'' comes from bioconversion, using biological systems to convert cheap starting material into more valuable compounds, such as its ability to metabolize harmful environmental pollutants, including [[toluene]], [[naphthalene]], herbicides, and PCBs. ''Rhodococcus'' species typically metabolize [[aromatic]] substrates by first oxygenating the aromatic ring to form a diol (two alcohol groups). Then, the ring is cleaved with intra/extradiol mechanisms, opening the ring and exposing the substrate to further metabolism. Since the chemistry is very stereospecific, the diols are created with predictable chirality. While controlling the chirality of chemical reaction presents a significant challenge for synthetic chemists, biological processes can be used instead to faithfully produce chiral molecules in cases where direct chemical synthesis is not feasible or efficient. An example of this is the use of ''Rhodococcus'' to produce chiral indandiol derivatives which serve as synthetic intermediates for [[indinavir]], a [[Protease inhibitor (pharmacology)|protease inhibitor]] used in the treatment of HIV/AIDS.<ref name=Cat>{{cite journal | author = Treadway, S.L., K.S. Yanagimachi, E. Lankenau, P.A. Lessard, G. Stephanopoulos and A.J. Sinskey | title = Isolation and characterization of indene bioconversion genes from Rhodococcus strain I24 | journal = Appl. Microbiol. Biotechnol. | year = 1999 | volume = 51 | pmid = 10422226 | pages = 786–793 | doi = 10.1007/s002530051463 | issue=6| s2cid = 6264248 }}</ref>


[[File:Rhodococcus Indandiol.svg|thumb|The conversion of [[indene]] to ''trans''-1''R'',2''R''-indandiol and ''cis''-1''S'',2''R''-indandiol by Rhodococcus sp.<ref>{{cite journal |last1=Buckland |first1=Barry C. |last2=Drew |first2=Stephen W. |last3=Connors |first3=Neal C. |last4=Chartrain |first4=Michel M. |last5=Lee |first5=Chanyong |last6=Salmon |first6=Peter M. |last7=Gbewonyo |first7=Kodzo |last8=Zhou |first8=Weichang |last9=Gailliot |first9=Pat |last10=Singhvi |first10=Rahul |last11=Olewinski |first11=Roger C. |last12=Sun |first12=Wen-Jun |last13=Reddy |first13=Jayanthi |last14=Zhang |first14=Jinyou |last15=Jackey |first15=Barbara A. |last16=Taylor |first16=Colleen |last17=Goklen |first17=Kent E. |last18=Junker |first18=Beth |last19=Greasham |first19=Randolph L. |title=Microbial Conversion of Indene to Indandiol: A Key Intermediate in the Synthesis of CRIXIVAN |journal=Metabolic Engineering |date=January 1999 |volume=1 |issue=1 |pages=63–74 |doi=10.1006/mben.1998.0107|pmid=10935755 }}</ref>]]
[[File:Crixivan2.gif|thumb|Indinavir, indene shown in green<ref name = Cat />]]


==Biodegradation of organic pollutants==
==Biodegradation of organic pollutants==
''Rhodococcus'' has been greatly researched as a potential agent for the [[bioremediation ]]<nowiki/>of pollutants as it is commonly found in the natural environment, and they possess certain characteristics that allow them to thrive under a variety of conditions, and they have the capability to metabolize many hydrocarbons.<ref>{{Cite book|title=Biology of Rhodococcus|last=Alvarez|first=Héctor|publisher=Springer Science & Business Media|year=2010|isbn=9783642129377|location=|pages=231–256}}</ref>
''Rhodococcus'' has been greatly researched as a potential agent for the [[bioremediation]] of pollutants as it is commonly found in the natural environment, and they possess certain characteristics that allow them to thrive under a variety of conditions, and they have the capability to metabolize many hydrocarbons.<ref>{{Cite book|title=Biology of Rhodococcus|last=Alvarez|first=Héctor|publisher=Springer Science & Business Media|year=2010|isbn=9783642129377|pages=231–256}}</ref>


Rhodococci possess many properties that makes them suitable for bioremediation under a range of environments. Their ability to undergo [[Microaerophile|microaerophilic respiration]] allows them to survive in environments containing low oxygen concentrations, and their ability to undergo [[Cellular respiration|aerobic respiration]] also allows them to survive in oxygenated environments.<ref>{{Cite journal|last=Fuller|first=M.E.|last2=Perreault|first2=N.|date=July 8, 2010|title=Microaerophilic degradation of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) by three Rhodococcus strains|pmid=20666987|journal=Letters in Applied Microbiology|volume=51|pages=313–318|via=Wiley|doi=10.1111/j.1472-765x.2010.02897.x}}</ref> They also undergo [[nitrogen fixation]], which allows them to generate their own nutrients in environments with low nutrients.<ref>{{Cite journal|last=Blasco|first=Rafael|date=|title=Rhodococcus sp. RB1 grows in the presence of high nitrate and nitrite concentrations and assimilates nitrate in moderately saline environments|url=https://link.springer.com/article/10.1007/s002030100285?no-access=true|journal=Archives of Microbiology|volume=175|pages=435–440|via=Springer|doi=10.1007/s002030100285|year=2001}}</ref>
Rhodococci possess many properties that makes them suitable for bioremediation under a range of environments. Their ability to undergo [[Microaerophile|microaerophilic respiration]] allows them to survive in environments containing low oxygen concentrations, and their ability to undergo [[Cellular respiration|aerobic respiration]] also allows them to survive in oxygenated environments.<ref>{{Cite journal|last1=Fuller|first1=M.E.|last2=Perreault|first2=N.|date=July 8, 2010|title=Microaerophilic degradation of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) by three Rhodococcus strains|pmid=20666987|journal=Letters in Applied Microbiology|volume=51|issue=3|pages=313–318|doi=10.1111/j.1472-765x.2010.02897.x|url=https://nrc-publications.canada.ca/eng/view/accepted/?id=2dad1cdf-6506-4f83-a1b7-4d778d6b1517|doi-access=free}}</ref> They also undergo [[nitrogen fixation]], which allows them to generate their own nutrients in environments with low nutrients.<ref>{{Cite journal|last=Blasco|first=Rafael|title=Rhodococcus sp. RB1 grows in the presence of high nitrate and nitrite concentrations and assimilates nitrate in moderately saline environments|journal=Archives of Microbiology|volume=175|issue=6|pages=435–440|doi=10.1007/s002030100285|pmid=11491084|year=2001|s2cid=864067}}</ref>


Rhodococci also contain characteristics that enhances their ability to degrade organic [[pollutant]]s. Their hydrophobic surface allows for [[Cell adhesion|adhesion]] to hydrocarbons, which enhances its ability to degrade these pollutants.<ref>{{cite book|last1=Mendez-Volas|first1=A.|title=Microbes in applied research; current advances and challenges; proceedings|date=2012|publisher=World Scientific|isbn=9789814405034|pages=197–200}}</ref> They have a wide variety of catabolic pathways and many unique enzyme functions.<ref>{{cite journal|last1=Laczi|first1=Krisztián|last2=Kis|first2=Ágnes|last3=Horváth|first3=Balázs|last4=Maróti|first4=Gergely|last5=Hegedüs|first5=Botond|title=Metabolic responses of Rhodococcus erythropolis PR4 grown on diesel oil and various hydrocarbons|journal=Applied Microbiology and Biotechnology|date=November 2015|volume=99|issue=22|pages=9745–9759|doi=10.1007/s00253-015-6936-z}}</ref> This gives them the ability to degrade many recalcitrant, toxic hydrocarbons. For example, Rhodococci expresses [[dioxygenases]], which can be used to degrade [[benzotrifluoride]], a recalcitrant pollutant.<ref>{{Cite journal|last=Yano|first=Kenichi|last2=Wachi|first2=Masaaki|last3=Tsuchida|first3=Sakiko|last4=Kitazume|first4=Tomoya|last5=Iwai|first5=Noritaka|date=2015|title=Degradation of benzotrifluoride via the dioxygenase pathway in Rhodococcus sp. 065240|journal=Bioscience, Biotechnology, and Biochemistry|volume=79|issue=3|pages=496–504|doi=10.1080/09168451.2014.982502|issn=1347-6947|pmid=25412819}}</ref> ''Rhodococcus'' sp. strain Q1, a strain naturally found in soil and paper mill sludge, contains the ability to degrade [[quinoline]], various [[pyridine]] derivatives, [[catechol]], [[benzoate]], and [[protocatechuic acid]].<ref>{{cite journal | last1 = O'Loughlin | first1 = E.J. | last2 = Kehrmeyer | first2 = S.R. | last3 = Sims | first3 = G.K. | year = 1996 | title = Isolation, characterization, and substrate utilization of a quinoline degrading bacterium | url = | journal = International Biodeterioration and Biodegradation | volume = 38 | issue = 2| pages = 107–118 | doi = 10.1016/S0964-8305(96)00032-7 }}</ref> Rhodococci are also capable of accumulating [[Heavy metals|heavy metal]] ions, such as radioactive [[caesium]], allowing for easier removal from the environment.<ref>{{Cite journal|last=Takei|first=Takayuki|last2=Yamasaki|first2=Mika|last3=Yoshida|first3=Masahiro|date=2014-04-01|title=Cesium accumulation of Rhodococcus erythropolis CS98 strain immobilized in hydrogel matrices|url=http://www.sciencedirect.com/science/article/pii/S138917231300354X|journal=Journal of Bioscience and Bioengineering|volume=117|issue=4|pages=497–500|doi=10.1016/j.jbiosc.2013.09.013}}</ref> Other pollutants, such as [[azo dye]]s,<ref>{{Cite journal|last=Heiss|first=G. S.|last2=Gowan|first2=B.|last3=Dabbs|first3=E. R.|date=1992-12-01|title=Cloning of DNA from a Rhodococcus strain conferring the ability to decolorize sulfonated azo dyes|journal=FEMS Microbiology Letters|volume=78|issue=2–3|pages=221–226|issn=0378-1097|pmid=1490602}}</ref> [[pesticide]]s<ref>{{Cite journal|last=Parekh|first=N. R.|last2=Walker|first2=A.|last3=Roberts|first3=S. J.|last4=Welch|first4=S. J.|date=November 1994|title=Rapid degradation of the triazinone herbicide metamitron by a Rhodococcus sp. isolated from treated soil|journal=The Journal of Applied Bacteriology|volume=77|issue=5|pages=467–475|issn=0021-8847|pmid=8002472|doi=10.1111/j.1365-2672.1994.tb04389.x}}</ref> and [[polychlorinated biphenyl]]s<ref>{{Cite journal|last=Boyle|first=Alfred W.|last2=Silvin|first2=Christopher J.|last3=Hassett|first3=John P.|last4=Nakas|first4=James P.|last5=Tanenbaum|first5=S. W.|date=1992-06-01|title=Bacterial PCB biodegradation|url=https://link.springer.com/article/10.1007/BF00129089|journal=Biodegradation|language=en|volume=3|issue=2–3|pages=285–298|doi=10.1007/BF00129089|issn=0923-9820}}</ref> can also be degraded by Rhodococci.
Rhodococci also contain characteristics that enhances their ability to degrade organic [[pollutant]]s. Their hydrophobic surface allows for [[Cell adhesion|adhesion]] to hydrocarbons, which enhances its ability to degrade these pollutants.<ref>{{cite book|last1=Mendez-Volas|first1=A.|title=Microbes in applied research; current advances and challenges; proceedings|date=2012|publisher=World Scientific|isbn=9789814405034|pages=197–200}}</ref> They have a wide variety of catabolic pathways and many unique enzyme functions.<ref>{{cite journal|last1=Laczi|first1=Krisztián|last2=Kis|first2=Ágnes|last3=Horváth|first3=Balázs|last4=Maróti|first4=Gergely|last5=Hegedüs|first5=Botond|title=Metabolic responses of Rhodococcus erythropolis PR4 grown on diesel oil and various hydrocarbons|journal=Applied Microbiology and Biotechnology|date=November 2015|volume=99|issue=22|pages=9745–9759|doi=10.1007/s00253-015-6936-z|pmid=26346267|s2cid=9213608|url=http://publicatio.bibl.u-szeged.hu/9982/1/Laczi_etal_AMB_2015.pdf}}</ref> This gives them the ability to degrade many recalcitrant, toxic hydrocarbons. For example, Rhodococci expresses [[dioxygenases]], which can be used to degrade [[benzotrifluoride]], a recalcitrant pollutant.<ref>{{Cite journal|last1=Yano|first1=Kenichi|last2=Wachi|first2=Masaaki|last3=Tsuchida|first3=Sakiko|last4=Kitazume|first4=Tomoya|last5=Iwai|first5=Noritaka|date=2015|title=Degradation of benzotrifluoride via the dioxygenase pathway in Rhodococcus sp. 065240|journal=Bioscience, Biotechnology, and Biochemistry|volume=79|issue=3|pages=496–504|doi=10.1080/09168451.2014.982502|issn=1347-6947|pmid=25412819|s2cid=205616972|doi-access=free}}</ref> ''Rhodococcus'' sp. strain Q1, a strain naturally found in soil and paper mill sludge, contains the ability to degrade [[quinoline]], various [[pyridine]] derivatives, [[catechol]], [[benzoate]], and [[protocatechuic acid]].<ref>{{cite journal | last1 = O'Loughlin | first1 = E.J. | last2 = Kehrmeyer | first2 = S.R. | last3 = Sims | first3 = G.K. | year = 1996 | title = Isolation, characterization, and substrate utilization of a quinoline degrading bacterium | journal = International Biodeterioration and Biodegradation | volume = 38 | issue = 2| pages = 107–118 | doi = 10.1016/S0964-8305(96)00032-7 }}</ref> Rhodococci are also capable of accumulating [[Heavy metals|heavy metal]] ions, such as radioactive [[caesium]], allowing for easier removal from the environment.<ref>{{Cite journal|last1=Takei|first1=Takayuki|last2=Yamasaki|first2=Mika|last3=Yoshida|first3=Masahiro|date=2014-04-01|title=Cesium accumulation of Rhodococcus erythropolis CS98 strain immobilized in hydrogel matrices|journal=Journal of Bioscience and Bioengineering|volume=117|issue=4|pages=497–500|doi=10.1016/j.jbiosc.2013.09.013|pmid=24183457}}</ref> Other pollutants, such as [[azo dye]]s,<ref>{{Cite journal|last1=Heiss|first1=G. S.|last2=Gowan|first2=B.|last3=Dabbs|first3=E. R.|date=1992-12-01|title=Cloning of DNA from a Rhodococcus strain conferring the ability to decolorize sulfonated azo dyes|journal=FEMS Microbiology Letters|volume=78|issue=2–3|pages=221–226|issn=0378-1097|pmid=1490602|doi=10.1016/0378-1097(92)90030-r|doi-access=free}}</ref> [[pesticide]]s<ref>{{Cite journal|last1=Parekh|first1=N. R.|last2=Walker|first2=A.|last3=Roberts|first3=S. J.|last4=Welch|first4=S. J.|date=November 1994|title=Rapid degradation of the triazinone herbicide metamitron by a Rhodococcus sp. isolated from treated soil|journal=The Journal of Applied Bacteriology|volume=77|issue=5|pages=467–475|issn=0021-8847|pmid=8002472|doi=10.1111/j.1365-2672.1994.tb04389.x}}</ref> and [[polychlorinated biphenyl]]s<ref>{{Cite journal|last1=Boyle|first1=Alfred W.|last2=Silvin|first2=Christopher J.|last3=Hassett|first3=John P.|last4=Nakas|first4=James P.|last5=Tanenbaum|first5=S. W.|date=1992-06-01|title=Bacterial PCB biodegradation|journal=Biodegradation|language=en|volume=3|issue=2–3|pages=285–298|doi=10.1007/BF00129089|s2cid=7272347|issn=0923-9820}}</ref> can also be degraded by Rhodococci.


[[File:Rhodococcus sp..jpg|thumb|Scanning electron micrograph of ''Rhodococcus'' sp. strain Q1 grown on quinoline - the organism can use quinoline as a sole source of carbon, nitrogen, and energy, tolerating concentrations up to 3.88 millimoles per liter.]]
[[File:Rhodococcus sp..jpg|thumb|Scanning electron micrograph of ''Rhodococcus'' sp. strain Q1 grown on quinoline - the organism can use quinoline as a sole source of carbon, nitrogen, and energy, tolerating concentrations up to 3.88 millimoles per liter.]]


== Pathogenic ''Rhodococcus'' ==
== Pathogenic ''Rhodococcus'' ==
The genus ''Rhodococcus'' has two pathogenic species: ''[[Rhodococcus fascians|R. fascians]]'' and ''[[Rhodococcus equi|R. equi]]''. The former, a plant pathogen, causes leafy gall disease in both [[angiosperm]] and [[gymnosperm]] plants.<ref>{{cite journal | last1 = Goethals | first1 = K. | last2 = Vereecke | first2 = D. | last3 = Jaziri | first3 = M. | last4 = Van | first4 = Montagu M. | last5 = Holsters | first5 = M. | year = 2001 | title = Leafy gall formation by Rhodococcus fascians | url = | journal = Annu. Rev. Phytopathol. | volume = 39 | issue = | pages = 27–52 | doi = 10.1146/annurev.phyto.39.1.27 | pmid = 11701858 }}</ref> ''R. equi'' is the causative agent of foal pneumonia (rattles) and mainly infects foals up to three months in age. However, it has a wide host range, sporadically infecting pigs, cattle, and immunocompromised humans, in particular AIDS patients and those undergoing immunosuppressive therapy.<ref>{{cite journal | last1 = Muscatello | first1 = G. | last2 = Leadon | first2 = D. P. | last3 = Klay | first3 = M. | last4 = Ocampo-Sosa | first4 = A. | last5 = Lewis | first5 = D. A. | last6 = Fogarty | first6 = U. | last7 = Buckley | first7 = T. | last8 = Gilkerson | first8 = J. R. | last9 = Meijer | first9 = W. G. ''et al.'' | year = 2007 | title = Rhodococcus equi infection in foals: the science of 'rattles' | url = | journal = Equine Vet. J. | volume = 39 | issue = 5| pages = 470–478 | pmid = 17910275 | doi=10.2746/042516407x209217 | displayauthors = etal }}</ref> Interestingly, both pathogens rely on a conjugative virulence plasmid to cause disease. In case of ''R. fascians'', this is a linear plasmid, whereas ''R. equi'' harbors a circular plasmid. Both pathogens are economically significant. ''R. fascians'' is a major pathogen of tobacco plants. ''R. equi'', one of the most important foal pathogens, is endemic on many stud farms around the world.
The genus ''Rhodococcus'' has two pathogenic species: ''[[Rhodococcus fascians|R. fascians]]'' and ''[[Rhodococcus equi|R. equi]]''. The former, a plant pathogen, causes leafy gall disease in both [[angiosperm]] and [[gymnosperm]] plants.<ref>{{cite journal | last1 = Goethals | first1 = K. | last2 = Vereecke | first2 = D. | last3 = Jaziri | first3 = M. | last4 = Van | first4 = Montagu M. | last5 = Holsters | first5 = M. | year = 2001 | title = Leafy gall formation by Rhodococcus fascians | journal = Annu. Rev. Phytopathol. | volume = 39 | pages = 27–52 | doi = 10.1146/annurev.phyto.39.1.27 | pmid = 11701858 }}</ref> ''R. equi'' is the causative agent of foal pneumonia (rattles) and mainly infects foals up to three months in age. However, it has a wide host range, sporadically infecting pigs, cattle, and immunocompromised humans, in particular AIDS patients and those undergoing immunosuppressive therapy.<ref>{{cite journal | last1 = Muscatello | first1 = G. | last2 = Leadon | first2 = D. P. | last3 = Klay | first3 = M. | last4 = Ocampo-Sosa | first4 = A. | last5 = Lewis | first5 = D. A. | last6 = Fogarty | first6 = U. | last7 = Buckley | first7 = T. | last8 = Gilkerson | first8 = J. R. | last9 = Meijer | first9 = W. G.|display-authors=etal| year = 2007 | title = Rhodococcus equi infection in foals: the science of 'rattles' | journal = Equine Vet. J. | volume = 39 | issue = 5| pages = 470–478 | pmid = 17910275 | doi=10.2746/042516407x209217}}</ref> Both pathogens rely on a conjugative virulence plasmid to cause disease. In case of ''R. fascians'', this is a linear plasmid, whereas ''R. equi'' harbors a circular plasmid. Both pathogens are economically significant. ''R. fascians'' is a major pathogen of tobacco plants. ''R. equi'', one of the most important foal pathogens, is endemic on many stud farms around the world.


==In molecular biology==
==In molecular biology==
''Rhodococcus'' has also been identified as a contaminant of DNA extraction kit reagents and ultrapure water systems, which may lead to its erroneous appearance in microbiota or metagenomic datasets.<ref>{{cite biorxiv|last1=Salter|first1=S|last2=Cox|first2=M|last3=Turek|first3=E|last4=Calus|first4=S|last5=Cookson|first5=W|last6=Moffatt|first6=M|last7=Turner|first7=P|last8=Parkhill|first8=J|last9=Loman|first9=N|last10=Walker|first10=A|title=Reagent contamination can critically impact sequence-based microbiome analyses|date=2014|biorxiv=007187}}</ref>
''Rhodococcus'' has also been identified as a contaminant of DNA extraction kit reagents and ultrapure water systems, which may lead to its erroneous appearance in microbiota or metagenomic datasets.<ref>{{cite bioRxiv|last1=Salter|first1=S|last2=Cox|first2=M|last3=Turek|first3=E|last4=Calus|first4=S|last5=Cookson|first5=W|last6=Moffatt|first6=M|last7=Turner|first7=P|last8=Parkhill|first8=J|last9=Loman|first9=N|last10=Walker|first10=A|title=Reagent contamination can critically impact sequence-based microbiome analyses|date=2014|biorxiv=10.1101/007187}}</ref>


== Species ==
== Species ==
''Rhodococcus'' comprises the following species:<ref name="LPSN"/>
* ''[[Rhodococcus aerolatus]]'' Hwang et al. 2015<ref name=Rhodococcus>{{cite journal|last1=Parte|first1=A.C.|title=Rhodococcus|journal=www.bacterio.net|url=http://www.bacterio.net/rhodococcus.html}}</ref>
{{div col|colwidth=250px}}
* ''[[Rhodococcus aetherivorans]]'' Goodfellow et al. 2004<ref name=Rhodococcus/>
* ''[[Rhodococcus agglutinans]]'' Guo et al. 2015<ref name=Rhodococcus/>
* ''[[Rhodococcus aerolatus|R. aerolatus]]'' <small>Hwang et al. 2015</small>
* ''[[Rhodococcus aetherivorans|R. aetherivorans]]'' <small>Goodfellow et al. 2004</small>
* ''[[Rhodococcus aurantiacus]]'' (ex Tsukamura and Mizuno, 1971) Tsukamura and Yano, 1985, nom. rev.
* ''[[Rhodococcus artemisiae]]'' Zhao et al. 2012<ref name=Rhodococcus/>
* ''[[Rhodococcus agglutinans|R. agglutinans]]'' <small>Guo et al. 2015</small>
<!-- Rhodococcus aichiense is a misspelling of Rhodococcus aichiensis, which was reclassified as Gordonia aichiensis. -->
* ''[[Rhodococcus baikonurensis]]'' Li, et al., 2004
* ''[[Rhodococcus biphenylivorans]]'' Su et al. 2015<ref name=Rhodococcus/>
<!-- Rhodococcus aichiensis was reclassified as Gordonia aichiensis. -->
* ''[[Rhodococcus boritolerans]]''
* ''[[Rhodococcus antrifimi|R. antrifimi]]'' <small>Ko et al. 2015</small>
* ''[[Rhodococcus equi]]'' (Magnusson, 1923) Goodfellow and Alderson, 1977
* ''[[Rhodococcus artemisiae|R. artemisiae]]'' <small>Zhao et al. 2012</small>
<!-- Rhodococcus aurantiacus was reclassified as Tsukamurella paurometabola. -->
* ''[[Rhodococcus canchipurensis]]'' Nimaichand et al. 2013<ref name=Rhodococcus/>
* ''[[Rhodococcus cerastii]]'' Kämpfer et al. 2013<ref name=Rhodococcus/>
* "''[[Rhodococcus australis|R. australis]]''" <small>Hiddema et al. 1985</small>
* ''[[Rhodococcus cercidiphylli]]'' Li et al. 2012<ref name=Rhodococcus/>
<!-- Rhodococcus baikonurensis was reclassified as Rhodococcus erythropolis. -->
<!-- Rhodococcus biphenylivorans was reclassified as Rhodococcus pyridinivorans. -->
* ''[[Rhodococcus coprophilus]]'' Rowbotham and Cross, 1979
* "''[[Rhodococcus boritolerans|R. boritolerans]]''" <small>Lin et al. 2012</small>
* ''[[Rhodococcus corynebacterioides]]'' (Serrano, et al., 1972) Yassin and [[Barbara A. Schaal|Schaal]], 2005 (synonym: ''[[Nocardia corynebacterioides]]'' (Serrano et al. 1972)
* ''[[Rhodococcus defluvii]]'' Kämpfer et al. 2014<ref name=Rhodococcus/>
<!-- Rhodococcus bronchialis was reclassified as Gordonia bronchialis. -->
* ''[[Rhodococcus enclensis]]'' Dastager et al. 2014<ref name=Rhodococcus/>
* ''[[Rhodococcus canchipurensis|R. canchipurensis]]'' <small>Nimaichand et al. 2013</small>
* ''[[Rhodococcus cavernicola|R. cavernicola]]'' <small>Lee et al. 2020</small>
* ''[[Rhodococcus erythropolis]]'' ([[P. H. H. Gray|Gray]] and [[H. G. Thornton|Thornton]], 1928) Goodfellow and Alderson, 1979
* ''[[Rhodococcus cerastii|R. cerastii]]'' <small>Kämpfer et al. 2013</small>
* ''[[Rhodococcus fascians]]'' <span class="Person">(Tilford 1936) Goodfellow 1984</span> (synonym: ''Rhodococcus luteus'' (<span class="Person">ex Söhngen 1913) Nesterenko et al. 1982</span>)<ref>{{cite journal | last1 = Klatte | first1 = S. | year = 1994 | title = Rhodococcus luteus is a later subjective synonym of Rhodococcus fascians | url = | journal = Int. J. Syst. Bacteriol. | volume = 44 | issue = 4| pages = 627–630 | doi=10.1099/00207713-44-4-627| author2 = and others | displayauthors = 1 | last3 = Kroppenstedt | first3 = R. M. | last4 = Rainey | first4 = F. | last5 = Stackebrandt | first5 = E. }}</ref>
* ''[[Rhodococcus globerulus]]'' Goodfellow, et al., 1985
* ''[[Rhodococcus cercidiphylli|R. cercidiphylli]]'' <small>Li et al. 2012</small>
<!-- Rhodococcus chlorophenolicus was reclassified as Mycobacterium chlorophenolicum. -->
* ''[[Rhodococcus gordoniae]]'' Jones, et al., 2004
* ''[[Rhodococcus hoagii]]'' Kämpfer et al. 2014<ref name=Rhodococcus/>
* ''[[Rhodococcus chubuensis|R. chubuensis]]'' <small>Tsukamura 1983</small>
* ''[[Rhodococcus imtechensis]]'' Ghosh et al. 2006<ref name=Rhodococcus/>
* ''[[Rhodococcus coprophilus|R. coprophilus]]'' <small>Rowbotham and Cross 1979 (Approved Lists 1980)</small>
<!-- Rhodococcus corallinus was reclassified as Gordonia rubripertincta. -->
* ''[[Rhodococcus jialingiae]]'' Wang et al. 2010<ref name=Rhodococcus/>
* ''[[Rhodococcus corynebacterioides|R. corynebacterioides]]'' <small>(Serrano et al. 1972) Yassin and Schaal 2005</small>
* ''[[Rhodococcus jostii]]'' Takeuchi, et al., 2002. Identified as producing a [[lignin]] digesting enzyme, it was the first isolated from a bacterium rather than a fungus.<ref>http://www.physorg.com/news/2011-06-wood-digesting-enzyme-bacteria-boost-biofuel.html</ref><ref>{{cite journal|pmid=11931149|year=2002|last1=Takeuchi|first1=M|last2=Hatano|first2=K|last3=Sedlácek|first3=I|last4=Pácová|first4=Z|title=''Rhodococcus jostii'' sp. nov., isolated from a medieval grave|volume=52|issue=Pt 2|pages=409–13|journal=International Journal of Systematic and Evolutionary Microbiology|doi=10.1099/00207713-52-2-409 }}</ref>
* ''[[Rhodococcus koreensis]]'' Yoon, et al., 2000
* "''[[Rhodococcus daqingensis|R. daqingensis]]''" <small>Wang et al. 2019</small>
* ''[[Rhodococcus kroppenstedtii]]'' Mayilraj, et al., 2006
* ''[[Rhodococcus defluvii|R. defluvii]]'' <small>Kämpfer et al. 2014</small>
* ''[[Rhodococcus kunmingensis]]'' Wang et al. 2008<ref name=Rhodococcus/>
<!-- Rhodococcus degradans was reclassified as Rhodococcus erythropolis. -->
* ''[[Rhodococcus electrodiphilus|R. electrodiphilus]]'' <small>Ramaprasad et al. 2018</small><ref>{{Cite journal | doi=10.1099/ijsem.0.002895| pmid=29957174|title = ''Rhodococcus electrodiphilus'' sp. nov., a marine electro active actinobacterium isolated from coral reef| journal=International Journal of Systematic and Evolutionary Microbiology| volume=68| issue=8| pages=2644–2649|year = 2018|last1 = Ramaprasad|first1 = E. V. V.| last2=Mahidhara| first2=Ganesh| last3=Sasikala| first3=Ch.| last4=Ramana| first4=Ch. V.| doi-access=free}}</ref>
* ''[[Rhodococcus kyotonensis]]'' Li et al. 2007<ref name=Rhodococcus/>
<!-- Rhodococcus enclensis was reclassified as Rhodococcus erythropolis. -->
* ''[[Rhodococcus maanshanensis]]'' Zhang, et al., 2002
* ''[[Rhodococcus marinonascens]]'' Helmke and Weyland, 1984
* ''[[Rhodococcus equi|R. equi]]'' <small>(Magnusson 1923) Goodfellow and Alderson 1977 (Approved Lists 1980)</small>
* ''[[Rhodococcus erythropolis|R. erythropolis]]'' <small>(Gray and Thornton 1928) Goodfellow and Alderson 1979 (Approved Lists 1980)</small>
* ''[[Rhodococcus nanhaiensis]]''
* ''[[Rhodococcus opacus]]'' Klatte, et al., 1995
* ''[[Rhodococcus fascians|R. fascians]]'' <small>(Tilford 1936) Goodfellow 1984</small>
* ''[[Rhodococcus percolatus]]'' Briglia, et al., 1996
* ''[[Rhodococcus gannanensis|R. gannanensis]]'' <small>Ma et al. 2017</small>
* ''[[Rhodococcus phenolicus]]'' Rehfuss and Urban, 2006
* ''[[Rhodococcus globerulus|R. globerulus]]'' <small>Goodfellow et al. 1985</small>
* ''[[Rhodococcus polyvorum]]'' Li et al. 2012<ref name=Rhodococcus/>
* ''[[Rhodococcus gordoniae|R. gordoniae]]'' <small>Jones et al. 2004</small>
* ''[[Rhodococcus pyridinivorans]]'' Yoon, et al., 2000
<!-- Rhodococcus hoagii was reclassified as Rhodococcus equi. -->
* ''[[Rhodococcus qingshengii]]'' Xu et al. 2007<ref name=Rhodococcus/>
* ''[[Rhodococcus humicola|R. humicola]]'' <small>Nguyen and Kim 2016</small>
<!-- Rhodococcus imtechensis was reclassified as Rhodococcus opacus. -->
* ''[[Rhodococcus rhodochrous]]'' (Zopf 1891) Tsukamura, 1974
<!-- Rhodococcus jialingiae was reclassified as Rhodococcus erythropolis. -->
* ''[[Rhodococcus rhodnii]]'' Goodfellow and Alderson, 1979 (synonym: ''[[Nocardia rhodnii]]'')
* ''[[Rhodococcus jostii|R. jostii]]'' <small>Takeuchi et al. 2002</small>{{efn|''Rhodococcus jostii'' was identified as producing a [[lignin]] digesting enzyme—the first isolated from a bacterium rather than a fungus.<ref>{{cite web |url=http://www.physorg.com/news/2011-06-wood-digesting-enzyme-bacteria-boost-biofuel.html | title=First wood-digesting enzyme found in bacteria could boost biofuel production}}</ref><ref>{{cite journal|pmid=11931149|year=2002|last1=Takeuchi|first1=M|last2=Hatano|first2=K|last3=Sedlácek|first3=I|last4=Pácová|first4=Z|title=''Rhodococcus jostii'' sp. nov., isolated from a medieval grave|volume=52|issue=Pt 2|pages=409–13|journal=International Journal of Systematic and Evolutionary Microbiology|doi=10.1099/00207713-52-2-409 |doi-access=free}}</ref>}}
* ''[[Rhodococcus ruber]]'' ([[Kruse]] 1896) Goodfellow and Alderson, 1977 (synonym: ''[[Streptothrix rubra]]'' Kruse, 1896)
* ''[[Rhodococcus jostii RHA1]]''
* ''[[Rhodococcus koreensis|R. koreensis]]'' <small>Yoon et al. 2000</small>
* ''[[Rhodococcus soli]]'' Li et al. 2015<ref name=Rhodococcus/>
* "''[[Rhodococcus kronopolitis|R. kronopolitis]]''" <small>Liu et al. 2014</small>
* ''[[Rhodococcus triatomae]]'' Yassin, 2005
* ''[[Rhodococcus kroppenstedtii|R. kroppenstedtii]]'' <small>Mayilraj et al. 2006</small>
* ''[[Rhodococcus trifolii]]'' Kämpfer et al. 2013<ref name=Rhodococcus/>
<!-- Rhodococcus kunmingensis was reclassified as Aldersonia kunmingensis. -->
* ''[[Rhodococcus tukisamuensis]]'' Matsuyama, et al., 2003
* ''[[Rhodococcus kyotonensis|R. kyotonensis]]'' <small>Li et al. 2007</small>
* ''[[Rhodococcus lactis|R. lactis]]'' <small>Singh et al. 2015</small>
* ''[[Rhodococcus wratislaviensis]]'' (Goodfellow et al. 1995) Goodfellow, et al., 2002 (synonym: ''[[Tsukamurella wratislaviensis]]'' Goodfellow, et al., 1995)
* ''[[Rhodococcus yunnanensis]]'' Zhang, et al., 2005
<!-- "Rhodococcus lentifragmentus" was not included in the Approved Lists. -->
* ''[[Rhodococcus zopfii]]'' Stoecker, et al., 1994
<!-- Rhodococcus luteus was reclassified as Rhodococcus fascians. -->
* ''[[Rhodococcus maanshanensis|R. maanshanensis]]'' <small>Zhang et al. 2002</small>
* ''[[Rhodococcus marinonascens|R. marinonascens]]'' <small>Helmke and Weyland 1984</small>
<!-- Rhodococcus maris was reclassified as Dietzia maris. -->
* ''[[Rhodococcus nanhaiensis|R. nanhaiensis]]'' <small>Li et al. 2012</small>
* ''[[Rhodococcus obuensis|R. obuensis]]'' <small>Tsukamura 1983</small>
* ''[[Rhodococcus olei|R. olei]]'' <small>Chaudhary and Kim 2018</small><ref>{{Cite journal | doi=10.1099/ijsem.0.002750| pmid=29620494|title = ''Rhodococcus olei'' sp. nov., with the ability to degrade petroleum oil, isolated from oil-contaminated soil| journal=International Journal of Systematic and Evolutionary Microbiology| volume=68| issue=5| pages=1749–1756|year = 2018|last1 = Chaudhary|first1 = Dhiraj Kumar| last2=Kim| first2=Jaisoo| doi-access=free}}</ref>
* ''[[Rhodococcus opacus|R. opacus]]'' <small>Klatte et al. 1995</small>
* ''[[Rhodococcus oryzae|R. oryzae]]'' <small>Li et al. 2020</small>
* ''[[Rhodococcus pedocola|R. pedocola]]'' <small>Nguyen and Kim 2016</small>
<!-- Rhodococcus percolatus was reclassified as Rhodococcus opacus. -->
* ''[[Rhodococcus phenolicus|R. phenolicus]]'' <small>Rehfuss and Urban 2006</small>
* "''[[Rhodococcus psychrotolerans|R. psychrotolerans]]''" <small>Silva et al. 2018</small>
* ''[[Rhodococcus pyridinivorans|R. pyridinivorans]]'' <small>Yoon et al. 2000</small>
<!-- Rhodococcus qingshengii was reclassified as Rhodococcus erythropolis. -->
[[File:Rhodococcus rhodnii NRRL B-16535 (Type Strain).jpg|thumb|''[[Rhodococcus rhodnii]]'' on agar plate]]
* ''[[Rhodococcus rhodnii|R. rhodnii]]'' <small>Goodfellow and Alderson 1979 (Approved Lists 1980)</small>
* ''[[Rhodococcus rhodochrous|R. rhodochrous]]'' <small>(Zopf 1891) Tsukamura 1974 (Approved Lists 1980)</small>
<!-- Rhodococcus roseus was reclassified as Rhodococcus rhodochrous. -->
* ''[[Rhodococcus ruber|R. ruber]]'' <small>(Kruse 1896) Goodfellow and Alderson 1977 (Approved Lists 1980)</small>
<!-- Rhodococcus rubropertinctus was reclassified as Gordonia rubripertincta. -->
* ''[[Rhodococcus soli|R. soli]]'' <small>Li et al. 2015</small>
* ''[[Rhodococcus sovatensis|R. sovatensis]]'' <small>Táncsics et al. 2017</small>
* ''[[Rhodococcus spelaei|R. spelaei]]'' <small>Lee and Kim 2021</small>
* ''[[Rhodococcus spongiicola|R. spongiicola]]'' <small>Zhang et al. 2021</small>
<!-- Rhodococcus sputi was reclassified as Gordonia sputi. -->
* ''[[Rhodococcus subtropicus|R. subtropicus]]'' <small>Lee et al. 2019</small>
<!-- Rhodococcus terrae was reclassified as Gordonia terrae. -->
* ''[[Rhodococcus triatomae|R. triatomae]]'' <small>Yassin 2005</small>
* ''[[Rhodococcus trifolii|R. trifolii]]'' <small>Kämpfer et al. 2013</small>
* ''[[Rhodococcus tukisamuensis|R. tukisamuensis]]'' <small>Matsuyama et al. 2003</small>
* ''[[Rhodococcus wratislaviensis|R. wratislaviensis]]'' <small>(Goodfellow et al. 1995) Goodfellow et al. 2002</small>
* ''[[Rhodococcus xishaensis|R. xishaensis]]'' <small>Zhang et al. 2021</small>
* ''[[Rhodococcus yunnanensis|R. yunnanensis]]'' <small>Zhang et al. 2005</small>
[[File:Rhodococcus zopfii NRRL B-16942 (Type Strain).jpg|thumb|''[[Rhodococcus zopfii]]'' on agar plate]]
* ''[[Rhodococcus zopfii|R. zopfii]]'' <small>Stoecker et al. 1994</small>
{{div col end}}

== Notes ==
{{notelist}}


== References ==
== References ==
{{Reflist|2}}
{{Reflist|30em}}


== External links ==
*For species and synonyms see here: [https://www.ncbi.nlm.nih.gov/Taxonomy/taxonomyhome.html National Center for Biotechnology Information (NCBI)]


{{Taxonbar|from=Q288311}}
{{Taxonbar|from=Q288311}}


[[Category:Corynebacterineae]]
[[Category:Mycobacteriales]]
[[Category:Bacteria genera]]

Latest revision as of 17:18, 14 April 2024

Rhodococcus
Rhodococcus sp.
Scientific classification Edit this classification
Domain: Bacteria
Phylum: Actinomycetota
Class: Actinomycetia
Order: Mycobacteriales
Family: Nocardiaceae
Genus: Rhodococcus
Zopf 1891
Type species
Rhodococcus rhodochrous
(Zopf 1891) Tsukamura 1974 (Approved Lists 1980)
Species

See text.

Synonyms[1]
  • "Prescottella" Jones et al. 2013
  • "Prescottia" Jones et al. 2013
  • "Spelaeibacter" Kim et al. 2022

Rhodococcus is a genus of aerobic, nonsporulating, nonmotile Gram-positive bacteria closely related to Mycobacterium and Corynebacterium.[2][3] While a few species are pathogenic, most are benign, and have been found to thrive in a broad range of environments, including soil, water, and eukaryotic cells. Some species have large genomes, including the 9.7 megabasepair genome (67% G/C) of Rhodococcus sp. RHA1.[4]

Strains of Rhodococcus are important owing to their ability to catabolize a wide range of compounds and produce bioactive steroids, acrylamide, and acrylic acid, and their involvement in fossil fuel biodesulfurization.[4] This genetic and catabolic diversity is not only due to the large bacterial chromosome, but also to the presence of three large linear plasmids.[2] Rhodococcus is also an experimentally advantageous system owing to a relatively fast growth rate and simple developmental cycle, but is not well characterized.[4]

Another important application of Rhodococcus comes from bioconversion, using biological systems to convert cheap starting material into more valuable compounds, such as its ability to metabolize harmful environmental pollutants, including toluene, naphthalene, herbicides, and PCBs. Rhodococcus species typically metabolize aromatic substrates by first oxygenating the aromatic ring to form a diol (two alcohol groups). Then, the ring is cleaved with intra/extradiol mechanisms, opening the ring and exposing the substrate to further metabolism. Since the chemistry is very stereospecific, the diols are created with predictable chirality. While controlling the chirality of chemical reaction presents a significant challenge for synthetic chemists, biological processes can be used instead to faithfully produce chiral molecules in cases where direct chemical synthesis is not feasible or efficient. An example of this is the use of Rhodococcus to produce chiral indandiol derivatives which serve as synthetic intermediates for indinavir, a protease inhibitor used in the treatment of HIV/AIDS.[5]

The conversion of indene to trans-1R,2R-indandiol and cis-1S,2R-indandiol by Rhodococcus sp.[6]

Biodegradation of organic pollutants

[edit]

Rhodococcus has been greatly researched as a potential agent for the bioremediation of pollutants as it is commonly found in the natural environment, and they possess certain characteristics that allow them to thrive under a variety of conditions, and they have the capability to metabolize many hydrocarbons.[7]

Rhodococci possess many properties that makes them suitable for bioremediation under a range of environments. Their ability to undergo microaerophilic respiration allows them to survive in environments containing low oxygen concentrations, and their ability to undergo aerobic respiration also allows them to survive in oxygenated environments.[8] They also undergo nitrogen fixation, which allows them to generate their own nutrients in environments with low nutrients.[9]

Rhodococci also contain characteristics that enhances their ability to degrade organic pollutants. Their hydrophobic surface allows for adhesion to hydrocarbons, which enhances its ability to degrade these pollutants.[10] They have a wide variety of catabolic pathways and many unique enzyme functions.[11] This gives them the ability to degrade many recalcitrant, toxic hydrocarbons. For example, Rhodococci expresses dioxygenases, which can be used to degrade benzotrifluoride, a recalcitrant pollutant.[12] Rhodococcus sp. strain Q1, a strain naturally found in soil and paper mill sludge, contains the ability to degrade quinoline, various pyridine derivatives, catechol, benzoate, and protocatechuic acid.[13] Rhodococci are also capable of accumulating heavy metal ions, such as radioactive caesium, allowing for easier removal from the environment.[14] Other pollutants, such as azo dyes,[15] pesticides[16] and polychlorinated biphenyls[17] can also be degraded by Rhodococci.

Scanning electron micrograph of Rhodococcus sp. strain Q1 grown on quinoline - the organism can use quinoline as a sole source of carbon, nitrogen, and energy, tolerating concentrations up to 3.88 millimoles per liter.

Pathogenic Rhodococcus

[edit]

The genus Rhodococcus has two pathogenic species: R. fascians and R. equi. The former, a plant pathogen, causes leafy gall disease in both angiosperm and gymnosperm plants.[18] R. equi is the causative agent of foal pneumonia (rattles) and mainly infects foals up to three months in age. However, it has a wide host range, sporadically infecting pigs, cattle, and immunocompromised humans, in particular AIDS patients and those undergoing immunosuppressive therapy.[19] Both pathogens rely on a conjugative virulence plasmid to cause disease. In case of R. fascians, this is a linear plasmid, whereas R. equi harbors a circular plasmid. Both pathogens are economically significant. R. fascians is a major pathogen of tobacco plants. R. equi, one of the most important foal pathogens, is endemic on many stud farms around the world.

In molecular biology

[edit]

Rhodococcus has also been identified as a contaminant of DNA extraction kit reagents and ultrapure water systems, which may lead to its erroneous appearance in microbiota or metagenomic datasets.[20]

Species

[edit]

Rhodococcus comprises the following species:[1]

Rhodococcus rhodnii on agar plate
Rhodococcus zopfii on agar plate

Notes

[edit]
  1. ^ Rhodococcus jostii was identified as producing a lignin digesting enzyme—the first isolated from a bacterium rather than a fungus.[22][23]

References

[edit]
  1. ^ a b Euzéby JP, Parte AC. "Rhodococcus". List of Prokaryotic names with Standing in Nomenclature (LPSN). Retrieved June 25, 2022.
  2. ^ a b van der Geize R. & L. Dijkhuizen (2004). "Harnessing the catabolic diversity of rhodococci for environmental and biotechnological applications". Microbiology. 7 (3): 255–261. doi:10.1016/j.mib.2004.04.001. hdl:11370/a1dfa0fd-dd65-4c1d-b9b4-bfa98038dcbe. PMID 15196492.
  3. ^ Burkovski A., ed. (2008). Corynebacteria: Genomics and Molecular Biology. Caister Academic Press. ISBN 978-1-904455-30-1. [1].
  4. ^ a b c McLeod MP, Warren RL, Hsiao WW, Araki N, Mihre M, Fernandes C, Miyazawa D, Wong W, Lillquist AL, Wang D, Dosanjh M, Hara H, Petrescu A, Morin RD, Yang G, Stott JM, Schein JE, Shin H, Smailus D, Siddiqui AS, Marra MA, Jones SJ, Holt R, Brinkman FS, Miyauchi K, Fukuda M, Davies JE, Mohn WW, Eltis LD (October 17, 2006). "The complete genome of Rhodococcus sp. RHA1 provides insights into a catabolic powerhouse". PNAS. 103 (42): 15582–15587. Bibcode:2006PNAS..10315582M. doi:10.1073/pnas.0607048103. PMC 1622865. PMID 17030794.
  5. ^ Treadway, S.L., K.S. Yanagimachi, E. Lankenau, P.A. Lessard, G. Stephanopoulos and A.J. Sinskey (1999). "Isolation and characterization of indene bioconversion genes from Rhodococcus strain I24". Appl. Microbiol. Biotechnol. 51 (6): 786–793. doi:10.1007/s002530051463. PMID 10422226. S2CID 6264248.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  6. ^ Buckland, Barry C.; Drew, Stephen W.; Connors, Neal C.; Chartrain, Michel M.; Lee, Chanyong; Salmon, Peter M.; Gbewonyo, Kodzo; Zhou, Weichang; Gailliot, Pat; Singhvi, Rahul; Olewinski, Roger C.; Sun, Wen-Jun; Reddy, Jayanthi; Zhang, Jinyou; Jackey, Barbara A.; Taylor, Colleen; Goklen, Kent E.; Junker, Beth; Greasham, Randolph L. (January 1999). "Microbial Conversion of Indene to Indandiol: A Key Intermediate in the Synthesis of CRIXIVAN". Metabolic Engineering. 1 (1): 63–74. doi:10.1006/mben.1998.0107. PMID 10935755.
  7. ^ Alvarez, Héctor (2010). Biology of Rhodococcus. Springer Science & Business Media. pp. 231–256. ISBN 9783642129377.
  8. ^ Fuller, M.E.; Perreault, N. (July 8, 2010). "Microaerophilic degradation of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) by three Rhodococcus strains". Letters in Applied Microbiology. 51 (3): 313–318. doi:10.1111/j.1472-765x.2010.02897.x. PMID 20666987.
  9. ^ Blasco, Rafael (2001). "Rhodococcus sp. RB1 grows in the presence of high nitrate and nitrite concentrations and assimilates nitrate in moderately saline environments". Archives of Microbiology. 175 (6): 435–440. doi:10.1007/s002030100285. PMID 11491084. S2CID 864067.
  10. ^ Mendez-Volas, A. (2012). Microbes in applied research; current advances and challenges; proceedings. World Scientific. pp. 197–200. ISBN 9789814405034.
  11. ^ Laczi, Krisztián; Kis, Ágnes; Horváth, Balázs; Maróti, Gergely; Hegedüs, Botond (November 2015). "Metabolic responses of Rhodococcus erythropolis PR4 grown on diesel oil and various hydrocarbons" (PDF). Applied Microbiology and Biotechnology. 99 (22): 9745–9759. doi:10.1007/s00253-015-6936-z. PMID 26346267. S2CID 9213608.
  12. ^ Yano, Kenichi; Wachi, Masaaki; Tsuchida, Sakiko; Kitazume, Tomoya; Iwai, Noritaka (2015). "Degradation of benzotrifluoride via the dioxygenase pathway in Rhodococcus sp. 065240". Bioscience, Biotechnology, and Biochemistry. 79 (3): 496–504. doi:10.1080/09168451.2014.982502. ISSN 1347-6947. PMID 25412819. S2CID 205616972.
  13. ^ O'Loughlin, E.J.; Kehrmeyer, S.R.; Sims, G.K. (1996). "Isolation, characterization, and substrate utilization of a quinoline degrading bacterium". International Biodeterioration and Biodegradation. 38 (2): 107–118. doi:10.1016/S0964-8305(96)00032-7.
  14. ^ Takei, Takayuki; Yamasaki, Mika; Yoshida, Masahiro (2014-04-01). "Cesium accumulation of Rhodococcus erythropolis CS98 strain immobilized in hydrogel matrices". Journal of Bioscience and Bioengineering. 117 (4): 497–500. doi:10.1016/j.jbiosc.2013.09.013. PMID 24183457.
  15. ^ Heiss, G. S.; Gowan, B.; Dabbs, E. R. (1992-12-01). "Cloning of DNA from a Rhodococcus strain conferring the ability to decolorize sulfonated azo dyes". FEMS Microbiology Letters. 78 (2–3): 221–226. doi:10.1016/0378-1097(92)90030-r. ISSN 0378-1097. PMID 1490602.
  16. ^ Parekh, N. R.; Walker, A.; Roberts, S. J.; Welch, S. J. (November 1994). "Rapid degradation of the triazinone herbicide metamitron by a Rhodococcus sp. isolated from treated soil". The Journal of Applied Bacteriology. 77 (5): 467–475. doi:10.1111/j.1365-2672.1994.tb04389.x. ISSN 0021-8847. PMID 8002472.
  17. ^ Boyle, Alfred W.; Silvin, Christopher J.; Hassett, John P.; Nakas, James P.; Tanenbaum, S. W. (1992-06-01). "Bacterial PCB biodegradation". Biodegradation. 3 (2–3): 285–298. doi:10.1007/BF00129089. ISSN 0923-9820. S2CID 7272347.
  18. ^ Goethals, K.; Vereecke, D.; Jaziri, M.; Van, Montagu M.; Holsters, M. (2001). "Leafy gall formation by Rhodococcus fascians". Annu. Rev. Phytopathol. 39: 27–52. doi:10.1146/annurev.phyto.39.1.27. PMID 11701858.
  19. ^ Muscatello, G.; Leadon, D. P.; Klay, M.; Ocampo-Sosa, A.; Lewis, D. A.; Fogarty, U.; Buckley, T.; Gilkerson, J. R.; Meijer, W. G.; et al. (2007). "Rhodococcus equi infection in foals: the science of 'rattles'". Equine Vet. J. 39 (5): 470–478. doi:10.2746/042516407x209217. PMID 17910275.
  20. ^ Salter, S; Cox, M; Turek, E; Calus, S; Cookson, W; Moffatt, M; Turner, P; Parkhill, J; Loman, N; Walker, A (2014). "Reagent contamination can critically impact sequence-based microbiome analyses". bioRxiv 10.1101/007187.
  21. ^ Ramaprasad, E. V. V.; Mahidhara, Ganesh; Sasikala, Ch.; Ramana, Ch. V. (2018). "Rhodococcus electrodiphilus sp. nov., a marine electro active actinobacterium isolated from coral reef". International Journal of Systematic and Evolutionary Microbiology. 68 (8): 2644–2649. doi:10.1099/ijsem.0.002895. PMID 29957174.
  22. ^ "First wood-digesting enzyme found in bacteria could boost biofuel production".
  23. ^ Takeuchi, M; Hatano, K; Sedlácek, I; Pácová, Z (2002). "Rhodococcus jostii sp. nov., isolated from a medieval grave". International Journal of Systematic and Evolutionary Microbiology. 52 (Pt 2): 409–13. doi:10.1099/00207713-52-2-409. PMID 11931149.
  24. ^ Chaudhary, Dhiraj Kumar; Kim, Jaisoo (2018). "Rhodococcus olei sp. nov., with the ability to degrade petroleum oil, isolated from oil-contaminated soil". International Journal of Systematic and Evolutionary Microbiology. 68 (5): 1749–1756. doi:10.1099/ijsem.0.002750. PMID 29620494.