Jump to content

Lead(IV) acetate: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
fmt some refs
another repair
 
(46 intermediate revisions by 28 users not shown)
Line 1: Line 1:
{{Short description|Organometallic compound (Pb(C2H3O2)4)}}
{{chembox
{{chembox
| Verifiedfields = changed
|Verifiedfields = changed
| Watchedfields = changed
|Watchedfields = changed
| verifiedrevid = 431950862
|verifiedrevid = 431950862
| ImageFile = Lead-tetraacetate-3D-balls.png
|ImageFile = Lead-tetraacetate-3D-balls.png
|IUPACName = Lead(IV) acetate
| ImageSize =
|SystematicName = Tetrakis(acetyloxy)plumbane
| IUPACName = Lead(IV) acetate
| OtherNames = Lead tetraacetate
|OtherNames = Lead tetraacetate<br/>Plumbic acetate
|Section1={{Chembox Identifiers
|Section1={{Chembox Identifiers
| CASNo_Ref = {{cascite|correct|CAS}}
|CASNo_Ref = {{cascite|correct|CAS}}
| CASNo = 546-67-8
|CASNo = 546-67-8
|ChEBI_Ref = {{ebicite|correct|EBI}}
| PubChem = 11025
|ChEBI = 77245
| ChEBI_Ref = {{ebicite|changed|EBI}}
| ChemSpiderID = 10608816
| ChEBI = 77245
| EINECS = 208-908-0
| SMILES = CC(=O)O[Pb](OC(C)=O)(OC(C)=O)OC(C)=O
|UNII_Ref = {{fdacite|correct|FDA}}
| StdInChI_Ref = {{stdinchicite|changed|chemspider}}
|UNII = CFN24B03DB
| StdInChI = 1S/4C2H4O2.Pb/c4*1-2(3)4;/h4*1H3,(H,3,4);/q;;;;+4/p-4
|PubChem = 11025
| StdInChIKey_Ref = {{stdinchicite|changed|chemspider}}
|SMILES = CC(=O)O[Pb](OC(C)=O)(OC(C)=O)OC(C)=O
| StdInChIKey = JEHCHYAKAXDFKV-UHFFFAOYSA-J
|SMILES_Comment = monodentate acetate
|SMILES1 = O0[C-](C)O[Pb+4]0123(O[C-](C)O1)(O[C-]C(C)O2)O[C-](C)O3
|SMILES1_Comment = bidentate acetate
|StdInChI_Ref = {{stdinchicite|changed|chemspider}}
|StdInChI = 1S/4C2H4O2.Pb/c4*1-2(3)4;/h4*1H3,(H,3,4);/q;;;;+4/p-4
|StdInChIKey_Ref = {{stdinchicite|changed|chemspider}}
|StdInChIKey = JEHCHYAKAXDFKV-UHFFFAOYSA-J
}}
}}
|Section2={{Chembox Properties
|Section2={{Chembox Properties
| Formula = Pb(C<sub>2</sub>H<sub>3</sub>O<sub>2</sub>)<sub>4</sub>
|Formula = {{chem2|Pb(C2H3O2)4}}
| MolarMass = 443.376 g/mol
|MolarMass = 443.376 g/mol
| Appearance = colorless or pink crystals
|Appearance = colorless or pink crystals
| Odor = vinegar
|Odor = vinegar
| Density = 2.228 g/cm<sup>3</sup> (17 °C)
|Density = 2.228 g/cm<sup>3</sup> (17 °C)
| MeltingPtC = 175
|MeltingPtC = 175
| BoilingPt = decomposes
|BoilingPt = decomposes
| Solubility = soluble,reversible hydrolysis
|Solubility = soluble, reversible hydrolysis
| SolubleOther = reacts with [[ethanol]] <br> soluble in [[chloroform]], [[benzene]], [[nitrobenzene]], hot [[acetic acid]], [[hydrochloric acid|HCl]], [[tetrachloroethane]]
|SolubleOther = reacts with [[ethanol]] <br /> soluble in [[chloroform]], [[benzene]], [[nitrobenzene]], hot [[acetic acid]], [[hydrochloric acid|HCl]], [[tetrachloroethane]]
}}
}}
|Section3={{Chembox Hazards
|Section3={{Chembox Hazards
| GHS_ref=<ref>{{cite web |title=Substance Information - ECHA |url=https://echa.europa.eu/substance-information/-/substanceinfo/100.008.099 |website=echa.europa.eu}}</ref>
| MainHazards = Toxic
| GHSPictograms = {{GHS07}}{{GHS08}}{{GHS09}}
| FlashPt =
| NFPA-H = 3
| GHSSignalWord = Danger
| HPhrases = {{H-phrases|}}
| NFPA-F = 0
| PPhrases = {{P-phrases|}}
| NFPA-R = 0
|MainHazards = Toxic
| AutoignitionPt =
|NFPA-H = 3
}}
|NFPA-F = 0
|NFPA-R = 0
}}
}}
}}

'''Lead(IV) acetate''' or '''lead tetraacetate''' is a [[chemical compound]] with [[chemical formula]] Pb(C<sub>2</sub>H<sub>3</sub>O<sub>2</sub>)<sub>4</sub>. It is a colorless solid that is soluble in nonpolar organic solvents, indicative that it is not a salt. It is sensitive to moisture. The compound is used in [[organic synthesis]].
'''Lead(IV) acetate''' or '''lead tetraacetate''' is an [[metalorganic compound]] with [[chemical formula]] {{chem2|Pb(C2H3O2)4}}. It is a colorless solid that is [[soluble]] in [[nonpolar]], [[organic solvent]]s, indicating that it is not a [[Salt (chemistry)|salt]]. It is degraded by moisture and is typically stored with additional [[acetic acid]]. The compound is used in [[organic synthesis]].<ref>{{cite encyclopedia|author=Mihailo Lj. Mihailović |author2=Živorad Čeković |author3=Brian M. Mathes |encyclopedia=Encyclopedia of Reagents for Organic Synthesis|year=2005|doi=10.1002/047084289X.rl006.pub2|isbn = 978-0-471-93623-7|chapter = Lead(IV) Acetate}}</ref>


==Structure==
==Structure==
In the solid state the lead(IV) centers are coordinated by four acetate ions, which are [[denticity|bidentate]], each coordinating via two oxygen atoms. The lead atom is 8 coordinate and the O atoms form a flattened [[snub disphenoid|trigonal dodecahedron]].<ref name="SchürmannHuber1994">{{cite journal|last1=Schürmann|first1=M.|last2=Huber|first2=F.|title=A redetermination of lead(IV) acetate|journal=Acta Crystallographica Section C|volume=50|issue=11|year=1994|pages=1710–1713|issn=0108-2701|doi=10.1107/S0108270194006438}}</ref>
In the solid state the lead(IV) centers are coordinated by four acetate ions, which are [[denticity|bidentate]], each coordinating via two oxygen atoms. The lead atom is 8 coordinate and the O atoms form a flattened [[snub disphenoid|trigonal dodecahedron]].<ref>{{cite journal |last1=Schürmann |first1=M. |last2=Huber |first2=F. |title=A redetermination of lead(IV) acetate |journal=Acta Crystallographica Section C |volume=50 |issue=11 |year=1994 |pages=1710–1713 |issn=0108-2701 |doi=10.1107/S0108270194006438|doi-access=}}</ref>


==Preparation==
==Preparation==
It is typically prepared by treating of [[red lead]] with [[acetic acid]].<ref>{{cite journal|author=J. C. Bailar, Jr.|journal=Inorganic Syntheses|volume=1|pages=47-49|year=1939|title=Lead Tetracetate|doi=10.1002/9780470132326.ch17}}</ref>
It is typically prepared by treating of [[red lead]] with [[acetic acid]] and [[acetic anhydride]] ({{chem2|Ac2O}}), which absorbs water. The net reaction is shown:<ref>{{cite book |author=J. C. Bailar, Jr. |title=Inorganic Syntheses |series=Inorganic Syntheses |volume=1 |pages=47–49 |year=1939 |chapter=Lead Tetracetate |doi=10.1002/9780470132326.ch17|isbn=978-0-470-13232-6}}</ref><ref>{{cite book|author=M. Baudler|chapter=Lead(IV) Acetate|title=Handbook of Preparative Inorganic Chemistry, 2nd Ed. |editor=G. Brauer|publisher=Academic Press|year=1963|place=NY,NY|volume=2|pages=767}}</ref>
:Pb<sub>3</sub>O<sub>4</sub> + (Ac)<sub>2</sub>O → Pb(OAc)<sub>4</sub> + 2 Pb(OAc)<sub>2</sub>
:{{chem2|Pb3O4 + 4 Ac2O -> Pb(OAc)4 + 2 Pb(OAc)2}}
The remaining lead(II) acetate can be partially oxidized to the tetraacetate:
The remaining [[lead(II) acetate]] can be partially oxidized to the tetraacetate by Cl<sub>2</sub>, with a [[Lead(II) chloride|PbCl<sub>2</sub>]] by-product:
:2 Pb(OAc)<sub>2</sub> + Cl<sub>2</sub> → Pb(OAc)<sub>4</sub> + PbCl<sub>2</sub>
:{{chem2|2 Pb(OAc)2 + Cl2 -> Pb(OAc)4 + PbCl2}}


==Reagent in organic chemistry==
==Reagent in organic chemistry==
Lead tetraacetate is a strong [[oxidizing agent]],<ref name = Zyka>{{cite journal|last=J. Zýka|title=Analytical study of the basic properties of lead tetraacetate as oxidizing agent|journal=Pure and Applied Chemistry|year=1966|volume=13|issue=4|pages=569–581|doi=10.1351/pac196613040569|url=http://pac.iupac.org/publications/pac/pdf/1966/pdf/1304x0569.pdf|accessdate=19 December 2013}}</ref> a source of [[acetyloxy]] groups and a general [[reagent]] for the introduction of [[lead]] into [[organolead compound]]s. Some of its many uses in [[organic chemistry]]:
Lead tetraacetate is a strong [[oxidizing agent]],<ref>{{cite journal |last=J. Zýka |title=Analytical study of the basic properties of lead tetraacetate as oxidizing agent |journal=Pure and Applied Chemistry |year=1966 |volume=13 |issue=4 |pages=569–581 |doi=10.1351/pac196613040569 |s2cid=96821219 |url=http://pac.iupac.org/publications/pac/pdf/1966/pdf/1304x0569.pdf |access-date=19 December 2013}}</ref> a source of [[acetyloxy]] groups, and a general [[reagent]] for the preparation of [[organolead compound]]s. Some of its many uses in [[organic chemistry]]:
*[[Acetoxylation]] of benzylic, allylic,<ref>{{cite journal|doi=10.15227/orgsyn.072.0057 |title=(1R,5R)-(+)-Verbenone of High Optical Purity |journal=Organic Syntheses |date=1995 |volume=72 |page=57 }}</ref> and α-oxygen ether C−H bonds, for example the conversion of [[dioxane]] to 2-acetoxy-1,4-dioxane <ref>[[Organic Syntheses]], Vol. 82, p.99 (2005) [http://www.orgsynth.org/orgsyn/prep.asp?prep=v82p0099 Article].

</ref>
* acetoxylation of benzylic, allylic and α-oxygen [[ether]] C-H bonds, for example the [[photochemical]] conversion of [[dioxane]] to 1,4-dioxene through the ''2-acetoxy-1,4-dioxane'' intermediate <ref>[[Organic Syntheses]], Vol. 82, p.99 (2005) [http://www.orgsynth.org/orgsyn/prep.asp?prep=v82p0099 Article].
* An alternative reagent to [[bromine]] in [[Hofmann rearrangement]]<ref>{{cite journal|author1=Baumgarten, Henry |author2=Smith, Howard |author3=Staklis, Andris |title=Reactions of amines. XVIII. Oxidative rearrangement of amides with lead tetraacetate|journal=The Journal of Organic Chemistry|year=1975|volume=40|issue=24|pages=3554–3561|doi=10.1021/jo00912a019}}</ref>
</ref> and the conversion of α-[[pinene]] to [[verbenone]] <ref>[[Organic Syntheses]], Coll. Vol. 9, p.745 (1998); Vol. 72, p.57 (1995) [http://www.orgsynth.org/orgsyn/prep.asp?prep=cv9p0745 Article]</ref>
* Dehydrogenation of hydrazones and hydrazines, for example that of hexafluoroacetone hydrazone to bis(trifluoromethyl)diazomethane<ref>{{cite journal |doi=10.15227/orgsyn.050.0006 |title=Bis(Trifluoromethyl)Diazomethane |journal=Organic Syntheses |date=1970 |volume=50 |page=6|first1=W. J. |last1=Middleton|first2=D. M. |last2=Gale }}</ref><ref>{{cite journal |doi=10.15227/orgsyn.055.0114 |title=Preparation of N-Aminoaziridines: trans-1-Amino-2,3-diphenylaziridine, 1-Amino-2-phenylaziridine, and 1-Amino-2-phenylaziridinium Acetate |journal=Organic Syntheses |date=1976 |volume=55 |page=114|author=Robert K. Muller, Renato Joos, Dorothee Felix, Jakob Schreiber, Claude Wintner, and A. Eschenmoser }}</ref>
* an alternative reagent to [[bromine]] in [[Hofmann rearrangement]]<ref>{{cite journal|author1=Baumgarten, Henry |author2=Smith, Howard |author3=Staklis, Andris |title=Reactions of amines. XVIII. Oxidative rearrangement of amides with lead tetraacetate|journal=The Journal of Organic Chemistry|year=1975|volume=40|issue=24|pages=3554–3561|doi=10.1021/jo00912a019|url=http://pubs.acs.org/doi/abs/10.1021/jo00912a019|accessdate=19 December 2013}}</ref>
* oxidation of [[hydrazone]]s to [[diazo]] compounds for example that of ''hexafluoroacetone hydrazone'' to ''bis(trifluoromethyl)diazomethane'' <ref>[[Organic Syntheses]], Coll. Vol. 6, p.161 (1988); Vol. 50, p.6 (1970) [http://www.orgsynth.org/orgsyn/prep.asp?prep=cv6p0161 Article].</ref>
* [[Bond cleavage|Cleavage]] of [[Alpha hydroxy acid|α-hydroxy acids]]<ref>{{cite journal|last1=Ōeda|first1=Haruomi|title=Oxidation of some α-hydroxy-acids with lead tetraacetate|journal=Bulletin of the Chemical Society of Japan|date=1934|volume=9|issue=1|pages=8–14|doi=10.1246/bcsj.9.8|doi-access=free}}</ref> or 1,2-[[diol]]s to their corresponding [[aldehyde]]s or [[ketone]]s, often replacing [[ozonolysis]]; for instance, the oxidation of di-''n''-butyl {{sc|d}}-[[tartrate]] to ''n''-butyl [[glyoxylate]].<ref>Organic Syntheses, Coll. Vol. 4, p.124 (1963); Vol. 35, p.18 (1955) [http://www.orgsynth.org/orgsyn/prep.asp?prep=cv4p0124 Article].</ref>
* Reaction with [[alkene]]s to form γ-[[lactone]]s
* [[aziridine]] formation, for example the reaction of [[phthalimide|N-aminophthalimide]] and [[stilbene]] <ref>[[Organic Syntheses]], Coll. Vol. 6, p.56 (1988); Vol. 55, p.114 (1976) [http://www.orgsynth.org/orgsyn/prep.asp?prep=cv6p0056 Link]</ref>
* Oxidation of [[Alcohol (chemistry)|alcohol]]s carrying a δ-proton to cyclic [[ether]]s.<ref>M B Smith, J March. ''March's Advanced Organic Chemistry'' (Wiley, 2001) ({{ISBN|0-471-58589-0}})</ref>
* [[Bond cleavage|cleavage]] of [[Alpha hydroxy acid|α-hydroxy acids]]<ref>{{cite journal|last1=Ôeda|first1=Haruomi|title=Oxidation of some α-hydroxy-acids with lead tetraacetate|journal=Bulletin of the Chemical Society of Japan|date=1934|volume=9|issue=1|pages=8–14|doi=10.1246/bcsj.9.8}}</ref> or 1,2-[[diol]]s to their corresponding [[aldehyde]]s or [[ketone]]s, often replacing [[ozonolysis]]; for instance, the oxidation of di-n-butyl d-[[tartrate]] to n-butyl [[glyoxylate]].<ref>[[Organic Syntheses]], Coll. Vol. 4, p.124 (1963); Vol. 35, p.18 (1955) [http://www.orgsynth.org/orgsyn/prep.asp?prep=cv4p0124 Article].</ref>
* Oxidative cleavage of certain [[allyl alcohol]]s in conjunction with [[ozone]]:<ref>{{cite journal|title=O<sub>3</sub>/Pb(OAc)<sub>4</sub>: a new and efficient system for the oxidative cleavage of allyl alcohols|first1=E. J.|last1=Álvarez Manzaneda|first2=R.|last2=Chahboun|first3=M. J.|last3=Cano|first4=E.|last4=Cabrera Torres|first5=E.|last5=Álvarez|first6=R.|last6=Álvarez Manzaneda|first7=A.|last7=Haidour|first8=J. M.|last8=Ramos López|journal=[[Tetrahedron Letters]]|volume=47|issue=37|date=2006|pages=6619–6622|doi=10.1016/j.tetlet.2006.07.020}}</ref><ref>Conversion of 1-allylcyclohexanol to [[cyclohexanone]], in the proposed [[reaction mechanism]] the allyl group is first converted to a trioxalane according to conventional ozonolysis which then interacts with the alkoxy lead group.</ref>
* reaction with [[alkene]]s to form γ-[[lactone]]s
* Transformation of 1,2-dicarboxylic acids or cyclic anhydrides to alkenes
* oxidation of [[alcohol]]s carrying a δ-proton to cyclic [[ether]]s.<ref>M B Smith, J March. ''March's Advanced Organic Chemistry'' (Wiley, 2001) ({{ISBN|0-471-58589-0}})</ref>
* Oxidative cleavage of certain [[allyl alcohol]]s in conjunction with [[ozone]]:<ref>''O3/Pb(OAc)4: a new and efficient system for the oxidative cleavage of allyl alcohols'' E.J. Alvarez-Manzaneda R. Chahboun , M.J. Cano, E. Cabrera Torres, E. Alvarez, R. Alvarez-Manzaneda, b, A. Haidour and J.M. Ramos López [[Tetrahedron Letters]] Volume 47, Issue 37 , 11 September '''2006''', Pages 6619-6622 {{doi|10.1016/j.tetlet.2006.07.020}}</ref><ref>Conversion of ''1-allyl-cyclohexanol'' to [[cyclohexanone]], in the proposed [[reaction mechanism]] the allyl group is first converted to a trioxalane according to conventional [[ozonolysis]] which then interacts with the alkoxy lead group</ref>


[[Image:OxidativeCleavageofallylalcohols.png|400px|center|oxidative cleavage of allyl alcohols]]
[[File:OxidativeCleavageofallylalcohols.png|400px|center|oxidative cleavage of allyl alcohols]]
* conversion of acetophenones to phenyl acetic acids <ref>{{cite journal|journal[[Synthesis (journal)|Synthesis]]|year=1981|volume=2|pages= 126-127|title=One-Step Synthesis of Methyl Arylacetates from Acetophenones Using Lead(IV) Acetate|doi=10.1055/s-1981-29358}}</ref>
* Conversion of acetophenones to phenyl acetic acids<ref>{{cite journal|journal=[[Synthesis (journal)|Synthesis]]|year=1981|volume=2|issue=2|pages= 126–127|title=One-Step Synthesis of Methyl Arylacetates from Acetophenones Using Lead(IV) Acetate|doi=10.1055/s-1981-29358|last1=Myrboh|first1=B.|last2=Ila|first2=H.|last3=Junjappa|first3=H.}}</ref>
* [[Decarboxylation]] of [[carboxylic acid]]s to [[alkyl halide]]s in the [[Kochi reaction]]<ref>{{cite journal|title=A New Method for Halodecarboxylation of Acids Using Lead(IV) Acetate|author=Jay K. Kochi|journal=[[J. Am. Chem. Soc.]]|year=1965|volume=87|pages=2500–02|doi=10.1021/ja01089a041}}</ref>
* [[Decarboxylation]] of [[carboxylic acid]]s to [[alkyl halide]]s in the [[Kochi reaction]]<ref>{{cite journal|title=A New Method for Halodecarboxylation of Acids Using Lead(IV) Acetate|author=Jay K. Kochi|journal=[[J. Am. Chem. Soc.]]|year=1965|volume=87|issue=11|pages=2500–02 |doi=10.1021/ja01089a041}}</ref>


==Safety==
==Safety==
Lead(IV) acetate may be fatal if ingested, inhaled, or absorbed through skin. It causes irritation to skin, eyes, and respiratory tract. It is a neurotoxin. It affects the gum tissue, central nervous system, kidneys, blood, and reproductive system.
Lead(IV) acetate is toxic. It is a neurotoxin. It affects the gum tissue, central nervous system, kidneys, blood, and reproductive system.


==References==
==References==
Line 77: Line 88:
{{Acetates}}
{{Acetates}}


[[Category:Lead compounds]]
[[Category:Lead(IV) compounds]]
[[Category:Oxidizing agents]]
[[Category:Oxidizing agents]]
[[Category:Acetates]]
[[Category:Acetates]]

Latest revision as of 12:47, 4 July 2024

Lead(IV) acetate
Names
IUPAC name
Lead(IV) acetate
Systematic IUPAC name
Tetrakis(acetyloxy)plumbane
Other names
Lead tetraacetate
Plumbic acetate
Identifiers
3D model (JSmol)
ChEBI
ChemSpider
ECHA InfoCard 100.008.099 Edit this at Wikidata
EC Number
  • 208-908-0
UNII
  • InChI=1S/4C2H4O2.Pb/c4*1-2(3)4;/h4*1H3,(H,3,4);/q;;;;+4/p-4 ☒N
    Key: JEHCHYAKAXDFKV-UHFFFAOYSA-J ☒N
  • monodentate acetate: CC(=O)O[Pb](OC(C)=O)(OC(C)=O)OC(C)=O
  • bidentate acetate: O0[C-](C)O[Pb+4]0123(O[C-](C)O1)(O[C-]C(C)O2)O[C-](C)O3
Properties
Pb(C2H3O2)4
Molar mass 443.376 g/mol
Appearance colorless or pink crystals
Odor vinegar
Density 2.228 g/cm3 (17 °C)
Melting point 175 °C (347 °F; 448 K)
Boiling point decomposes
soluble, reversible hydrolysis
Solubility reacts with ethanol
soluble in chloroform, benzene, nitrobenzene, hot acetic acid, HCl, tetrachloroethane
Hazards
Occupational safety and health (OHS/OSH):
Main hazards
Toxic
GHS labelling:[1]
GHS07: Exclamation markGHS08: Health hazardGHS09: Environmental hazard
Danger
NFPA 704 (fire diamond)
NFPA 704 four-colored diamondHealth 3: Short exposure could cause serious temporary or residual injury. E.g. chlorine gasFlammability 0: Will not burn. E.g. waterInstability 0: Normally stable, even under fire exposure conditions, and is not reactive with water. E.g. liquid nitrogenSpecial hazards (white): no code
3
0
0
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
☒N verify (what is checkY☒N ?)

Lead(IV) acetate or lead tetraacetate is an metalorganic compound with chemical formula Pb(C2H3O2)4. It is a colorless solid that is soluble in nonpolar, organic solvents, indicating that it is not a salt. It is degraded by moisture and is typically stored with additional acetic acid. The compound is used in organic synthesis.[2]

Structure

[edit]

In the solid state the lead(IV) centers are coordinated by four acetate ions, which are bidentate, each coordinating via two oxygen atoms. The lead atom is 8 coordinate and the O atoms form a flattened trigonal dodecahedron.[3]

Preparation

[edit]

It is typically prepared by treating of red lead with acetic acid and acetic anhydride (Ac2O), which absorbs water. The net reaction is shown:[4][5]

Pb3O4 + 4 Ac2O → Pb(OAc)4 + 2 Pb(OAc)2

The remaining lead(II) acetate can be partially oxidized to the tetraacetate by Cl2, with a PbCl2 by-product:

2 Pb(OAc)2 + Cl2 → Pb(OAc)4 + PbCl2

Reagent in organic chemistry

[edit]

Lead tetraacetate is a strong oxidizing agent,[6] a source of acetyloxy groups, and a general reagent for the preparation of organolead compounds. Some of its many uses in organic chemistry:

oxidative cleavage of allyl alcohols
oxidative cleavage of allyl alcohols

Safety

[edit]

Lead(IV) acetate is toxic. It is a neurotoxin. It affects the gum tissue, central nervous system, kidneys, blood, and reproductive system.

References

[edit]
  1. ^ "Substance Information - ECHA". echa.europa.eu.
  2. ^ Mihailo Lj. Mihailović; Živorad Čeković; Brian M. Mathes (2005). "Lead(IV) Acetate". Encyclopedia of Reagents for Organic Synthesis. doi:10.1002/047084289X.rl006.pub2. ISBN 978-0-471-93623-7.
  3. ^ Schürmann, M.; Huber, F. (1994). "A redetermination of lead(IV) acetate". Acta Crystallographica Section C. 50 (11): 1710–1713. doi:10.1107/S0108270194006438. ISSN 0108-2701.
  4. ^ J. C. Bailar, Jr. (1939). "Lead Tetracetate". Inorganic Syntheses. Inorganic Syntheses. Vol. 1. pp. 47–49. doi:10.1002/9780470132326.ch17. ISBN 978-0-470-13232-6.
  5. ^ M. Baudler (1963). "Lead(IV) Acetate". In G. Brauer (ed.). Handbook of Preparative Inorganic Chemistry, 2nd Ed. Vol. 2. NY,NY: Academic Press. p. 767.
  6. ^ J. Zýka (1966). "Analytical study of the basic properties of lead tetraacetate as oxidizing agent" (PDF). Pure and Applied Chemistry. 13 (4): 569–581. doi:10.1351/pac196613040569. S2CID 96821219. Retrieved 19 December 2013.
  7. ^ "(1R,5R)-(+)-Verbenone of High Optical Purity". Organic Syntheses. 72: 57. 1995. doi:10.15227/orgsyn.072.0057.
  8. ^ Organic Syntheses, Vol. 82, p.99 (2005) Article.
  9. ^ Baumgarten, Henry; Smith, Howard; Staklis, Andris (1975). "Reactions of amines. XVIII. Oxidative rearrangement of amides with lead tetraacetate". The Journal of Organic Chemistry. 40 (24): 3554–3561. doi:10.1021/jo00912a019.
  10. ^ Middleton, W. J.; Gale, D. M. (1970). "Bis(Trifluoromethyl)Diazomethane". Organic Syntheses. 50: 6. doi:10.15227/orgsyn.050.0006.
  11. ^ Robert K. Muller, Renato Joos, Dorothee Felix, Jakob Schreiber, Claude Wintner, and A. Eschenmoser (1976). "Preparation of N-Aminoaziridines: trans-1-Amino-2,3-diphenylaziridine, 1-Amino-2-phenylaziridine, and 1-Amino-2-phenylaziridinium Acetate". Organic Syntheses. 55: 114. doi:10.15227/orgsyn.055.0114.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  12. ^ Ōeda, Haruomi (1934). "Oxidation of some α-hydroxy-acids with lead tetraacetate". Bulletin of the Chemical Society of Japan. 9 (1): 8–14. doi:10.1246/bcsj.9.8.
  13. ^ Organic Syntheses, Coll. Vol. 4, p.124 (1963); Vol. 35, p.18 (1955) Article.
  14. ^ M B Smith, J March. March's Advanced Organic Chemistry (Wiley, 2001) (ISBN 0-471-58589-0)
  15. ^ Álvarez Manzaneda, E. J.; Chahboun, R.; Cano, M. J.; Cabrera Torres, E.; Álvarez, E.; Álvarez Manzaneda, R.; Haidour, A.; Ramos López, J. M. (2006). "O3/Pb(OAc)4: a new and efficient system for the oxidative cleavage of allyl alcohols". Tetrahedron Letters. 47 (37): 6619–6622. doi:10.1016/j.tetlet.2006.07.020.
  16. ^ Conversion of 1-allylcyclohexanol to cyclohexanone, in the proposed reaction mechanism the allyl group is first converted to a trioxalane according to conventional ozonolysis which then interacts with the alkoxy lead group.
  17. ^ Myrboh, B.; Ila, H.; Junjappa, H. (1981). "One-Step Synthesis of Methyl Arylacetates from Acetophenones Using Lead(IV) Acetate". Synthesis. 2 (2): 126–127. doi:10.1055/s-1981-29358.
  18. ^ Jay K. Kochi (1965). "A New Method for Halodecarboxylation of Acids Using Lead(IV) Acetate". J. Am. Chem. Soc. 87 (11): 2500–02. doi:10.1021/ja01089a041.