Jump to content

Operator topologies: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
m Tidy using AWB
Line 3: Line 3:
==Introduction==
==Introduction==


Let {''T''<sub>''n''</sub>} be a sequence of linear operators on the Hilbert space ''H''. Consider the statement that ''T''<sub>''n''</sub> converges to some operator ''T'' in ''H''.This could have several different meanings:
Let {''T''<sub>''n''</sub>} be a sequence of linear operators on the Hilbert space ''H''. Consider the statement that ''T''<sub>''n''</sub> converges to some operator ''T'' in ''H''.This could have several different meanings:
* If <math>\|T_n - T\| \to 0</math>, that is, the supremum of ''T''<sub>''n''</sub>''x'' - ''T'' ''x'' converges to 0, where ''x'' ranges over the [[unit ball]] in ''H'', we say that <math>T_n \to T</math> in the '''uniform operator topology'''.
* If <math>\|T_n - T\| \to 0</math>, that is, the supremum of ''T''<sub>''n''</sub>''x'' - ''T'' ''x'' converges to 0, where ''x'' ranges over the [[unit ball]] in ''H'', we say that <math>T_n \to T</math> in the '''uniform operator topology'''.
* If <math>T_n x \to Tx</math> for all ''x'' in ''H'', then we say <math>T_n \to T</math> in the '''strong operator topology'''.
* If <math>T_n x \to Tx</math> for all ''x'' in ''H'', then we say <math>T_n \to T</math> in the '''strong operator topology'''.
* Finally, suppose <math>T_n x \to Tx</math> in the [[weak topology]] of ''H''. This means that <math>F(T_n x) \to F(T x)</math> for all [[linear functionals]] ''F'' on ''H''. In this case we say that <math>T_n \to T</math> in the '''weak operator topology'''.
* Finally, suppose <math>T_n x \to Tx</math> in the [[weak topology]] of ''H''. This means that <math>F(T_n x) \to F(T x)</math> for all [[linear functionals]] ''F'' on ''H''. In this case we say that <math>T_n \to T</math> in the '''weak operator topology'''.


All of these notions make sense and are useful for a [[Banach space]] in place of the Hilbert space ''H''.
All of these notions make sense and are useful for a [[Banach space]] in place of the Hilbert space ''H''.
Line 14: Line 14:
[[Image:Optop.svg|right|thumb|Diagram of relations among topologies on the space ''B''(''H'') of bounded operators]]
[[Image:Optop.svg|right|thumb|Diagram of relations among topologies on the space ''B''(''H'') of bounded operators]]


There are many topologies that can be defined on ''B''(''H'') besides the ones used above. These topologies are all locally convex, which implies that they are defined by a family of [[seminorm]]s.
There are many topologies that can be defined on ''B''(''H'') besides the ones used above. These topologies are all locally convex, which implies that they are defined by a family of [[seminorm]]s.


A topology is strong if it has many open sets and weak if it has few open sets, so that the corresponding modes of convergence are, respectively, strong and weak. The diagram on the right is a summary of the relations, with the arrows pointing from strong to weak.
A topology is strong if it has many open sets and weak if it has few open sets, so that the corresponding modes of convergence are, respectively, strong and weak. The diagram on the right is a summary of the relations, with the arrows pointing from strong to weak.


The [[Banach space]] ''B''(''H'') has a (unique) [[predual]] ''B''(''H'')<sub>*</sub>,
The [[Banach space]] ''B''(''H'') has a (unique) [[predual]] ''B''(''H'')<sub>*</sub>,
consisting of the trace class operators, whose dual is ''B''(''H''). The seminorm ''p''<sub>''w''</sub>(''x'') for ''w'' positive in the predual is defined to be
consisting of the trace class operators, whose dual is ''B''(''H''). The seminorm ''p''<sub>''w''</sub>(''x'') for ''w'' positive in the predual is defined to be
(''w'', ''x<sup>*</sup>x'')<sup>1/2</sup>.
(''w'', ''x<sup>*</sup>x'')<sup>1/2</sup>.


Line 28: Line 28:
*The '''[[Mackey topology]]''' or '''Arens-Mackey topology''' is the strongest locally convex topology on ''B''(''H'') such that the dual is ''B''(''H'')<sub>*</sub>, and is also the uniform convergence topology on σ(''B''(''H'')<sub>*</sub>, ''B''(''H'')-compact convex subsets of ''B''(''H'')<sub>*</sub>. It is stronger than all topologies below.
*The '''[[Mackey topology]]''' or '''Arens-Mackey topology''' is the strongest locally convex topology on ''B''(''H'') such that the dual is ''B''(''H'')<sub>*</sub>, and is also the uniform convergence topology on σ(''B''(''H'')<sub>*</sub>, ''B''(''H'')-compact convex subsets of ''B''(''H'')<sub>*</sub>. It is stronger than all topologies below.
*The '''σ-strong<sup>*</sup> topology''' or '''ultrastrong<sup>*</sup> topology''' is the weakest topology stronger than the ultrastrong topology such that the adjoint map is continuous. It is defined by the family of seminorms ''p''<sub>''w''</sub>(''x'') and ''p''<sub>''w''</sub>(''x''<sup>*</sup>) for positive elements ''w'' of ''B''(''H'')<sub>*</sub>. It is stronger than all topologies below.
*The '''σ-strong<sup>*</sup> topology''' or '''ultrastrong<sup>*</sup> topology''' is the weakest topology stronger than the ultrastrong topology such that the adjoint map is continuous. It is defined by the family of seminorms ''p''<sub>''w''</sub>(''x'') and ''p''<sub>''w''</sub>(''x''<sup>*</sup>) for positive elements ''w'' of ''B''(''H'')<sub>*</sub>. It is stronger than all topologies below.
*The '''σ-strong topology''' or '''[[ultrastrong topology]]''' or '''strongest topology''' or '''strongest operator topology''' is defined by the family of seminorms ''p''<sub>''w''</sub>(''x'') for positive elements ''w'' of ''B''(''H'')<sub>*</sub>. It is stronger than all the topologies below other than the strong<sup>*</sup> topology. Warning: in spite of the name "strongest topology", it is weaker than the norm topology.)
*The '''σ-strong topology''' or '''[[ultrastrong topology]]''' or '''strongest topology''' or '''strongest operator topology''' is defined by the family of seminorms ''p''<sub>''w''</sub>(''x'') for positive elements ''w'' of ''B''(''H'')<sub>*</sub>. It is stronger than all the topologies below other than the strong<sup>*</sup> topology. Warning: in spite of the name "strongest topology", it is weaker than the norm topology.)
*The '''σ-weak topology''' or '''ultraweak topology''' or '''[[weak-star operator topology|weak<sup>*</sup> operator topology]]''' or '''weak * topology''' or '''weak topology''' or '''σ(''B''(''H''), ''B''(''H'')<sub>*</sub>) topology''' is defined by the family of seminorms |(''w'', ''x'')| for elements ''w'' of ''B''(''H'')<sub>*</sub>. It is stronger than the weak operator topology. (Warning: the weak Banach space topology and the weak operator topology and the ultraweak topology are all sometimes called the weak topology, but they are different.)
*The '''σ-weak topology''' or '''ultraweak topology''' or '''[[weak-star operator topology|weak<sup>*</sup> operator topology]]''' or '''weak * topology''' or '''weak topology''' or '''σ(''B''(''H''), ''B''(''H'')<sub>*</sub>) topology''' is defined by the family of seminorms |(''w'', ''x'')| for elements ''w'' of ''B''(''H'')<sub>*</sub>. It is stronger than the weak operator topology. (Warning: the weak Banach space topology and the weak operator topology and the ultraweak topology are all sometimes called the weak topology, but they are different.)
*The '''strong<sup>*</sup> operator topology''' or '''strong<sup>*</sup> topology''' is defined by the seminorms ||''x''(''h'')|| and ||''x''<sup>*</sup>(''h'')|| for ''h'' in ''H''. It is stronger than the strong and weak operator topologies.
*The '''strong<sup>*</sup> operator topology''' or '''strong<sup>*</sup> topology''' is defined by the seminorms ||''x''(''h'')|| and ||''x''<sup>*</sup>(''h'')|| for ''h'' in ''H''. It is stronger than the strong and weak operator topologies.
*The '''[[strong operator topology]]''' (SOT) or '''strong topology''' is defined by the seminorms ||''x''(''h'')|| for ''h'' in ''H''. It is stronger than the weak operator topology.
*The '''[[strong operator topology]]''' (SOT) or '''strong topology''' is defined by the seminorms ||''x''(''h'')|| for ''h'' in ''H''. It is stronger than the weak operator topology.
*The '''[[weak operator topology]]''' (WOT) or '''weak topology''' is defined by the seminorms |(''x''(''h''<sub>1</sub>), ''h''<sub>2</sub>)| for ''h''<sub>1</sub> and ''h''<sub>2</sub> in ''H''. (Warning: the weak Banach space topology, the weak operator topology, and the ultraweak topology are all sometimes called the weak topology, but they are different.)
*The '''[[weak operator topology]]''' (WOT) or '''weak topology''' is defined by the seminorms |(''x''(''h''<sub>1</sub>), ''h''<sub>2</sub>)| for ''h''<sub>1</sub> and ''h''<sub>2</sub> in ''H''. (Warning: the weak Banach space topology, the weak operator topology, and the ultraweak topology are all sometimes called the weak topology, but they are different.)


Line 41: Line 41:


On norm bounded sets of ''B''(''H''), the weak (operator) and ultraweak topologies coincide. This can be seen via, for instance, the [[Banach-Alaoglu theorem]]. For essentially the same reason, the ultrastrong
On norm bounded sets of ''B''(''H''), the weak (operator) and ultraweak topologies coincide. This can be seen via, for instance, the [[Banach-Alaoglu theorem]]. For essentially the same reason, the ultrastrong
topology is the same as the strong topology on any (norm) bounded subset of ''B''(''H''). Same is true for the the Arens-Mackey topology, the ultrastrong<sup>*</sup>, and the strong<sup>*</sup> topology.
topology is the same as the strong topology on any (norm) bounded subset of ''B''(''H''). Same is true for the Arens-Mackey topology, the ultrastrong<sup>*</sup>, and the strong<sup>*</sup> topology.


In locally convex spaces, closure of convex sets can be characterized by the continuous linear functionals. Therefore, for a [[convex set|convex]] subset ''K'' of ''B''(''H''), the conditions that ''K'' be closed in the ultrastrong<sup>*</sup>, ultrastrong, and ultraweak topologies are all equivalent and are also equivalent to the conditions that
In locally convex spaces, closure of convex sets can be characterized by the continuous linear functionals. Therefore, for a [[convex set|convex]] subset ''K'' of ''B''(''H''), the conditions that ''K'' be closed in the ultrastrong<sup>*</sup>, ultrastrong, and ultraweak topologies are all equivalent and are also equivalent to the conditions that
Line 50: Line 50:
==Which topology should I use?==
==Which topology should I use?==


The most commonly used topologies are the norm, strong, and weak operator topologies. The weak operator topology is useful for compactness arguments, because the unit ball is compact by the Banach-Alaoglu theorem. The norm topology is fundamental because it makes ''B''(''H'') into a Banach space, but it is too strong for many purposes; for example, ''B''(''H'') is not separable in this topology. The strong operator topology could be the most commonly used.
The most commonly used topologies are the norm, strong, and weak operator topologies. The weak operator topology is useful for compactness arguments, because the unit ball is compact by the Banach-Alaoglu theorem. The norm topology is fundamental because it makes ''B''(''H'') into a Banach space, but it is too strong for many purposes; for example, ''B''(''H'') is not separable in this topology. The strong operator topology could be the most commonly used.


The ultraweak and ultrastrong topologies are better-behaved than the weak and strong operator topologies, but their definitions are more complicated, so they are usually not used unless their better properties are really needed. For example, the dual space of ''B''(''H'') in the weak or strong operator topology is too small to have much analytic content.
The ultraweak and ultrastrong topologies are better-behaved than the weak and strong operator topologies, but their definitions are more complicated, so they are usually not used unless their better properties are really needed. For example, the dual space of ''B''(''H'') in the weak or strong operator topology is too small to have much analytic content.
Line 58: Line 58:
The Arens-Mackey topology and the weak Banach space topology are very rarely used.
The Arens-Mackey topology and the weak Banach space topology are very rarely used.


To summarize, the three essential topologies on ''B''(''H'') are the norm, ultrastrong, and ultraweak topologies. The weak and strong operator topologies are widely used as convenient approximations to the ultraweak and ultrastrong topologies. The other topologies are relatively obscure.
To summarize, the three essential topologies on ''B''(''H'') are the norm, ultrastrong, and ultraweak topologies. The weak and strong operator topologies are widely used as convenient approximations to the ultraweak and ultrastrong topologies. The other topologies are relatively obscure.


== See also ==
== See also ==

Revision as of 09:35, 27 July 2008

In mathematics, the requirements of functional analysis mean there are several standard topologies which are given to the algebra B(H) of bounded linear operators on a Hilbert space H.

Introduction

Let {Tn} be a sequence of linear operators on the Hilbert space H. Consider the statement that Tn converges to some operator T in H.This could have several different meanings:

  • If , that is, the supremum of Tnx - T x converges to 0, where x ranges over the unit ball in H, we say that in the uniform operator topology.
  • If for all x in H, then we say in the strong operator topology.
  • Finally, suppose in the weak topology of H. This means that for all linear functionals F on H. In this case we say that in the weak operator topology.

All of these notions make sense and are useful for a Banach space in place of the Hilbert space H.

List of topologies on B(H)

Diagram of relations among topologies on the space B(H) of bounded operators

There are many topologies that can be defined on B(H) besides the ones used above. These topologies are all locally convex, which implies that they are defined by a family of seminorms.

A topology is strong if it has many open sets and weak if it has few open sets, so that the corresponding modes of convergence are, respectively, strong and weak. The diagram on the right is a summary of the relations, with the arrows pointing from strong to weak.

The Banach space B(H) has a (unique) predual B(H)*, consisting of the trace class operators, whose dual is B(H). The seminorm pw(x) for w positive in the predual is defined to be (w, x*x)1/2.

If B is a vector space of linear maps on the vector space A, then σ(A, B) is defined to be the weakest topology on A such that all elements of B are continuous.

  • The norm topology or uniform topology or uniform operator topology is defined by the usual norm ||x|| on B(H). It is stronger than all the other topologies below.
  • The weak (Banach space) topology is σ(B(H), B(H)*), in other words the weakest topology such that all elements of the dual B(H)* are continuous. It is the weak topology on the Banach space B(H). It is stronger than the ultraweak and weak operator topologies. (Warning: the weak Banach space topology and the weak operator topology and the ultraweak topology are all sometimes called the weak topology, but they are different.)
  • The Mackey topology or Arens-Mackey topology is the strongest locally convex topology on B(H) such that the dual is B(H)*, and is also the uniform convergence topology on σ(B(H)*, B(H)-compact convex subsets of B(H)*. It is stronger than all topologies below.
  • The σ-strong* topology or ultrastrong* topology is the weakest topology stronger than the ultrastrong topology such that the adjoint map is continuous. It is defined by the family of seminorms pw(x) and pw(x*) for positive elements w of B(H)*. It is stronger than all topologies below.
  • The σ-strong topology or ultrastrong topology or strongest topology or strongest operator topology is defined by the family of seminorms pw(x) for positive elements w of B(H)*. It is stronger than all the topologies below other than the strong* topology. Warning: in spite of the name "strongest topology", it is weaker than the norm topology.)
  • The σ-weak topology or ultraweak topology or weak* operator topology or weak * topology or weak topology or σ(B(H), B(H)*) topology is defined by the family of seminorms |(w, x)| for elements w of B(H)*. It is stronger than the weak operator topology. (Warning: the weak Banach space topology and the weak operator topology and the ultraweak topology are all sometimes called the weak topology, but they are different.)
  • The strong* operator topology or strong* topology is defined by the seminorms ||x(h)|| and ||x*(h)|| for h in H. It is stronger than the strong and weak operator topologies.
  • The strong operator topology (SOT) or strong topology is defined by the seminorms ||x(h)|| for h in H. It is stronger than the weak operator topology.
  • The weak operator topology (WOT) or weak topology is defined by the seminorms |(x(h1), h2)| for h1 and h2 in H. (Warning: the weak Banach space topology, the weak operator topology, and the ultraweak topology are all sometimes called the weak topology, but they are different.)

Relations between the topologies

The continuous linear functionals on B(H) for the weak, strong, and strong* (operator) topologies are the same, and are the finite linear combinations of the linear functionals (xh1, h2) for h1, h2 in H. The continuous linear functionals on B(H) for the ultraweak, ultrastrong, ultrastrong* and Arens-Mackey topologies are the same, and are the elements of the predual B(H)*. The continuous linear functions in the norm topology form a rather large space with many pathological elements.

On norm bounded sets of B(H), the weak (operator) and ultraweak topologies coincide. This can be seen via, for instance, the Banach-Alaoglu theorem. For essentially the same reason, the ultrastrong topology is the same as the strong topology on any (norm) bounded subset of B(H). Same is true for the Arens-Mackey topology, the ultrastrong*, and the strong* topology.

In locally convex spaces, closure of convex sets can be characterized by the continuous linear functionals. Therefore, for a convex subset K of B(H), the conditions that K be closed in the ultrastrong*, ultrastrong, and ultraweak topologies are all equivalent and are also equivalent to the conditions that for all r > 0, K has closed intersection with the closed ball of radius r in the strong*, strong, or weak (operator) topologies.

The norm topology is metrizable and the others are not; in fact they fail to be first-countable. However, when H is separable, all the topologies above are metrizable when restricted to the unit ball (or to any norm-bounded subset).

Which topology should I use?

The most commonly used topologies are the norm, strong, and weak operator topologies. The weak operator topology is useful for compactness arguments, because the unit ball is compact by the Banach-Alaoglu theorem. The norm topology is fundamental because it makes B(H) into a Banach space, but it is too strong for many purposes; for example, B(H) is not separable in this topology. The strong operator topology could be the most commonly used.

The ultraweak and ultrastrong topologies are better-behaved than the weak and strong operator topologies, but their definitions are more complicated, so they are usually not used unless their better properties are really needed. For example, the dual space of B(H) in the weak or strong operator topology is too small to have much analytic content.

The adjoint map is not continuous in the strong operator and ultrastrong topologies, while the strong* and ultrastrong* topologies are modifications so that the adjoint becomes continuous. They are not used very often.

The Arens-Mackey topology and the weak Banach space topology are very rarely used.

To summarize, the three essential topologies on B(H) are the norm, ultrastrong, and ultraweak topologies. The weak and strong operator topologies are widely used as convenient approximations to the ultraweak and ultrastrong topologies. The other topologies are relatively obscure.

See also

References

  • Functional analysis, by Reed and Simon, ISBN 0-12-585050-6
  • Theory of Operator Algebras I, by M. Takesaki (especially chapter II.2) ISBN 3-540-42248-X