Jump to content

K-Poincaré algebra

From Wikipedia, the free encyclopedia
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

In physics and mathematics, the κ-Poincaré algebra, named after Henri Poincaré, is a deformation of the Poincaré algebra into a Hopf algebra. In the bicrossproduct basis, introduced by Majid-Ruegg[1] its commutation rules reads:

Where are the translation generators, the rotations and the boosts. The coproducts are:

The antipodes and the counits:

The κ-Poincaré algebra is the dual Hopf algebra to the κ-Poincaré group, and can be interpreted as its “infinitesimal” version.

References

  1. ^ Majid, S.; Ruegg, H. (1994). "Bicrossproduct structure of κ-Poincare group and non-commutative geometry". Physics Letters B. 334 (3–4). Elsevier BV: 348–354. arXiv:hep-th/9405107. Bibcode:1994PhLB..334..348M. doi:10.1016/0370-2693(94)90699-8. ISSN 0370-2693.