From Wikipedia, the free encyclopedia
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.
In physics and mathematics , the κ-Poincaré algebra , named after Henri Poincaré , is a deformation of the Poincaré algebra into a Hopf algebra . In the bicrossproduct basis, introduced by Majid-Ruegg[ 1] its commutation rules reads:
[
P
μ
,
P
ν
]
=
0
{\displaystyle [P_{\mu },P_{\nu }]=0}
[
R
j
,
P
0
]
=
0
,
[
R
j
,
P
k
]
=
i
ε
j
k
l
P
l
,
[
R
j
,
N
k
]
=
i
ε
j
k
l
N
l
,
[
R
j
,
R
k
]
=
i
ε
j
k
l
R
l
{\displaystyle [R_{j},P_{0}]=0,\;[R_{j},P_{k}]=i\varepsilon _{jkl}P_{l},\;[R_{j},N_{k}]=i\varepsilon _{jkl}N_{l},\;[R_{j},R_{k}]=i\varepsilon _{jkl}R_{l}}
[
N
j
,
P
0
]
=
i
P
j
,
[
N
j
,
P
k
]
=
i
δ
j
k
(
1
−
e
−
2
λ
P
0
2
λ
+
λ
2
|
P
→
|
2
)
−
i
λ
P
j
P
k
,
[
N
j
,
N
k
]
=
−
i
ε
j
k
l
R
l
{\displaystyle [N_{j},P_{0}]=iP_{j},\;[N_{j},P_{k}]=i\delta _{jk}\left({\frac {1-e^{-2\lambda P_{0}}}{2\lambda }}+{\frac {\lambda }{2}}|{\vec {P}}|^{2}\right)-i\lambda P_{j}P_{k},\;[N_{j},N_{k}]=-i\varepsilon _{jkl}R_{l}}
Where
P
μ
{\displaystyle P_{\mu }}
are the translation generators,
R
j
{\displaystyle R_{j}}
the rotations and
N
j
{\displaystyle N_{j}}
the boosts.
The coproducts are:
Δ
P
j
=
P
j
⊗
1
+
e
−
λ
P
0
⊗
P
j
,
Δ
P
0
=
P
0
⊗
1
+
1
⊗
P
0
{\displaystyle \Delta P_{j}=P_{j}\otimes 1+e^{-\lambda P_{0}}\otimes P_{j}~,\qquad \Delta P_{0}=P_{0}\otimes 1+1\otimes P_{0}}
Δ
R
j
=
R
j
⊗
1
+
1
⊗
R
j
{\displaystyle \Delta R_{j}=R_{j}\otimes 1+1\otimes R_{j}}
Δ
N
k
=
N
k
⊗
1
+
e
−
λ
P
0
⊗
N
k
+
i
λ
ε
k
l
m
P
l
⊗
R
m
.
{\displaystyle \Delta N_{k}=N_{k}\otimes 1+e^{-\lambda P_{0}}\otimes N_{k}+i\lambda \varepsilon _{klm}P_{l}\otimes R_{m}.}
The antipodes and the counits :
S
(
P
0
)
=
−
P
0
{\displaystyle S(P_{0})=-P_{0}}
S
(
P
j
)
=
−
e
λ
P
0
P
j
{\displaystyle S(P_{j})=-e^{\lambda P_{0}}P_{j}}
S
(
R
j
)
=
−
R
j
{\displaystyle S(R_{j})=-R_{j}}
S
(
N
j
)
=
−
e
λ
P
0
N
j
+
i
λ
ε
j
k
l
e
λ
P
0
P
k
R
l
{\displaystyle S(N_{j})=-e^{\lambda P_{0}}N_{j}+i\lambda \varepsilon _{jkl}e^{\lambda P_{0}}P_{k}R_{l}}
ε
(
P
0
)
=
0
{\displaystyle \varepsilon (P_{0})=0}
ε
(
P
j
)
=
0
{\displaystyle \varepsilon (P_{j})=0}
ε
(
R
j
)
=
0
{\displaystyle \varepsilon (R_{j})=0}
ε
(
N
j
)
=
0
{\displaystyle \varepsilon (N_{j})=0}
The κ-Poincaré algebra is the dual Hopf algebra to the κ-Poincaré group , and can be interpreted as its “infinitesimal” version.
References