Bel decomposition
This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these messages)
|
In semi-Riemannian geometry, the Bel decomposition, taken with respect to a specific timelike congruence, is a way of breaking up the Riemann tensor of a pseudo-Riemannian manifold into lower order tensors with properties similar to the electric field and magnetic field. Such a decomposition was partially described by Alphonse Matte in 1953[1] and by Lluis Bel in 1958.[2]
This decomposition is particularly important in general relativity.[citation needed] This is the case of four-dimensional Lorentzian manifolds, for which there are only three pieces with simple properties and individual physical interpretations.
Decomposition of the Riemann tensor
[edit]In four dimensions the Bel decomposition of the Riemann tensor, with respect to a timelike unit vector field , not necessarily geodesic or hypersurface orthogonal, consists of three pieces:
- the electrogravitic tensor
- Also known as the tidal tensor. It can be physically interpreted as giving the tidal stresses on small bits of a material object (which may also be acted upon by other physical forces), or the tidal accelerations of a small cloud of test particles in a vacuum solution or electrovacuum solution.
- the magnetogravitic tensor
- Can be interpreted physically as a specifying possible spin-spin forces on spinning bits of matter, such as spinning test particles.
- the topogravitic tensor
- Can be interpreted as representing the sectional curvatures for the spatial part of a frame field.
Because these are all transverse (i.e. projected to the spatial hyperplane elements orthogonal to our timelike unit vector field), they can be represented as linear operators on three-dimensional vectors, or as three-by-three real matrices. They are respectively symmetric, traceless, and symmetric (6,8,6 linearly independent components, for a total of 20). If we write these operators as E, B, L respectively, the principal invariants of the Riemann tensor are obtained as follows:
- is the trace of E2 + L2 - 2 B BT,
- is the trace of B ( E - L ),
- is the trace of E L - B2.
See also
[edit]References
[edit]- ^ Matte, A. (1953), "Sur de nouvelles solutions oscillatoires des equations de la gravitation", Can. J. Math., 5: 1, doi:10.4153/CJM-1953-001-3
- ^ Bel, L. (1958), "Définition d'une densité d'énergie et d'un état de radiation totale généralisée", Comptes rendus hebdomadaires des séances de l'Académie des sciences, 246: 3015