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PREFACE

T his book celebrates the appeal and beauty of mathematics, as illus-
trated by Euler’s equation, ‘the most beautiful theorem in mathematics’, 

and its near-relative, Euler’s identity. Named after the 18th-century Swiss 
mathematician Leonhard Euler, this famous equation connects five of 
the most important constants in mathematics: 
	

1 0, , , , .p e iand
	

These numbers appear in the Introduction and are then featured one at a 
time in the succeeding chapters before being brought together in the 
final one. 

We’ve tried to keep the treatment as simple as possible throughout, 
with each topic introduced from the beginning and with many historical 
remarks to spice up the story. More advanced topics are included in a 
number of ‘boxes’ along the way.

Aimed primarily at the interested lay reader, this book should also be 
a ‘good read’ for school and university mathematics students interested 
in the history of their subject and for physicists, engineers, and other 
scientists. 

My grateful thanks are due to Lars Andersen, Rob Bradley, Chris Budd, 
Bill Dunham, Howard Emmens, Florence Fasanelli, Raymond Flood, 
Adrian Rice, Ed Sandifer, and Andrey Umerski for their helpful com-
ments on the manuscript, and to Latha Menon, Fiona Orbell, Jenny 
Nugee, and Daniel Gill of Oxford University Press for their encouragement 
and support.

Robin Wilson
September 2017
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Fig. 1.  Euler’s Introductio in Analysin Infinitorum, 1748
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INTRODUCTION

The most beautiful theorem in mathematics

Mathematics, rightly viewed,
possesses not only truth,

but supreme beauty – a beauty cold
and austere, like that of sculpture

Bertrand Russell

I n mathematics a theorem is a result, derived from more basic principles, 
that’s been proved to be true: examples include the well-known 

Pythagorean theorem on right-angled triangles, and Euclid’s theorem 
that the list of prime numbers continues for ever. Many theorems are 
relatively simple to prove; others, such as ‘Fermat’s last theorem’, may 
take many years, or even centuries. Some theorems have short and 
straightforward proofs; others may involve much tedious and lengthy 
analysis of special cases. In general, mathematicians tend to prefer proofs 
that are efficient, ingenious, surprising, or elegant – even beautiful.

So what’s the most beautiful theorem in mathematics? Over many 
years mathematicians have conducted surveys to answer this question. 
The Mathematical Intelligencer, a quarterly mathematics journal, carried 
out such a poll in 1988 in which twenty-four theorems were listed and 
readers were invited to award each a ‘score for beauty’. While there were 
many worthy competitors, the winner was ‘Euler’s equation’.

An equation is a statement with an equals sign in it, such as 1 + 1 = 2, Ein
stein’s equation E mc= 2 , or an algebraic equation such as x x2 3 2- + = 0 . 
In 2004 the popular monthly magazine Physics World polled its readers to 
find The greatest equations ever, and even among physicists Euler’s equation 



introduction

2

came a close second to the winning entry, Maxwell’s equations for elec-
tromagnetism. Lagging far behind these two front-runners were such 
classical equations as the Pythagorean theorem, Einstein’s equation, 
Newton’s second law of motion (F ma= ) linking force and acceleration, 
and Boltzmann’s law of entropy (S k W= ln ). In their responses to the 
poll’s findings the participants described Euler’s equation as ‘mind-
blowing’, ‘filled with cosmic beauty’, and ‘the most profound mathematical 
statement ever written’.

In 1933, at the age of only 14, the future Nobel Prize-winning physicist 
Richard P. Feynman described Euler’s equation in similar terms as ‘The 
most remarkable formula in math’, and in later years he referred to its 
close relative ‘Euler’s identity’ in the same way, adding ‘This is our jewel’. 
Waxing even more enthusiastically, the Stanford mathematician Keith 
Devlin was moved to claim that

Like a Shakespearian sonnet that captures the very essence of love, or a painting 
that brings out the beauty of the human form that is far more than just skin 
deep, Euler’s equation reaches down into the very depths of existence.

Can this beauty be tested? In 2014, in what was described as an ‘equation 
beauty contest’, two neuroscientists used MRI scanning to test the brain 
activity of several mathematicians while viewing each of fifteen equa-
tions that they’d earlier described as beautiful, indifferent, or ugly. They 
found, as BBC News put it, that the same emotional brain centres used to 
appreciate art were being activated by ‘beautiful’ maths.

Unsurprisingly the equation most consistently rated as ‘beautiful’ in 
this experiment was Euler’s equation. Sir Michael Atiyah, a former win-
ner of the Abel prize and Fields medal (regarded as the mathematical 
equivalents of the Nobel Prize) who collaborated with the neuroscien-
tists, may have hit the nail on the head when he described the winning 
equation as the mathematical equivalent of Hamlet’s ‘To be, or not to be’ – 
‘very short, very succinct, but at the same time very deep’.

Few equations reach beyond the realms of academia, but Euler’s equa-
tion has even featured in two episodes (MoneyBART and Homer3) of the 
popular American television series The Simpsons. The same equation was 
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also crucial in a criminal court conviction when Billy Cottrell, a talented 
physics graduate student at the California Institute of Technology 
(Caltech), was sentenced to eight years in a federal prison for causing 
over $2 million worth of property damage. A self-confessed environ-
mental extremist, he was convicted of spray-painting slogans onto more 
than 100 sports utility vehicles which he criticized as ‘gas guzzlers, killers, 
and smog machines’. He was identified after writing Euler’s equation 
(which had ‘just popped into my head’) on a Mitsubishi Montero. As he 
proclaimed in his trial:

I think I’ve known Euler’s theorem since I was five . . . Everyone should know 
Euler’s theorem.

So what is this result that ‘Everyone should know’? And who was Euler?

Euler, his equation, and his identity

Old MacDonald had a farm,
e, i, e, i, 0,

And on that farm he had 1 π-g,
e, i, e, i, 0.

Nursery rhyme

Leonhard Euler was an 18th-century mathematical genius who grew up 
in Basel in Switzerland but spent most of his life in the Imperial courts 
of St Petersburg and Berlin. The most prolific mathematician of all time, 
and one of the four greatest (the other three being Archimedes, Newton, 
and Gauss), Euler published 866 books and papers in over 70 volumes. 
These range across almost all branches of mathematics and physics that 
were then being investigated, and much of today’s research in these sub-
jects can be traced back to Euler’s pioneering work.

Euler’s equation usually appears in one of two equivalent forms:

	 e iπ + 1 = 0 or e iπ = −1

It also appears in the forms e ip + =1 0  and e ip = -1, with the π appearing 
before the i (as in 2i, 3i, etc.).
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Why is Euler’s equation so popular, and yet so profound? Perhaps it’s 
because the first form above connects five of the most important num-
bers in mathematics:
1	–	the basis of our counting system
0	–	the number that expresses ‘nothingness’
π	–	the basis of circle measurement
e	 –	the number linked to exponential growth
i	 –	an ‘imaginary’ number, the square root of −1.
It also involves the three fundamental mathematical operations of addition 
(+), multiplication (×), and taking powers, and the notion of equality (=). 
As one participant in the Physics World poll was moved to remark:

What could be more mystical than an imaginary number interacting with real 
numbers to produce nothing?

As we’ll see, Euler’s equation is a special case of a general result that he 
published in 1748 in his Introductio in Analysin Infinitorum (Introduction to 
the Analysis of Infinites), one of the most important mathematical books 
ever written (see Figure 1). This general result is Euler’s identity,

	 eix = cos x + i sin x   

which simply and beautifully connects the exponential function and the 
trigonometric functions. Euler’s identity has even featured on a Swiss 
postage stamp (see Figure 2).

But why should the exponential function ex, which goes ‘shooting off 
to infinity’ as x becomes large, have anything to do with the trigonomet-
ric functions cos x and sin x, which forever oscillate between the values 
1 and −1 (see Figure 3)? And why should the ‘imaginary’ square root of 
−1 be the cause of this connection? Answering these questions is the aim 
of this book.

Although they may appear rather abstract at first sight, Euler’s equation 
and identity are of fundamental importance to physicists and engineers. 
As we’ll see, exponentials of the form ekt  describe things that grow (if k > 0) 
or decay (if k < 0) with time t, and those also involving the number i, 
such as eikt , describe circular motion (see Figure 4). But by Euler’s identity, 



introduction

5

Fig. 2.  Euler and his identity, e iij j= +cos sinj
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Fig. 3.  The graphs of y ex= , y x= sin , and y x= cos
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eikt  is made up from cos kt and sin kt and can therefore be used to repre-
sent things that oscillate; for example, ei tw  refers to alternating electric 
current with angular frequency ω (although electrical engineers tend to 
use j instead of i, reserving i for electric current), and ei x ctw -( )  represents 
the form of radio and sound waves. These ‘imaginary exponentials’, 
rather than the related cosines and sines, greatly facilitate mathematical 
calculations – indeed, for certain more advanced topics in physics and 
engineering, such as quantum mechanics, signal analysis, and image 
processing, many calculations cannot be carried out without them.

A word of warning! The terminology used here is not universal 
because authors have differing views on what are meant by such terms 
as ‘equation’, ‘identity’, and ‘formula’. What I call ‘Euler’s equation’ also 
appears in the literature as ‘Euler’s formula’ and ‘Euler’s identity’, while 
‘Euler’s identity’ is sometimes called ‘Euler’s equation’ or ‘Euler’s for-
mula’! For me, as mentioned above, an equation is a statement with an 
equals sign in it, whereas a formula is a general expression into which we 
can substitute numbers to obtain a particular answer; examples are p r 2  
for the area of a circle with radius r (so substituting r = 5 gives 25π for the 
area of a circle with radius 5), and { ( )} /- ± Ö -b b ac a4 22  for the solu-
tions of the quadratic equation ax bx c2 + + = 0. An identity is a mathemat-
ical equation that holds for a range of values of the variable, such as

1

0 t

t

i
y y

y = ekt

y = eikt

0 1

Fig. 4.  The graphs of y e kkt= >( )0  and y eikt=



introduction

7

	 sin 2 2 sin cosx x x= , 	

which is true for all numbers x, or

	 1 1
1 2 3 4+( ) = - + - + --

x x x x x . . . , 	

which holds for all values of x between −1 and 1.
In summary, Euler’s equation is remarkable in combining five entities, 

each with deep mathematical significance and each with its own story. In 
this book I’ll look at each one in turn. I begin in Chapter  1 with the 
number 1, in which I look at counting systems from around the world. 
Chapter 2 then explores the gradual emergence of 0 and of the negative 
numbers, leading to fractions and irrational numbers and culminating 
in the ‘real numbers’ that we all take for granted. Chapters 3, 4, and 5, on 
the numbers π, e, and i, form the core of this book, and their very different 
stories arise (respectively) from ideas in geometry, analysis, and algebra. 
Finally, in Chapter 6, I’ll show how Euler and his contemporaries com-
bined all these numbers into the ‘most beautiful theorem in mathematics’.



Fig. 5.  Finger counting, from Luca Pacioli’s Summa of 1494
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CHAPTER 1

1

The counting numbers

I’ll sing you one, O
Green grow the rushes, O

What is your one, O?
One is one and all alone

And evermore shall be so.

English folk song

F rom earliest times people have needed to count – to keep track of  
 their sheep, to measure their land, to settle financial matters, and 

much else besides. To do so, they made notches on tally sticks, formed 
piles of stones, and counted on their fingers, and it is the last of these that 
undoubtedly led to our decimal system, based on 10, that was adopted 
by most human civilizations.

However, not every community has used a decimal system for its 
numbers and its weights and measures. Some have chosen a number 
system based on 5 (the fingers of one hand) or on 20 (fingers and toes), 
while a few others have favoured a duodecimal system based on 12, a 
number with more factors (2, 3, 4, 6) than our decimal system (2 and 5). 
And as we’ll see, the ancient Mesopotamians used a number system 
based on 60.

Most nations have adopted the metric system for their weights and 
measures and their coinage. But some still measure lengths in yards, feet, 
and inches, with 12 inches in a foot and 3 feet in a yard, and until 1971 
British money was based on 12 pennies in a shilling and 20 shillings in a 
pound. Although most countries now use the Celsius (or centigrade) 
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scale for measuring temperatures, with the freezing and boiling points 
of water as 0° and 100°, the USA still uses the Fahrenheit scale with these 
points fixed at 32° and 212°. In the UK weights are often given in stones, 
with 14 pounds in a stone, and in pounds, with 16 ounces in a pound.

With numbers featuring so prominently in our daily existence, it’s not 
surprising that several counting rhymes, used by children as they learn 
their numbers, are based on our decimal number system, as we see in Box 1.

Number systems

Don’t panic!
Base 8 is just like base 10 really

– if you’re missing two fingers!

Tom Lehrer’s ‘New Math’

Number is the basis of counting, and in this section we tour the ancient 
world and look at its number systems. But first, let’s review our familiar 
decimal system.

Decimal numbers

There are three types of people:
those who can count and those who can’t.

Anon

In our decimal system, based on the number 10, we write our numerals 
with separate columns for units (1), tens (10), hundreds (100), thousands 
(1000), . . . , as we move from right to left. Such a system is called a place-value 
system because the placing of each number determines its value. Each place-
value is ten times the next one: for example, the decimal number 475 means

	 ( ) ( ) ( ) ( ) ( ) ( ),4 1 7 1 5 1 1 7 1 5 14 2 1´ + ´ + ´ = ´ + ´ + ´00 0 0 0 00 	

where 100 = 1. In such a representation the same symbol may stand for 
different numbers, depending on its position; for example, 555 means

	 ( ) ( ) ( ),5 1 5 1 5 1´ + ´ + ´00 0 	
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Box 1:  Nursery rhymes

Numbers play a role in several nursery rhymes and children’s counting 
games.

Here’s a small selection from some numerically based rhymes:

One, two, three, four, five,
        Once I caught a fish alive,
Six, seven, eight, nine, ten,
        Then I let it go again.

One for sorrow, Two for joy,
Three for a girl, Four for a boy,
Five for silver, Six for gold,
Seven for a secret, Never to be told!
Eight for a wish, Nine for a kiss,
Ten for a bird, You must not miss.

The next children’s rhyme provided the title of a detective novel by Agatha 
Christie:

One, two, Buckle my shoe,
Three, four, Open the door,
Five, six, Pick up sticks,
Seven, eight, Lay them straight,
Nine, ten, A good fat hen.

Finally, the following song can be continued for as long as one wishes:

This old man, he played one,
He played knick-knack on my thumb,
With a knick-knack paddy whack, Give the dog a bone,
This old man came rolling home.

This old man, he played two,
He played knick-knack on my shoe,
With a knick-knack paddy whack . . . 

This old man, he played three,
He played knick-knack on my knee,
With a knick-knack paddy whack . . . 
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where the first 5 (representing 500) has ten times the value of the second 
5 (representing 50), which in turn has ten times that of the third 5. It fol-
lows that we can write down any whole number, however large, using 
just the ten symbols 1, 2, 3, 4, 5, 6, 7, 8, 9, and 0. Moreover, unlike some of 
the number systems we consider below, there’s just one symbol in each 
position; for example, we write a single 5 rather than five 1s.

Binary numbers

There are 10 types of people:
those who can count in binary

and those who can’t.

Anon

Another number system, used throughout computer science, is the 
binary place-value system. Based on the number 2, the counting num-
bers are formed from 0s and 1s only, beginning

decimal: 1 2 3 4 5 6 7 8 9 10

binary: 1 10 11 100 101 110 111 1000 1001 1010

To transform a decimal number to its binary form we write it as a sum of 
powers of 2; for example, the decimal number 13 corresponds to the 
binary number 1101, since

	

13 8 4 1 1 2 1 2 2 1 2

the binary number 11 1

3 2 1= + + = ´ + ´ + ´ + ´

=

( ) ( ) ( ) ( )

.

0

0

0

	

Conversely, to turn a binary number such as 1101 into its decimal form 
we simply reverse the rows above. It’s as easy as 1, 10, 11.

A number system based on 2 has been in use by islanders of the Torres 
Strait, between Papua New Guinea and Australia. It begins

1 = urapun, 2 = okosa, 3 = okosa-urapun, 4 = okosa-okosa, 5 = okosa-okosa-urapun.

Roman numbers

We’re also familiar with Roman numerals, which appear on many clock 
faces and are used for names of monarchs (Henry VIII), chapter numbers 
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in books, and dates. This is a decimal system, with capital letters used for 
numbers, but it’s not a place-value system because different letters are 
used for 1, 10, 100, and 1000, and for 5, 50, and 500:

number: 1 5 10 50 100 500 1000

letter: I V X L C D M

In this system letters are repeated as necessary – for example,

	 287 2 5 3 5 2 is written as CCLXXXVII= + + + +00 0 0 . 	
Numbers that were once written as IIII and XXXX are usually written as IV 
and XL, meaning ‘one before five’ and ‘ten before fifty’, so following this 
pattern we usually write the year 1944 in Roman numerals as MCMXLIV.

With numerals written in this way arithmetical calculations are 
impractical, and the Romans generally used an abacus or similar instru-
ment for counting and trading.

Egyptian numbers

Around 2600 bc the Egyptians built the magnificent pyramids, which 
attest to their extremely accurate measuring abilities. But their writings 
on papyrus reeds have rarely survived the ravages of several millennia, 
and most of our knowledge of their mathematical activities comes from 
just two large but fragile papyri from about 1850–1650 bc – the Rhind 
mathematical papyrus (named after its purchaser, the Victorian explorer 
Henry Rhind) in the British Museum and a similar one in Moscow. Both 
present tables of numbers and dozens of worked problems written in 
hieratic script (see Figure 6).

Fig. 6.  Part of the Rhind papyrus
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It emerges from these primary sources that the Egyptians employed a 
decimal system, but it was not a place-value system because it used dif-
ferent symbols for the powers of 10: a vertical rod for 1, a heel bone for 
10, a coiled rope for 100, a lotus flower for 1000, and so on (see Figure 7).

To represent a number the Egyptians used appropriate repetitions of 
each symbol, usually written from right to left. For example, the num-
bers 367 and 756 are as shown in Figure 8, and to add them we combine 
similar symbols, replacing any group of ten that arises by the next sym-
bol (10 rods = 1 heel bone, 10 coiled ropes = 1 lotus flower, etc.).

The Egyptians had an interesting way of writing fractions which we’ll 
look at in Chapter 2, and in Chapter 3 we’ll see how they found the area 
of a circle with a given diameter.

Mesopotamian numbers

At around the same time, mathematics was flourishing in the region 
between the rivers Tigris and Euphrates known as Mesopotamia or Old 
Babylonia. The Mesopotamians, or Babylonians, imprinted their sym-
bols with a stylus on wet clay (cuneiform writing) which was then left to 

1 10 100 1000

or

Fig. 7.  Egyptian powers of 10

367 756 1123+ =

Fig. 8.  Adding Egyptian numbers
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dry in the sun (see Figure 9). Many thousands of mathematical clay tab-
lets have survived, giving us much valuable information about the 
Mesopotamians’ mathematical activities.

Unlike the Egyptian decimal system the Mesopotamians used a ‘sexa-
gesimal system’, based on 60. Moreover, it was a place-value system in 
which each position has 60 times the value of the next. There were only 
two written symbols, corresponding to 1 and 10 and repeated as neces-
sary; for example, Figure 10 shows the sexagesimal number 1,12,37, rep-
resenting the decimal number

	 (1 6 12 6 37 6 36 72 37 43572 1´ + ´ + ´ = + + =0 0 0 00 00) ) )( ( .

Fig. 9.  A Mesopotamian clay tablet

Fig. 10.  A Mesopotamian number
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There were essentially three types of mathematical clay tablet – table 
texts with lists of numbers for use in calculations, problem texts in which 
questions are posed and answered, and rough-work tablets, used by chil-
dren for their calculations. Several table texts contain multiplication 
tables, such as the 9-times table in Figure 11.

Fig. 11.  A Mesopotamian 9-times table

Remnants of the Mesopotamian sexagesimal system survive in our 
measurements of time (60 seconds in a minute and 60 minutes in an 
hour) and of angles (such as 60° and 360°).

Greek numbers

The Greek word ἀριθμὸς (arithmos) means ‘number’, and for the Pythagorean 
brotherhood of around 550 bc ‘arithmetic’ originally referred to calculating 
with whole numbers, and by extension to what we now call ‘number theory’.

From around 400 bc the Greeks adopted a decimal counting system in 
which the twenty-four letters of the Greek alphabet, together with three 
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archaic letters (digamma, koppa, and sampi), represented the numbers 1, 
2, 3, . . . , 9, the numbers 10, 20, . . . , 90, and the numbers 100, 200, . . . , 900 (see 
Figure 12); for example, ϕνε represents the number 555. For larger num-
bers they added accents or dots; for example,  . ε̷ meant 5000.

In Euclid’s Elements, dating from the 3rd century bc, Book VII on arith-
metic opens with the following definitions of number:

	I.	 Unity is that, by which everything that is, is called One.
	II.	 Number is a multitude composed of unities.

Before we leave 3rd-century Greece, we mention Archimedes’ profi-
ciency with extremely large numbers. In The Sand Reckoner he showed 
how to construct numbers larger than the number of grains of sand in 
the universe. To this end he began with a myriad (10,000), then a myriad 
myriad (100,000,000), then 100,000,0002, 100,000,0003, . . . , up to  
P = 100,000,000100000000. He then formed powers of P, eventually stopping 
when he reached the desired number: its size was about 1 followed by 
80,000,000,000,000,000 zeros!

1 2 3 4 5 6 7 8 9

α β γ δ ε ζ η θς

10 20 30 40 50 60 70 80 90

ι κ λ μ ν ξ ο π ϙ

100 200 300 400 500 600 700 800 900

ρ σ τ ϕ χ ψ ω ϡυ

Fig. 12.  The Greek number system
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Chinese numbers

Although the ancient Chinese employed different symbols for 1, 10, 
100, . . . when writing their numbers, they used a decimal place-value 
system for their counting boards. These had separate compartments for 
units, tens, hundreds, . . . into which small bamboo rods were placed 
(see Figure 13). Each number from 1 to 9 had two different forms (hori-
zontal and vertical) to enable the calculator to distinguish more easily 
between adjacent compartments; Figure 14 shows the counting-board 
representations of 6736 and 2888.

1 2 3 4 5 6 7 8 9

or

Fig. 13.  Chinese counting-board numbers

Fig. 14.  The counting-board numbers 6736 and 2888

36 67 2 8 8 8

Mayan numbers

The Classic Mayan period lasted from about 250 to 900. Situated over a 
large area extending from present-day Guatemala, Belize, and Honduras 
to the Yucatan peninsula of Mexico, the Mayans carried out extensive 
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calendar calculations. Primary sources survive in the form of stone col-
umns called stelae and a handful of codices, drawn on tree bark and 
folded. Part of a Mayan codex (the ‘Dresden codex’) is shown in Figure 15.

Fig. 15.  A Mayan codex

1 2 3 4

5 6 7 8 9

10 11 12 13 14

15 16 17 18 19

Fig. 16.  The Mayan numerals from 1 to 19

The Mayan number system was mainly based on 20, with a dot to rep-
resent 1 and a line to represent 5; Figure 16 shows the numbers from 1 to 
19. An attractive feature of the Mayan counting system was that each 
number also had a pictorial head-form representing the head of a man, 
bird, animal, or deity. Some of these are shown in Figure 17 overleaf.
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The Mayans used two basic types of calendar: a ritual calendar of 260 
days, known as the tzolkin and consisting of thirteen months of 20 days, 
and a calendar of 360 days with eighteen months of 20 days (plus an 
extra five ‘inauspicious’ days to make up the usual 365). These two calen-
dars operated independently but were sometimes combined to give a 
long-count or calendar round with 18,980 days (52 calendar years). These 
periods of 52 years were then packaged into even longer time periods.

In order to accommodate the 360-day calendar their number system 
was based on 20 and 18:

1 kin = 1 day
20 kins = 1 uinal = 20 days

18 uinals = 1 tun = 360 days
20 tuns = 1 katun = 7200 days

20 katuns = 1 baktun = 144,000 days
20 baktuns = 1 pictun = 2,880,000 days.

0, mi 5, ho 10, lahun

1, hun 6, uac 11, buluc

Fig. 17.  Head-forms of some Mayan numerals
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The Mayans had no problem calculating with such large numbers. 
Indeed, the longest time period found on a codex is 1 kin, 15 uinals, 
13  tuns, 14 katuns, 6 baktuns, and 4 pictuns, giving a grand total of 
12,489,781 days, or over 34,000 years.

The Hindu–Arabic numbers

Around 250 bc in India the edicts of Emperor Aśoka, the first Buddhist mon-
arch, were carved on pillars around his kingdom. These pillars contained 
early examples of Indian base-10 numerals, but it was not a place-value sys-
tem because there were different symbols for 1 to 9, 10 to 90, 100, and 1000. 
A place-value system with separate columns for units, tens, hundreds, . . .  
started to emerge around the year ad 250, and led eventually to the intro-
duction of zero and negative numbers, as we’ll see in the next chapter.

In Mesopotamia the period from 750 to 1400 experienced a reawaken-
ing of interest in European and Eastern culture. Inspired by the teachings 
of the prophet Muhammad, Islamic scholars seized on the ancient Greek 
and Indian texts, translated them into Arabic, and extended and com-
mented on them.

Baghdad, in particular, was well placed to receive these writings, being 
on the east–west trade routes for silks and spices. There the caliphs 
actively promoted mathematics, and in the early 9th century Caliph 
Hārūn al-Rashıd̄ and his son al-Ma’mūn established the ‘House of Wisdom’, 
a scientific research academy with its own astronomical observatory and 
an extensive library of manuscripts. Here the Islamic scholars developed 
the Indian decimal place-value counting system into what are now our 
Hindu–Arabic numerals. Gradually the numerals diverged into the three 
separate types shown in Figure  18: the modern Hindu script, the East 
Arabic numerals written from right to left and still found today in the 
countries of the Middle East, and the West Arabic numerals that became 
the number system used throughout Western Europe.

One of the earliest scholars at the House of Wisdom was the Persian 
scholar Muhammad ibn Mūsā al-Khwārizmı,̄ who is remembered by math-
ematicians primarily for two books, one on arithmetic and the other on 
algebra. The former work contained no results of great originality, but 
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was important for introducing the Indian number system to the Islamic 
world, and later for helping to spread the decimal counting system 
throughout Christian Europe. Indeed, al-Khwārizmı’̄s name, transmuted 
into ‘algorism’, came to be used in Europe to mean ‘arithmetic’, and we 
still use the word algorithm to refer to a step-by-step procedure for solving 
problems.

It took many centuries for the Western form of the Hindu–Arabic 
numerals to become fully established. These were more convenient to 
calculate with than Roman numerals, but for practical use many people 
continued to use an abacus. Figure 19 shows a 16th-century picture rep-
resenting ‘Arithmetic’ which contrasts the modern algorist (represented 
by the 6th-century mathematician Boethius and his Hindu–Arabic 
numerals) with the old-fashioned abacist (represented by Pythagoras 
and his counting board).

Brahmi numerals,
second century  AD

Gwalior inscription,
AD 870

Gobar numerals
(West Arabic
manuscript)

Early printed numerals,
1474

Modern Hindu script
(Nâgarî)

Modern East Arabic
numerals

Fig. 18.  The origins of our number system
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As time progressed the situation improved, with the publication of 
influential arithmetic books that promoted the Hindu–Arabic numerals. 
These included Leonardo Fibonacci’s Liber Abbaci (Book of Calculation) 
in Latin (1202), Luca Pacioli’s Summa in Arithmetica, Geometrica, Proportioni 
et  Proportionalita (Summary of Arithmetic, Geometry, Proportion, and 

Fig. 19.  The algorist and the abacist, from Gregor Reisch’s encyclopedia Margarita 
Philosophica, 1503
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Proportionality) in Italian (1494), and Robert Recorde’s The Grounde of 
Artes in English (1543). Pacioli’s compilation, in particular, gave illustra-
tions for how to calculate on one’s fingers (see Figure 5 which opens this 
chapter). By the 16th century, when such printed books became widely 
available, the Hindu–Arabic numerals were already in widespread use.

Number names

Up to now we’ve concentrated on numerals, the written forms of numbers. 
But what about the spoken forms – the names ‘one’, ‘two’, ‘three’, . . . ? 
Although some primitive tribes had no need for numbers beyond this, 
counting ‘one, two, many’, it became increasingly necessary to use 
names for larger numbers such as ‘ten’, ‘twenty’, and ‘one hundred’.

The use of a decimal system is certainly evident in such English-
language number names as ‘seventeen’ (seven and ten) and ‘sixty-seven’ 
(six tens and seven), as it is in many other languages. Figure 20 illustrates 
the similarities and differences among the number names of some 
Western languages, both ancient and modern.

Among the similarities here we note those between the forms of six, of 
three, and of eight. Among the differences we see that the Latin quattuor 

English Gothic Latin Greek French German Basque
one ains unus heis un eins bat
two twai duo duo deux zwei biga
three threis tres treis trois drei hirur
four fidwor quattuor    tettares quatre vier laur
five fimf quinque     pente cinq fünf bortz
six saihs sex hex six sechs sei
seven sibun septem hepta sept sieben zazpi
eight ahtau octo okto huit acht zortzi
nine niun novem ennea neuf neun bederatzi
ten taihun decem deka dix zehn hamar
eleven ainlif undecim hendeka onze elf hamaika
twelve twalif           duodecim   dodeka douze zwölf hamabi
seventeen sibuntaihun septendecim dekaepta dix-sept siebzehn hamasei
twenty twaitigjus viginti eikosi vingt zwanzig hogoi

Fig. 20.  Number names in the Western world
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and the French quatre have a different root from four, fidwor, and vier. The 
names for 12 sometimes have the form 2 + 10, as in duodecim and dodeka, 
and sometimes seem to be new words, as in douze and zwölf. The English 
word twelve has the same root as the Gothic twalif, which may mean ‘two 
left’ (when we’ve already counted up to ten).

Remnants of counting systems based on 20 survive in the biblical ref-
erence (in Psalm 90) to our life span of seventy years as three-score years 
and ten, where a score is 20. French also has the remnants of a base-20 
system in its use of quatre-vingt (four twenties) for 80 and quatre-vingt-dix 
(four twenties and ten) for 90, and similarly the Basque words for 60 and 
90 are hirur-hogoi (three twenties) and laur-hogoi-ta-hamar (four twenties 
and ten). Even more intriguingly, the full Danish names for 60 and 80 are 
tre-sinds-tyve (three times twenty) and fir-sinds-tyve (four times twenty), 
while those for 50 and 70 are halv-tred-sindstyve (half-before-three times 
twenty) and halv-fjerd-sindstyve (half-before-four times twenty), now usu-
ally abbreviated to halvtreds and halvfjerds. Here the appearance of ‘half’ is 
reminiscent of the German use of halb vier for half-before-four o’clock, or 
half-past-three.

Many of the words we use in daily life are derived from number names. 
For example,

the Latin prefix ‘uni’ (one) appears in ‘unicorn’, ‘universe’, and ‘unilateral’, 
while its Greek equivalent ‘mono’ gives us ‘monologue’ and ‘monocle’

the prefix ‘twi’ (two) appears in ‘twin’, ‘twilight’, ‘entwine’, and ‘between’, while 
the versions ‘bi’ and ‘di’ appear in ‘bicycle’, ‘biscuit’ (originally something 
twice-cooked), and ‘diploma’ (originally a document folded in two)

the prefix ‘tri’ (three) appears in ‘trio’, ‘tricycle’, and ‘triangle’, while the three 
parts of Yorkshire known as ‘Ridings’ were originally ‘thrithings’ or ‘thirdings’, 
meaning thirds

a ‘siesta’ was originally a rest period taken at the sixth hour (noon)

and your ‘duodenum’ gets its name from its length of twelve finger-widths!



Fig. 21.  A Mesopotamian table of reciprocals
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CHAPTER 2

0

The nothingness number

Now thou art an O without a figure.
I am better than thou art now.

I am a fool, thou art nothing.

William Shakespeare (King Lear)

The civilizations we met in Chapter  1 counted the objects around 
them: 5 cows, 12 people, etc. – but if there were no things there, 

there was no need to count them or to introduce a symbol for 0. Even less 
did they need to use negative numbers: −2 cows would have been meaning-
less.

But to see how natural the concepts of zero and the negative numbers 
can be, think of the temperatures on a weather forecast chart. With the 
Celsius (centigrade) scale the temperatures above freezing are repre-
sented by positive numbers (2°C, 10°C, etc.), while the freezing point is 
0°C and the temperatures below freezing appear as negative numbers 
(−2°C). So even though the concepts of zero and the negative numbers 
took thousands of years to emerge, they appear here very naturally.

The earliest appearances of zero and negative numbers probably arose 
in trading. Here, profits were recorded as positive numbers, while nega-
tive numbers corresponded to debts and zero represented a balance.

Where did the ad/bc numbering system for dates originate? A few years 
ago there was much discussion as to whether the new millennium should 
begin in the year 2000 (which it did) or in 2001 (since the 20th century 
began in 1901). The trouble arose because there was no year 0. The terms 
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ad and bc had been introduced in the year 531 by Dionysus Exiguus, who 
calculated that Christ’s birth had taken place 531 years earlier. But he 
couldn’t call it year 0, because such a number hadn’t yet been introduced – 
so the year we now call ad 1 immediately followed the year 1 bc. A more 
natural system was proposed in 1740 by the astronomer Jacques Cassini. 
Choosing 0 as the year of Christ’s birth, and keeping the ad years as they 
were, he shifted all the bc years by 1, so that the millennium would 
certainly have started in 2000.

Before proceeding, we must distinguish clearly between ‘zero’ and 
‘nothing’. Zero (0) is a number like any other, while ‘nothing’ means the 
absence of anything. For example, your age before you reached your first 
birthday was 0 years – it wasn’t nothing. Another example, more a lin-
guistic matter than a misunderstanding, concerns football scores: in the 
UK the score may be 2–nil, with ‘nil’ meaning zero, whereas US com-
mentators often say ‘2 to nothing’ – but it isn’t nothing, it’s something: a 
score of zero. In tennis we say ‘30–love’, with ‘love’ meaning zero.

From now on, we shall refer to the positive whole numbers 1, 2, 3, . . . , 
the negative whole numbers −1, −2, −3, . . . , and 0 collectively as integers 
(from the Latin word for ‘whole’). Note that 0 is the ‘additive identity’ for 
our number system – that is, adding 0 leaves any number unchanged 
( x x+ =0  for all x) – just as 1 is the ‘multiplicative identity’ ( x x´ =1 ).

Much ado about nothing

In our decimal place-value system a number like 35 means 3 tens and 5 
ones, whereas the number 305 means 3 hundreds and 5 ones. The zero 
between 3 and 5 registers that there are no tens; if we’d simply left a space 
instead of writing 0, we might confuse it with 35 or with the two separate 
numbers 3 and 5. The place-holder 0 shows what’s intended.

But how did the early civilizations cope with ‘nothingness’? And when 
did the symbol 0 become widely adopted for the number zero? Let’s tour 
the ancient world again.

As you may remember from Chapter  1, the Egyptians developed a 
decimal counting system with separate symbols for 1, 10, 100, . . . , each 
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repeated as often as necessary. Their number system had no need of a 
special symbol for zero.

The ancient Greeks used separate letters to represent 1 to 9, 10 to 90, 
and 100 to 900, but likewise had no special symbol for zero. In their geo-
metrical style of arithmetic, numbers were often represented by lines, so 
0 (with zero length) would have been difficult to represent.

But the situation was rather different for the Mesopotamians who 
used a place-value system based on 60. In their early tablets from around 
1800 bc the Mesopotamians sometimes left a gap to indicate no entry in 
that position, so 3, 5 would mean ( )3 6 5´ +0  (= 185 in our decimal sys-
tem), whereas 3, ,5 would mean ( ) ( , )3 6 5 1 8 52´ + =0 0 0 . Having no zero 
the Mesopotamians expected the intended value to be clear from the 
context – for example, when distinguishing between 3 and 3 × 60. Later, 
possibly around 600 bc, they began to introduce a special place-holder 
symbol to mark the space (see Figure 22), but it wasn’t a number like 0 
that they could use in calculations.

For the Mayans of Central America the idea of zero was firmly estab-
lished. As we saw in Chapter 1, their number system was a place-value 
system based mainly on 20. To keep track of the different powers of 20, 
they used a special symbol for zero, rather like an eye or a shell (see 
Figure 23).

Fig. 22.  A Mesopotamian symbol for zero
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In China the counting boards had separate compartments for units, 
tens, hundreds, . . . , and leaving one empty indicated a zero; for example, 
Figure 24 shows the number 2301. Although it would have been natural 
to introduce a zero symbol to represent this, the Chinese didn’t do so.

The Indians did, however. Whether they were familiar with Chinese 
counting boards is unknown, though the Chinese did visit India and 
their boards were transportable (like laptops). In any case, the Indian 
number system developed as a decimal place-value system based on the 
numbers 1 to 9, and later including the number 0. With these ten digits 
they could represent any whole number, however large.

The origin of the round form of the numeral for zero is unclear. It 
may have arisen from the use of round counters as place-holders for 
numbers written in the sand, or from the circular impression left by a 
stone. Or it may have arisen from the astronomer Claudius Ptolemy’s 
use of ο to represent zero in his influential astronomical work, The 
Almagest; ο is the Greek letter omicron, denoting οὐδὲν (ouden) and 

Fig. 23.  A Mayan symbol for zero

2 3 0 1

Fig. 24.  The number 2301 on a Chinese counting board
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meaning ‘nothing’. The oldest known occurrences of zero, from around 
the 3rd or 4th century, appear in a fragmentary Indian text known as 
the ‘Bakhshali manuscript’; inscribed on birch bark it may have been a 
training text for merchants (see Figure 25). Later, zero was represented 
by a small dot in a Cambodian inscription from the year 603, and by a 
small circle in Indonesia in 686.

As for the word ‘zero’, this originated in the Arabic word sifr, meaning 
‘empty’, which was later transcribed into Latin as cifra, or as cefirum or 
zefirum. The word cifra eventually became our word cipher, while the 
Italians changed zefirum to zefiro, and then to zevero, which was eventually 
shortened to zero.

Calculating with zero and negative numbers

The other use of 0 is as a number to use in calculations, where the 
difference between 3 and 2 (= 1) and the difference between 3 and 3 (= 0) 
are awarded the same mathematical status. For negative numbers a 
similar remark can be made for the difference between 2 and 3 (= −1). 

Fig. 25.  Part of the Bakhshali manuscript: zero appears as a large dot in the 
bottom row
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In  a famous passage from the 7th century the Indian mathematician 
Brahmagupta laid down rules for such calculations; here the words 
‘cipher’ and ‘nought’ can be regarded as interchangeable:

The sum of cipher and negative is negative; of positive and nought, positive;
of two ciphers, cipher.

[For example, 0 0 0 0 0+ - = - + = + =( ) ; ; .2 2 3 3 ]

Negative taken from cipher becomes positive, and positive from cipher is 
negative; cipher taken from cipher is nought.

[For example, 0 0 0 0 0- - = - = - - =( ) ; ; .2 2 3 3 ]

The product of cipher and positive, or of cipher and negative, is nought;
of two ciphers is cipher.

[For example, 0 0 0 0 0 0 0´ = ´ - = ´ =3 2; ( ) ; .]

From this time onwards zero could be used in arithmetical calculations 
– or almost . . . 

‘Thou shalt not divide by zero’

Having dealt with addition, subtraction, and multiplication, Brahmagupta 
then turned his attention to division:

Cipher divided by cipher is nought. Positive or negative divided by cipher is a 
fraction with that as denominator.

As we’ll see, the first of these statements (0/0 = 0) is nonsense, whereas 
the second is vacuous.

The trouble arises when we break the mathematicians’ eleventh com-
mandment, ‘Thou shalt not divide by zero’. For if we take two numbers, 
such as 4 and 9, we can write

	 4 9´ = ´0 0 	

(since both products are zero). If we now divide both sides of this equa-
tion by 0 we get 4 = 9, which is nonsense. We could also rearrange the 
equation to give 0/0 = 4/9, which disagrees with Brahmagupta’s answer 
of 0. And we could similarly use the equation

	 a b´ = ´0 0 	
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to prove that any two numbers a and b (such as your house number and 
telephone number) are equal. Rearranging this equation gives 0/0 = a/b, 
so that 0/0 can take any value we choose.

We might try to get around this problem by saying that a/0 is ‘infinity’ 
(denoted by ∞), but infinity isn’t a number and doesn’t obey the rules of 
arithmetic – for example,

	 ¥+ =¥ ¥- =¥ ¥´ =¥2 2 and 2, , . 	

Also, since a b+¥ = +¥  for any two numbers a and b, we can subtract 
infinity from both sides to deduce that a = b, which again is nonsense.

We conclude this section with a letter written by the Oxford math
ematician Charles L. Dodgson (better known as Lewis Carroll, author of 
Alice’s Adventures in Wonderland) to Wilton Rix, a young lad of 14. It uses 
the algebraic fact that x y x y x y2 2- = + -( )( ) .

Honoured Sir,

Understanding you to be a distinguished algebraist (i.e. distinguished from 
other algebraists by different face, different height, etc.), I beg to submit to you 
a difficulty which distresses me much.

If x and y are each equal to “1,” it is plain that 2 2 2´ - =( ) ,x y 0
and also that 5´ - =( ) .x y 0
Hence 2 52 2´ - = ´ -( ) ( ).x y x y
Now divide each side of this equation by ( ).x y-
Then 2 5.´ + =( )x y
But ( ) ( ),x y+ = +1 1  i.e. = 2.
So that 2 2 5.´ =

Ever since this painful fact has been forced on me, I have not slept more than 8 
hours a night, and have not been able to eat more than 3 meals a day.

I trust that you will pity me and will kindly explain the difficulty to

Your obliged, Lewis Carroll.

The difficulty arises when he divides both sides of the equation by x − y, 
which equals 1 − 1 = 0. This method of ‘proof’ has also been adapted to 
other situations; for example, it’s even been used to prove that ‘Winston 
Churchill is a carrot’!
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From integers to real numbers

The dear Lord made the integers,
Everything else is the work of man.

Leopold Kronecker,
German mathematician

Now that we have all the integers (positive, negative, and zero), let’s look 
at some other types of numbers – fractions, irrational numbers, and real 
numbers – to set the scene for the next two chapters on π and e.

Fractions

A fraction (meaning ‘broken number’) is a ratio of whole numbers – for 
example, 3

4
 and − 11

7
 are fractions; we do not allow division by 0. To 

multiply fractions we just multiply their numerators (top) and denomin
ators (bottom), and to add or subtract them we first replace them by 
fractions on a common denominator – for example:

	 3
4

2
7

6
28

3
14

1
4

2
7

7
28

8
28

15
28

´ = = + = + =and . 	

Fractions were already fully established by the time that zero appeared 
on the scene, particularly in problems on the sharing of objects among 
people. Several of these appear on the Rhind papyrus – for example:

Problem 65: Example of dividing 100 loaves among 10 men, including a boat-
man, a foreman, and a doorkeeper, who receive double shares. What is the 
share of each?

Here we’re essentially sharing the loaves among 13 people, so that those 
receiving single portions receive 100

13
9

13
7=  loaves and those receiving 

double portions receive twice this number, which is 15
5

13
 loaves. But the 

answer given on the papyrus was 15 1
3

1
26

1
78

 for those receiving double por-
tions, and 7 2

3
1

39
 for the rest; these answers agree with our earlier ones, 

since

	
1
3

1
26

1
78

26 3 1
78

30
78

5
13

2
3

1
39

26 1
39

27
39

9
13

+ + =
+ +

= = + =
+

= =and . 	
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So Egyptian fractions were very different from ours, being mainly unit 
fractions or reciprocals 1/ n , together with the fraction 2

3
. In order to cal-

culate with these reciprocals the Egyptians used fraction tables – for 
example, the Rhind papyrus includes the unit fraction equivalents of 2 / n  
for all odd numbers n from 5 to 101, beginning with

	 2
11

1
6

1
66

2
13

1
8

1
52

1
104

= = =and . 	

The Egyptians’ ability to calculate with these unit fractions is evident 
from the following problem on the Rhind papyrus:

Problem 31: A quantity, its 2
3

, its 1
2

, and its 1
7

, added together become 33. What 
is the quantity?

To answer this, we’d now use algebraic notation, solving the equation 
x x x x+ + + =

2
3

1
2

1
7

33  and obtaining the answer 14 28
97

. The answer that 
appears on the papyrus is

	 14 1
4

1
56

1
97

1
194

1
388

1
679

1
776

	

– a truly impressive feat of calculation.
The Mesopotamians also calculated with fractions, with a sexagesimal 

number such as 0;06,40 representing the decimal number

	
0 0 0 0 0 01 2 6

60
40

3600
1

10
1

90
1
9

+ ´ + ´ = + = +- - + + =( ) ( ) .6 6 4 6
	

Of particular importance was their use of reciprocals to facilitate 
division – to divide by a number, they multiplied by its reciprocal. The 
Mesopotamian table which opens this chapter (Figure 21) lists the recip-
rocals of those numbers that are made up from 2, 3, and 5 – these are the 
only reciprocals with a terminating sequence of sexagesimal digits. For 
example, the reciprocal of 2 is  0;30 because

	 2 3 2 1´ = ´ =0 0 30
60

; , 	

and the reciprocal of 9 is 1
9

0 06 40= ; ,  by the calculation above.
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The Greeks’ use of fractions arose through their interest in ‘commen-
surability’. The Pythagoreans called two numbers commensurable if each 
can be ‘measured’ a whole number of times by the same ruler. For example, 
the numbers 21 and 9 are commensurable because each can be meas-
ured an exact number of times by a ruler of length 3 (or of length 1), and 
similarly 7π and 3π are commensurable because each can be measured 
by a ruler of length π. In general, two numbers are commensurable if we 
can write their ratio as a fraction – for example, each of the two com-
mensurable pairs above has ratio 7

3
. However, as the Greeks discovered, the 

ratio of the diagonal and side of a square are not commensurable; by the 
Pythagorean theorem, this ratio is Ö =Ö2 1 2/  (see Figure 26). Plato 
remarked that ‘he who knows not this, is not a Man, but a Beast’.

1

1

√2

Fig. 26.  The diagonal and side of a square

Irrational numbers

A rational number is one that can be represented by a ratio or fraction; 
for example, the fractions 2

4
, 10

20
, and -

-
35
70

 all represent the same rational 
number which we usually denote by  1

2 , the fraction in its ‘lowest 
terms’. Note that every integer, such as 5 (= 5

1
), is rational. A number that 

isn’t rational, such as Ö2, is called irrational. Other important examples of 
irrational numbers include π and e, as we’ll see in Chapters 3 and 4.

To explain why Ö2  is irrational we must show that this number can-
not be written as a fraction a/b, where a and b are integers. Our proof, 
which is typical of the Greek approach, is by contradiction and is given 
in Box  2, but where the Greeks would have couched everything in 
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geometrical terms, we’ll use algebraic notation. We use the fact that the 
square of an even number is even, and the square of an odd number is odd.

We can use similar contradiction arguments to prove that √3, √5, and 
3√2 are all irrational.

Another interesting irrational number, also involving a square root, is 
the golden ratio

	 j= =+Ö1
2

0( ) .1 5 1 618 3399. . . 	

where φ is the Greek letter phi. This number has some remarkable 
arithmetic properties – for example,

	 j j j j2 2 618 3399. . . 1 and 1 618 3399. . 1= = + = = -. / . . .0 0 0 	

The golden ratio also has some interesting geometrical properties. If we 
take a ‘golden rectangle’ whose sides are φ to 1, and remove a square with 
side 1, we obtain a rectangle whose sides (of lengths 1 and φ − 1) are in 
the same ratio as before (see Figure 27). This is because j j2 1= + , from 
which we can deduce that j j/ /1 1 1= -( ) . The golden rectangle has 
often been regarded as perfectly shaped – neither too fat nor too thin.

Box 2:  ÖÖ2  is irrational

We need to prove that Ö2  cannot be written as a fraction. To do so we’ll assume 
that Ö2  can be written as a/b, and obtain a contradiction. We may assume that 
a/b is written in its lowest terms, so a and b have no common factor.

By squaring, we can rewrite the equation Ö = =2 as 22 2a b a b/ , so a2  
(being twice an integer) must be an even number. But if a2  is even, then a 
must also be even.

Since a is even, we can write a k=2 ,  for some integer k. So a b k2 2 22 4= = , 
which gives b k2 22= .  It follows that b2  is even, and so b is even.

This gives us our contradiction: a and b are both even, and so both are 
divisible by 2, contradicting the fact that a and b have no common factor.

This contradiction arises from our original assumption that Ö2  can be 
written as a fraction, so this assumption is wrong: Ö2  cannot be written as a 
fraction, and so is irrational.
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If we now continue to remove squares, as in Figure 28, we eventually 
obtain a spiral pattern that appears throughout nature – for example, 
on certain shells and in the pattern of seeds on the head of a sunflower.

φ – 1

φ

1

1

Fig. 27.  Removing squares from golden rectangles

Fig. 28.  Removing squares from golden rectangles

Real numbers

We’re all familiar with the real number line, the line with all the numbers 
on it, both rational and irrational (see Figure 29). But what exactly is a 
‘real number’?

We might try to define real numbers by saying that the number line 
consists of all the rational and all the irrational numbers – but this is 
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unsatisfactory because we’ve already defined the irrational numbers to 
be all those real numbers that aren’t rational!

It is not difficult to prove that:

Every rational number can be written as a finite or recurring decimal 
fraction.

For example,

	 3
8

0
2
9

0
1
7

0= = =. , . . . . , . . . .375 2222 and 14285714285714 	

We can also go the other way and prove that

Every finite or recurring decimal can be written as a fraction.

For example, 0 375 375
1000

. = = 3
8

,  and if x = 0. . . .2222 , then 1 2 22220x = . . . ., 
and so (by subtraction) 9 2x = , giving x= 2

9
. We can similarly prove that 

0.9999 . . . =  1: if you don’t believe this just multiply the equation 
0 3333 1

3
. . . . =  by 3.
So we might try to define a real number to be a finite or infinite 

decimal: if this decimal is finite or recurs, then the number’s rational, but 
if it’s an infinite decimal that doesn’t recur, then the number’s irrational. 
Unfortunately, although this approach based on decimals may seem to 
define the real numbers, we run into trouble when we try to do arith
metic. For example, if we agree to define √2 in this way, as the non-
recurring infinite decimal 1.41421356237 . . . , how do we then prove that 
Ö ´Ö =2 2 2 ? (Try multiplying two infinite decimals together!)

Much time was spent in the second half of the 19th century in address-
ing such fundamental difficulties. A formal definition of the real num-
bers was eventually provided by the German mathematician Richard 
Dedekind, using the idea of what is now called a Dedekind cut (see Box 3).

. . . . . .
–3

–π π–√2 √2 e

–2 –1 0 1 2 3 4 5

–2⅔ 4¼ 5⅓⅓–½

Fig. 29.  The real number line



0

40

Algebraic and transcendental numbers

We’ve already classified real numbers as rational or irrational, and we’ll 
conclude this chapter with a different classification that we’ll need in 
Chapter 6. It separates numbers into those that are ‘algebraic’ and those 
that are ‘transcendental’.

A polynomial is an expression made up from sums and differences of 
powers of a variable, such as

	 x x x x x x6 5 4 3 212 6 16 239 188 6- + - + - +0 0 0. 	

Box 3:  Defining a real number

Dedekind noticed that the set of real numbers (which we’re trying to define) 
differs from the set of rational numbers (which we already know about), 
because the latter has ‘gaps’ (at Ö2, π, and e, for example). We can fill these 
gaps with numbers corresponding to the irrational numbers. Indeed, for 
Dedekind, each gap is a number, which we can specify by the sets L (left), con-
sisting of all the rational numbers less than it, and R (right), consisting of all 
the rational numbers greater than it. For example, Figure 30 shows the gap at 
Ö2, the set L consisting of all rational numbers less than Ö2 (such as −3, 0, 
and 1.4142), and the set R consisting of all rational numbers greater than Ö2  
(such as 1.4143 and 57).

As Dedekind wrote in 1872:

If all points of the straight line fall into two classes such that every point of the 
first class lies to the left of every point of the second class, then there exists one 
and only one point which produces this division of all points into two classes, 
this severing of the straight line into two portions.

He then defined the set of real numbers to be the set of all these cuts, and 
showed how arithmetic can be carried out when we use this definition.

… …L R
√2

all rationals
less than √2 

all rationals
greater than √2 

Fig. 30.  A Dedekind cut
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Algebraic numbers (generalizing the rational numbers) are numbers that 
are solutions to polynomial equations with integers as coefficients. For 
example,
2
9

 is algebraic – it’s the solution of the equation 9 2x = .
Ö2  is algebraic – it’s a solution of the equation x2 2= .
3 7Ö  is algebraic – it’s a solution of the equation x3 7= .
Ö +Ö2 3  is algebraic – it’s a solution of the equation x x4 210 1 0- + = .
the imaginary number i = Ö -1  is algebraic – it’s a solution of the equa-
tion x2 1= - .
Numbers that are not algebraic are called transcendental – as Euler 
remarked, they ‘transcend the power of algebraic methods’.

The first number that was proved to be transcendental was discovered 
by the French mathematician Joseph Liouville in 1848. He started with 
the factorial numbers n!, defined by

	 1 1 2 2 1 2 3 3 2 1 6 4 4 3 2 1 24! , ! , ! , ! , . . . ,= = ´ = = ´ ´ = = ´ ´ ´ = 	

and proved that the number

	 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 11 2 3 4 1 2 6 24/ / / / . . . / / / / .! ! ! !0 0 0 0 0 0 0 0+ + + + = + + + + .. . 	

	 = 0 000 00000000000000000 000. . . .11 1 1 	

is transcendental.
But classifying numbers in this way is extremely difficult. In 1873 the 

French mathematician Charles Hermite proved that e is transcendental, 
and the corresponding result for π was proved nine years later by 
Ferdinand Lindemann of Germany (see Chapter  6). Later, in a famous 
lecture on unsolved mathematical problems in 1900, David Hilbert 
asked whether numbers like 2 2Ö  are transcendental, a result that was 
eventually proved in the 1930s. Yet even now we know very little: eπ has 
been proved transcendental, but we still don’t know whether e+p , p e, and 
p e  are algebraic or transcendental.



Fig. 31.  Liu Hui’s study of a dodecagon
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CHAPTER 3

π

The circle number

’Tis a favorite project of mine
A new value of π to assign.

I would fix it at 3
For it’s simpler, you see,

Than 3 point 14159.

Harvey L. Carter

This chapter concerns the irrational number

	 p =3 141592653589793238462643383279. . . . . 	

It is the ratio of the circumference C of a circle of radius r to its diameter 
d (= 2r), as shown in Figure 32 – that is,

	 p p p= = =C d C d r/ so, .2 	

This ratio is the same for circles of any size – from a pizza to the Moon.
It is also the ratio of the area A of a circle to the square of its radius r,

	 p p p= = =A r A r d/ , / .2 2 2 4so 	

This ratio is also the same for all circles. Indeed, as Euclid proved in Book 
XII of his Elements in the 3rd century bc,

[The areas of] circles are to one another as the squares on their diameters,

so that the area of a circle of radius r is proportional to d2, and so also to r2.

But why does the same number π appear in the formulas for both the 
circumference and the area? One way to answer this question is to take 
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two circles of radius r, one shaded and the other unshaded, and assume 
that each has circumference 2p r.  We then divide each circle into a num-
ber of sectors and rearrange these sectors into a shape that resembles a 
parallelogram, as in Figure  33. If we now let the number of sectors in 
each circle become larger and larger, then this parallelogram increas-
ingly resembles a rectangle with sides of length 2p r  and r, which has 
area 2 2 2p pr r r´ = . So the combined area of the two original circles must 
also be 2 2p r , and consequently each one has area p r 2, as expected.

We can also reverse the previous paragraph to show that if the area is 
p r 2 , then the circumference must be 2p r . Such ideas appear in Sato 
Moshun’s Tengen Shinan, a Japanese treatise from 1698 (see Figure 34).

Another link between these two formulas, for those familiar with the 
integral calculus, is shown in Box 4.

diameter d

radius r

circumference
= 2πr = πd

area
= πr2 = πd2 /4

Fig. 32.  The circle number π
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2πr

2πr

r

2πr

r

Fig. 33.  From 2πr to πr2

Box 4:  Finding the area of a circle

Consider a circle of radius r. If we assume that the area of each ring of radius x 
and width dx is 2p x dx  (see Figure 35), we can then integrate over all radii 
from 0 to r to give the area A of the circle as

	 A x dx r
r

= =ò
0

22p p . 	

dx

r
x

Fig. 35.  Finding the area of a circle
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Fig. 34.  A Japanese manuscript
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Why π ?

The Greek letter π (pi), corresponding to our letter p, was first used for 
the ratio of a circle’s circumference to its diameter by a Welsh mathemat-
ics teacher called William Jones in 1706; it appeared in his Synopsis 
Palmariorum Matheseos or A New Introduction to the Mathematicks (see 
Figure 36). Earlier, in 1647, William Oughtred had already written p d/ , 
where π is the circle’s περιφέρεια (periphereia, or periphery) and δ  is its 
diameter. But it was Leonhard Euler who popularized the use of the letter 
π in his 1737 Variae Observationes Circa Series Infinitas (Various Observations 
on Infinite Series) and in many later writings, so that it soon came to be 
used universally.

Fig. 36.  William Jones introduces the symbol π

Many mnemonics have been devised for memorizing the first few digits 
of π. To get the digits, count the letters in the words of these sentences:

How I wish I could calculate pi! (3.141592)
May I have a large container of coffee? (3.1415926)
How I need a drink, alcoholic of course, after the heavy lectures involving quantum 
mechanics. (3.14159265358979)

and in 1906 the Literary Digest published the following poem in praise of 
Archimedes of Syracuse by A. C. Orr; it yields the first thirty digits of π, 
as listed at the beginning of this chapter:



π

48

Now I, even I, would celebrate
In rhymes inapt, the great
Immortal Syracusan, rivaled nevermore,
Who in his wondrous lore,
Passed on before,
Left men his guidance how to circles mensurate.

These digits, and many more (478 in total), are displayed at the Karlsplatz 
stop of the Vienna Metro (see Figure 37).

Some people have a remarkable facility for memorizing the digits of π. 
Those who can recite a thousand digits are not particularly rare, but the 
record is currently held by a Japanese retired engineer, Akira Haraguchi, 
who recited 100,000 digits in 16½ hours in 2006, and who later claimed 
to be able to increase this number to 111,700.

Early values

Several of the early civilizations we met in Chapter 1 obtained estimates 
for the areas and circumferences of circles. Such communities had no 
concept of π as a number, but their results yield lower and upper esti-
mates for its value. We shall frequently write these as decimal numbers, 
even though such notation was not available to the peoples we discuss.

Fig. 37.  The Vienna Metro
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Let’s begin with the Mesopotamians who, we may recall, wrote their 
mathematical calculations on clay tablets, using a number system based 
on 60. One of these tablets, dating from around 1800 bc, gives the ratio 
of the perimeter of a regular hexagon to the circumference of its circum-
scribed circle as the sexagesimal number 0;57,36. If the radius of the circle 
is r, then each side of the hexagon also has length r (see Figure 38), and so

	 6
2

57
60

36
3600

r
rp
= + .

	

This leads, after some calculation, to a value for π of 3 3 1251
8
= . , a lower 

estimate that’s within one per cent of its true value.

Around the same time as the Mesopotamian clay tablet, the Egyptian 
Rhind papyrus included the following problem:

Problem 50:  Example of a round field of diameter 9 khet. What is its area?
Answer:       Take away 1

9
 of the diameter, namely 1. The remainder is 8.

Multiply 8 times 8; it makes 64.
Therefore it contains 64 setat of land.

r

r

Fig. 38.  The Mesopotamian estimate for π
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From this calculation it seems as though the Egyptians approximated the 
area of a circle of diameter d by reducing d by one-ninth and squaring the 
result – that is,

	

area = æ
è
ç

ö
ø
÷ =

æ
è
ç

ö
ø
÷ =d d d d-

1
9

8
9

64
81

2 2
2 .

	
It’s likely that this method was discovered by experience: various other 

explanations have been proposed, including one involving a related octa-
gon, but none seems to be supported by historical evidence. In terms 
of  the radius this area is 256

81
2r , which corresponds to a value for π of 

about 3.160, an upper estimate that’s also within one per cent of the true 
value.

Both of the above estimates are better than the biblical value given 
some 1000 years later. In 1 Kings 7:23 and 2 Chronicles 4:2, we read:

Also, he made a molten sea [a large basin] of ten cubits from brim to brim, 
round in compass . . . and a line of thirty cubits did compass it round about.

This corresponds to a value of p = =30
10

3, an inaccurate but easy-to-use 
approximation that later reappeared in India, China, and several other 
lands over many centuries.

Indian mathematicians also developed methods for estimating the 
area of a circle. Vedic manuscripts of the first millennium bc give various 
geometrical constructions that yield approximations to π. For example,

to convert a circle into a square with the same area, take 13
15

 of the diameter 
and construct the square with this length as its side:

this yields the rather poor value of p =3 004. . More accurate, though 
more obscure, was

to take a square and construct a circle whose radius is half the side of the square 
plus one-third of the difference of half the diagonal of the square and half the side:

this gives the approximation p =3 088. .
In the following millennium the Jains discovered a simpler approxi-

mation for π – this was p =Ö10, which is about 3.162, also within one 
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per cent of the true value. Like the inferior biblical value of 3, it also had 
widespread use; for example, the value Ö10  was also proposed in China 
around the year ad 125 by Zhang Heng, chief astrologer and inventor of 
the seismograph for measuring earthquakes.

Using polygons

An important new method for estimating π  was introduced by the Greeks. 
Although often attributed to Archimedes, the method of estimating π by 
approximating a circle with polygons can be traced further back to the 5th 
century bc, to the Greek sophists Antiphon and Bryson. Their aim was to 
obtain better and better estimates for π by repeatedly doubling the number 
of sides of a regular polygon until the polygons ‘became’ the circle. This 
approach for estimating π would be used for almost two millennia.

Antiphon began by drawing a regular polygon inside the circle and 
finding its area, giving a lower estimate for π. For example, if we inscribe 
a square in a circle of radius r, its area is 2 2r , giving the very poor lower 
estimate of p = 2  (see Figure 39). But if we now double the number of 
sides, giving an octagon, we obtain the better estimate of p = Ö »2 2 2 828. . 
Bryson’s approach was the same, except that he also considered circum-
scribed polygons. This yields the upper estimates of p = 4  for the square 
and p = Ö - »8 2 1 3 318( ) .  for the octagon.

Fig. 39.  Approximating the area by squares and octagons

Around 250 bc Archimedes also became interested in circular meas-
urement, proving in his Measurement of the Circle that the area of a circle of 
radius r is p r 2, and in On the Sphere and Cylinder that a sphere of radius r 
has surface area 4 2p r  and volume 4

3
3p r .
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Adapting Antiphon and Bryson’s earlier ideas, he attempted to esti-
mate π by approximating the circumference of a circle by the perimeters 
(rather than the areas) of regular polygons drawn inside and outside the 
circle. By repeatedly doubling the number of sides of the polygons, he 
could then obtain better and better approximations for π.

Archimedes began by drawing regular hexagons inside and outside 
a  circle, and compared their perimeters with the circumference of the 
circle (see Figure 40). This gave a lower estimate for π of 3 and an upper 
estimate of 2√3, so that, in decimal form,

	 3 000 3 464. . .< <p 	

Doubling the number of sides, replacing the hexagons by regular 
dodecagons (12-sided polygons), gives the estimates

	 6 2 3 12 2 3 3 106 3 215Ö -Ö( ) < < -Ö( ) < <p por, in decimal form, . . . 	

Fig. 40.  Approximating the circumference by hexagons and dodecagons

Three more doublings of the number of sides to polygons with 24, 48, 
and 96 sides give the following ever-closer estimates:

24 sides:  3.133 < π < 3.160
48 sides:  3.139 < π < 3.146
96 sides:  3.141 < π < 3.143.
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Archimedes didn’t have decimal notation, but gave the results of his cal-
culations for polygons with 96 sides as

	 3 310
71

1
7

< <p . 	

Four hundred years later Claudius Ptolemy considered the perimeter 
of  a  360-sided regular polygon, obtaining the sexagesimal value 
3 8 30 3 8

60
30

3600
; , = + + , which is about 3.14167.
Around the year ad 263, in his commentary on the Chinese classic 

Nine Chapters on the Mathematical Art, Liu Hui also used inscribed regular 
polygons to approximate π. Working with areas and starting with regu-
lar hexagons and dodecagons (see Figure 31 which opens this chapter), 
he developed a simple method for calculating the successive areas and 
perimeters when one doubles the number of sides, and for polygons 
with 192 2 96= ´( )  sides he obtained the estimates

	 3 141024 3 142704. . .< <p 	

His calculations extended to the area of a polygon with 3072 sides (four 
more doublings), giving the estimate p =3 14159. .

Even more impressively, around the year 500 Zu Chongzhi and his 
son Zu Gengzhi doubled the number of sides three more times, extend-
ing their calculations to polygons with 24,576 sides and obtaining the 
estimates

	 3 1415926 3 1415927. . ,< <p 	

which give π to six decimal places. They also replaced Archimedes’ frac-
tional approximation of 22

7
 by the more accurate one of 355

113
, which also 

gives π to six decimal places. As we’ll see, this latter approximation wasn’t 
rediscovered in Europe for another thousand years.

Also around the year 500 the Indian mathematician and astronomer 
Āryabhata proposed the following recipe, derived from the perimeter of 
an inscribed regular polygon with 384 sides:

Add 4 to 100, multiply by 8, and add 62,000. The result is approximately the 
circumference of a circle with diameter 20,000.
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This gives p = =62832
20000

3 1416. . Later, around the year 1150, Bhāskaracharya 
(or Bhāskara II) contrasted Āryabhata’s ‘accurate’ value with the more 
‘practical’ value of 22

7
.

In 1424 the Persian mathematician and astronomer Jamshıd̄ al-Kāshı ̄ 
(or al-Kāshānı ̄) was working in Ulugh Beg’s observatory in Samarkand, 
now in Uzbekistan. Using polygons with 3 2 805 306 36828´ = , ,  sides he 
improved Zu Chongzhi’s estimates, approximating π to a remarkable 
nine sexagesimal (= sixteen decimal) places. This remained the best value 
of π for almost two hundred years.

Meanwhile, mathematicians from several European countries were 
using similar methods to find better estimates for π – by continually 
doubling the number of sides of the polygons and calculating the appro-
priate perimeters or areas.

In Italy, in his Practica Geometriae of 1220, Leonardo of Pisa (better 
known to us as Fibonacci) cited earlier calculations and used polygons 
with 96 sides to find the approximation π = 3.141818.

In 1579 the French mathematician and lawyer François Viète used a 
polygon with 3 2 393 21617´ = ,  sides to approximate π to nine decimal 
places.

Six years earlier, the German mathematician and astronomer Valentin 
Otto (or Otho) proposed the fraction 355

113
; as we saw earlier, this approxi

mates π to six decimal places and had already been known to Zu 
Chongzhi and his son a thousand years previously. The Dutch cartographer 
Adriaan Anthonisz coincidentally obtained the same value in 1585, hav-
ing found the lower and upper estimates 355

106
 and 377

120
 and averaged their 

numerators and denominators.
In the Netherlands in 1593 Adriaan van Roomen used polygons with 

230 = 1,073,741,824 sides to approximate π to 15 decimal places. 
Subsequent efforts by Ludolph van Ceulen resulted in his approximating 
π to 20  decimal places (see Figure  41) and later, using polygons with 
2 4 611 686 018 427 387 90462 = , , , , , ,  sides, to 35 decimal places. He appar-
ently asked for this latter value to appear on his tombstone in the St 
Pieterskerk in Leiden (a replica can still be seen there), and for many 
years π was known in Germany as the Ludolphian number.
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Fig. 41.  Ludolph van Ceulen, with his estimates for π to 20 decimal places
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One of the last European attempts to use inscribed and circum-
scribed polygons was in 1630, when the Austrian astronomer Christoph 
Grienberger approximated π to 38 decimal places.

Radian measure

The number π also provides the basis for a natural way of measuring 
angles. Rather than measuring them in degrees, mathematicians usually 
prefer to use radians, where a radian is the angle θ (about 57.3°) subtended 
at the centre of a circle by a circular arc whose length is the radius of the 
circle (see Figure 42).

More generally, for any angle the number of radians is the ratio of the 
length of the arc to the radius of the circle. So an angle of 180°, subtended 
by a semicircular arc, is π radians, and we can draw up a list of radian 
equivalents for certain well-known angles:

O

r

r

r

θ

Fig. 42.  Radian measure

degrees 0° 30° 45° 60° 90° 120° 135° 180° 240° 270° 360°

radians 0 π/6 π/4 π/3 π/2 2π/3 3π/4 π 4π/3 3π/2 2π



π

57

The credit for introducing radian measure is usually ascribed to 
the  English mathematician Roger Cotes, the first Plumian Professor 
of  Astronomy and Experimental Philosophy in the University of 
Cambridge. Born in 1682 he worked closely with Isaac Newton on the 
second edition of the Principia Mathematica. After his early death from a 
violent fever in 1716, his somewhat disorganized results on a range of 
mathematical topics were collected together and edited with commen-
tary by his cousin and Plumian successor Robert Smith in the form of a 
book, Harmonia Mensuarum (Harmony of Measures). Smith’s commen-
tary includes the impressive calculation

	 1 57 2957795130radian degrees= . . 	

We’ll meet Cotes’s work again in Chapter 6 in connection with Euler’s 
equation.

Why use radians? One advantage is that a measure that’s defined as the 
ratio of the length of a circular arc to the radius is less arbitrary than 
choosing a particular number like 360 as the number of degrees in a full 
circle. Another is that many mathematical results become much simpler 
to state when we use them, as we’ll see.

Infinite expressions

Up to now, most results involving π have been estimates of its value. 
A  new approach was taken by François Viète, who obtained an exact 
expression for π involving the product of infinitely many terms. Shortly 
after this, another infinite product was discovered by John Wallis, the 
Savilian Professor of Geometry at the University of Oxford.

Viète’s infinite product

In 1579, and again in 1593 in his Variorum de Rebus Mathematicis Reponsorum, 
Liber VII (Book 7 of the Varied Mathematical Responses), Viète showed that

	

2 4 8 16 32

1
2

2 1
2

2 2 1
2

2

/ cos / cos / cos / cos / . . .

( ) (

p p p p p= ´ ´ ´ ´

= Ö ´ Ö +Ö ´ Ö ++Ö +Ö ´ Ö +Ö +Ö +Ö ´( )) ( ( ( ))) . . . .2 2 1
2

2 2 2 2
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Box 5:  Viète’s infinite product

We use the result that the area of a triangle with sides a and b that enclose an 
angle α is 1

2
absina , and we consider regular polygons inscribed in a circle of 

radius r.

If A(n) denotes the area inside a polygon with n sides (see Figure 43), then

	 A n n AOB n r nr( ) = ´ = ´ =area 1
2

2 22sin sin cos ,q q q 	
because sin sin cos2 2q q q= .

Also,

	 A n n AOC n r nr2 2 2 1
2

2 2( ) = ´ = ´ =area sin sin ,q q 	

and dividing these two results gives

	 A n A n( ) ( ) =/ cos .2 q 	

Similarly, A n A n2 4 2( ) ( ) =/ cos /q  and A n A n4 8 4( ) ( ) =/ cos /q .

A

C r

r

B

O

θ
θ

Fig. 43. 

By taking the first few terms in this product we can obtain successively 
better approximations for π, although Viète’s result is awkward to use 
because of all the square roots. Details of Viète’s infinite product are 
given in Box 5 for those with the appropriate mathematical background.
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Wallis’s infinite product

In 1656 Wallis obtained a different type of infinite product, which 
appeared in his book Arithmetica Infinitorum and which seems to have 
nothing to do with circular measure. We can write it as 

	
4 3 3 5 5 7 7 9 9

2 4 4 6 6 8 8 10p
=

´ ´ ´ ´ ´ ´ ´ ´¼
´ ´ ´ ´ ´ ´ ´ ´¼

. 	

Again, we can find approximations for π by stopping after a few terms; 
for example, taking just the first eight terms shown above, we get the 
approximation

	 4 3 3 5 5 7 7 9 9
2 4 4 6 6 8 8 10

1 21122
p
=

´ ´ ´ ´ ´ ´ ´
´ ´ ´ ´ ´ ´ ´

» . , 	

giving p »3 302. . Wallis gave his result as upper and lower estimates for 
4 /p , which he wrote as □ (see Figure 44). But although such approxima-
tions are of great theoretical significance, they converge very slowly to π 
and have no practical value.

Multiplying these together gives

A n A n A n A n A n A n A n A n( ) ( ) = ( ) ( )éë ùû ´ ( ) ( )éë ùû ´ ( ) ( )éë ùû
=

/ / / /8 2 2 4 4 8

ccos cos / cos / .q q q´ ´2 4

Similarly, after k steps we have

A n A nk k( ) ( ) = ´ ´ ´/ cos cos / . . . cos / .2 2 2q q q

But as k becomes large, the area A nk2( ) approaches p r 2, the area of the 
circle, so

A n r( ) = ´ ´ ´ ´ ´¼p q q q q2 2 4 8cos cos / cos / cos / .

If we now let n = 4, so A r4 2 2( ) = , and let q p= / 4  radians (45°), then

2 4 8 16 322 2r r= ´ ´ ´ ´ ´p p p p pcos / cos / cos / cos / . . . .

It follows that 2 4 8 16 32/ cos / cos / cos / cos / . . .p p p p p= ´ ´ ´ , as required.

The result with all the √2s arises because
cos / , / ( ), . . .p p4 2 8 2 2=Ö =Ö +Öcos .
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Continued fractions

Consider the following fractions, which are all approximations to π:

	 22
7

355
113

103993
33102

3 1428571 3 1415929 3 1415926= ¼ = ¼ = ¼. , . , . . 	

We can rewrite these in the following forms:
	

22
7

1
7

355
113

16
113

1
7 1 16

3 3 3= + = + = +
+

;
/

	

and

	 103993
33102

3
1

7
1

15
1

1 1 292

= +
+

+
+ /

	

Conversely, to simplify such expressions we start at the end and work 
backwards.

These expressions are called continued fractions, a term coined by Wallis 
who introduced them in 1655. Wallis showed his infinite product for 
4 /p  to his friend William Brouncker, later the first President of the 
Royal Society, and Brouncker apparently used it (though no one knows 
how) to obtain the following infinite continued fraction:

Fig. 44.  Wallis’s estimates for π
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	 4
1

1

2
3

2
5

2
7

2
9

2

2

2

2

2

2

p
= +

+
+

+
+

+¼

	

The numbers in this expression form a regular pattern, with 2s appear-
ing as denominators and the odd perfect squares 12 = 1, 32 = 9, 52 = 25, 72 
= 49, . . . , appearing as numerators.

By breaking off Brouncker’s continued fraction at various places, we 
can obtain estimates for 4 /p , and hence for π, as follows:

the first estimate is 4 1 12 2 1 1
2

3
2

/ /p » + = + = ,  giving p » 2 667. ;

the second is 4 1 1 2 1 1 19
2

13
2

2
13

15
13

/ /p » + + = + = + =æ
è
ç

ö
ø
÷

æ
è
ç

ö
ø
÷

æ
è
ç

ö
ø
÷

æ
è
ç

ö
ø
÷/ , giving 

p »3 467. ;
the third is 4 1 1 2 3 2 1 1 2 92 25

2
29
2

/ / / / /p » + + + = + +æ
è
ç

ö
ø
÷

æ
è
ç

ö
ø
÷

æ
è
ç

ö
ø
÷

= + + = + = + =æ
è
ç

ö
ø
÷1 1 2 1 1 118

19
76
29

29
76

105
76

/ / ,  giving p » 2 895. ;

and the next two turn out to be 4 945
789

/p »  and 30936
10395

,   
giving p »3 340.  and p » 2 976. .

As with Wallis’s result, these approximations to π are of theoretical inter-
est, but they converge very slowly and have no practical use.

Somewhat better was another continued fraction expression with a 
similar format, included by Wallis in his Arithmetica Infinitorum but pos-
sibly due to Brouncker. It later reappeared in a paper ‘On the continued 
fractions of Wallis’ by Leonhard Euler:

	 p = +
+

+
+

+¼

3
1

6
3

6
5

6
7

6

2

2

2

	

Here the first few estimates for π are
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19
6

47
15

1321
420

910
289

3 167 3 133 3 1452 3 1488= = = =. , . , . , . ,and  which converge 

more quickly to π.
A much improved continued fraction for π was given by the Swiss 

mathematician Johann Heinrich Lambert in 1767:

	 p = +
+

+
+

+
+

+¼

3
1

7
1

15
1

1
1

292
1

1
1

1

	

Here the numerators are all 1, but the denominators don’t seem to follow 
a regular pattern. However, the approximations converge much more 
quickly than before, and some of the resulting estimates for π are ones 
that we’ve seen earlier:

the first is 3 1
7

+  or 22
7

 (Archimedes’ value, giving the first two decimal 
places),

the second is  3 1 7 3 11
15

106
15

333
106

+ + = + =æ
è
ç

ö
ø
÷/ /  (giving 3.1415),

the third is 355
113  (Zu Chongzhi and Otho’s value, giving the first six decimal 

places),
and the fourth is 

103993
33102 (giving the first ten decimal places).

Arctan formulas

A new and highly productive method for estimating π, which came to be 
used extensively throughout the 18th and 19th centuries, involved the 
inverse tangent function, usually denoted by arctan x  or tan–1x . If y x= tan , 
then x y= arctan ; for example,

	 tan /4 1, so arctan 1 /4 and tan /6 , so arctan 1/ /6.p p p p= = = Ö Ö =1 3 3/ 	
(Note that tan 9 4 1p / =  also, so arctan y has many different values, all 
differing by multiples of 2π; this will be important later, but for now we’ll 
stick to the principal value.)
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Arising from the addition formula for the tangent function is a useful 
result for arctan, obtained by writing u x= tan  and v y= tan :

	 tan and so arctan arctan arctanx y
x y

x y
u v

u v
+( ) = +

-
+ =

+tan tan
tan tan1 11- uv

. 	

In particular, the following result is among many that we can prove:

	 arctan arctan arctan 1 /4.1
2

1
3+ = =p 	

This is because the angle α in Figure  45 is arctan 1
2  (from the triangle 

CDE), the angle β is arctan 1
3  (from a classical result that the medians CE 

and DF of the triangle ACD divide each other in the ratio 1:3), and the 
angle α + β is 45 4° =p /  (from the triangle BCD).

Many functions can be written as infinite series. For example, because

	 1 1 12 2 4 6 8+( ) ´ - + - + -( ) =x x x x x . . . , 	

A

E

D

B

G

C

H

F

α

β

2

1

1

π/4

Fig. 45.  Combining two arctans
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as we can check by multiplying out and cancelling terms, leaving just 1, 
we can write

	 1 12 1 2 4 6 8+( ) = - + - + -
-

x x x x x . . . . 	

We can similarly express arctan x  as an infinite series:

	 arctan x x x x x x= - + - + -
1
3

1
5

1
7

1
9

3 5 7 9 . . . ; 	

this result was already known to Mādhava in 14th-century India, but is usu-
ally named after the Scotsman James Gregory, who rediscovered it 300 years 
later. (Those familiar with the integral calculus can obtain this series for 
arctan x by integrating the series for 1 2 1

+( )-x  term by term from 0 to 1.)

If we now substitute x = 1 into the series for arctan x, we get 

	 p / . . . ,4 1
1
3

1
5

1
7

1
9

= - + - + - 	

a result also due to Mādhava, but usually credited to Gottfried Leibniz. 
This last result is quite remarkable: by simply adding and subtracting 
reciprocals of the form 1/n we get a result involving the circular number π.

Unfortunately the Leibniz series converges exceedingly slowly, and so 
cannot be used to find the value of π in practice; for example, the first 300 
terms of the series give π correct to only two decimal places, while the 
first 500,000 terms give only five correct decimal places. But fortunately 
a remedy is not hard to find, as was discovered by the Yorkshireman 
Abraham Sharp, a friend of Isaac Newton and of the first Astronomer 
Royal John Flamsteed. In 1699, instead of substituting x = 1 in the above 
series, he put x = Ö1 3/ , to give

	 p / ( / ) / ( / ) ( ) ( / ) . . .

/

6 1 3 1 3 1 3 1 3 1 3

1

1
3

1
5

1
7

3 5 7= Ö = Ö - Ö + Ö - Ö +

= Ö

arctan

33 1 1 3 3 1 3 5 1 3 7 1 3 92 3 4´ - ´( )+ ´( )- ´( )+ ´( )-{ }/ / / / . . . .

	

This series converges more quickly than before because of the increasing 
powers of 3 in the denominator, and Sharp was able to find π to no fewer 
than 72 decimal places, a dramatic improvement on earlier estimates.
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We can also obtain estimates for π by using arctan addition formulas, 
such as the one illustrated in Figure 45:

	 p / .4 1
2

1
3= +arctan arctan 	

If we now substitute x = 1
2

 and x = 1
3

 into the series for arctan x , we 
have

p / 4 1
2

1
3

1
2

1
5

1
2

1
7

1
2

1
3

1
3

1
5

1
3

1
7

1
3

3 5 7 3 5

= - ( ) + ( ) - ( ) +¼{ }+ -( ) + ( ) - ( )77

3 5 7

3 5

1
2

1
3

1 2 3 1 2 5 1 2 7

1 3 3 1 3

+¼{ }
= - ´( ) + ´( ) - ´( ) +¼{ }
+ - ´( ) + ´

/ / /

/ / 55 1 3 77( ) - ´( ) +¼{ }/ .

These two series converge reasonably quickly because of the increasing 
powers of 2 and 3 in the denominators and yield good estimates for π. 
Indeed, in 1861 a certain W. Lehmann of Potsdam used these very series 
to find π to 261 decimal places.

From here the search was on to find new arctan identities where the 
series converge even faster. In 1706 the Englishman John Machin used 
the addition formula several times over to prove that

	 p / .4 4 1
5

1
239

= arctan arctan- 	

Writing out the series for arctan x with x = 1
5

 and x = 1
239

, he obtained

	 p /4 4 1
5

1
3

1
5

1
5

1
5

1
7

1
5

1
239

1
3

1
239

1
5

1

3 5 7

3

= - ( ) + ( ) - ( ) +¼ì
í
î

ü
ý
þ

- ( ) +-
2239

1
7

1
239

5 7( ) - ( ) +¼ì
í
î

ü
ý
þ

.

These arctan series converge rapidly because of the powers of 5 and 239 
in the denominators – for example, using only the first three terms in 
each bracket already gives the approximation 3.14. Furthermore, 5 is an 
easy number to work with and Machin was able to calculate π by hand to 
100 decimal places, an improvement on anything that had gone before. 
William Jones, who had introduced the symbol π in the same year, was 
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highly impressed by ‘the Truly Ingenious Mr. John Machin’ and repro-
duced the 100 digits of π in his book (see Figure 46).

This arctan approach to finding improved estimates for π was devel-
oped further by several others. In 1755 Euler used the equation

	 p = +20 81
7

3
79

arctan arctan 	

to calculate 20 decimal places of π in one hour. He also found many 
other arctan results, including the equation

	 p / ,4 4 1
5

1
70

1
99

= - +arctan arctan arctan 	

which was subsequently used by the Englishman William Rutherford in 
1841 to calculate π to 152 decimal places.

In 1794 the Slovenian Jurij (or Georg) Vega used Euler’s equation,

	 p = +20 1
7

3
79

arctan 8 arctan , 	

to find π to 136 decimal places, and for many years this was the most 
accurate value known. But there were persistent references in the litera-
ture to an earlier and more accurate value that the Hungarian Baron 
Franz Xaver von Zach had noticed while visiting Oxford’s Bodleian 
Library in the 1780s. This reference was eventually located in 2014 by 
Benjamin Wardhaugh and confirmed that in 1721 a Philadelphia resi-
dent had used Sharp’s arctan series in the form

Fig. 46.  William Jones praises Machin’s achievement
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p = Ö( ) = Ö -

Ö
´

+
Ö
´

-
Ö
´

+6 1 3 12
12

3 3
12

9 5
12

27 7
arctan / . . . .

	

The unknown author, who never published the result, determined Ö12  
to 154 decimal places and calculated no fewer than 314 terms of this 
arctan series, obtaining π to 154 decimal places with only the last two 
incorrect. This was indeed the world’s most accurate value of π for over 
100 years, even though it had been largely unknown.

Fig. 47.  The Palais de la Découverte in Paris

Most notorious of all, in 1873 William Shanks used Machin’s formula 
to calculate π to an impressive 707 decimal places; these were later 
inscribed in a ceiling frieze in the Palais de la Découverte in Paris where 
they can still be seen (see Figure 47). Unfortunately for him, and for the 
Palais, it was subsequently discovered that only the first 527 of these 
decimal places (shown here) were correct:

3.14159 26535 89793 23846 26433 83279 50288 41971 69399 37510 58209 
74944 59230 78164 06286 20899 86280 34825 34211 70679 82148 08651 
32823 06647 09384 46095 50582 23172 53594 08128 48111 74502 84102 
70193 85211 05559 64462 29489 54930 38196 44288 10975 66593 34461 
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28475 64823 37867 83165 27120 19091 45648 56692 34603 48610 45432 
66482 13393 60726 02491 41273 72458 70066 06315 58817 48815 20920 
96282 92540 91715 36436 78925 90360 01133 05305 48820 46652 13841 
46951 94151 16094 33057 27036 57595 91953 09218 61173 81932 61179 
31051 18548 07446 23799 62749 56735 18857 52724 89122 79381 83011 
94912 98336 73362 44065 66430 86021 39 . . . 

A miscellany of results

The number π turns up in many unexpected places. Here are a few of them.

Some results of Euler

We’ve seen how Leonhard Euler was the first to popularize the use of the 
letter π for circle measurement and how he used an arctan series to esti-
mate it. We’ve also met his continued fraction expansion. But π features 
in many other places in his writings.

Earlier we saw that π turns up as the sum of various infinite series, 
such as the Leibniz series, which can be written as

	 p = - + - + -4 4
3

4
5

4
7

4
9

. . . . 	

But this isn’t a unique phenomenon – many more infinite series have 
sums that involve π for no apparent reason.

One of the best-known of these is Euler’s celebrated solution of the so-
called Basel problem, which asked for the exact sum of the infinite series

	 1
1

1
4

1
9

1
16

1
25

1
36

+ + + + + + . . . , 	

where the denominators are the perfect squares 12 = 1, 22 = 4, 32 = 9, . . . .  
To his great surprise Euler discovered that the required sum is p 2 6/ , 
exclaiming:

Quite unexpectedly I have found an elegant formula involving the quadrature 
of the circle.

He next summed the series whose denominators are the fourth powers, 
giving
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1
1

1
16

1
81

1
256

1
625

1
1296

904+ + + + + + =. . . / ,p

	
and the sixth powers, giving

	 1
1

1
64

1
729

1
256

1
4096

1
15625

1
16656

9456+ + + + + + =. . . / .p

Continuing in this way, he correctly summed the reciprocals of all the 
even powers up to the 26th power. In each case, the answer involves the 
corresponding power of π. (This is not true for the odd powers.)

Another result of Euler’s, related to the Basel problem, involves the 
prime numbers 2, 3, 5, 7, 11, . . . . If, for each prime number p, we calculate 
the quotient p p2 2 1/ ( )-  and then multiply the results together, then π 
again appears out of the woodwork:

2 2 1 3 3 1 5 5 1 7 7 1 11 11 1

4
3

9

2 2 2 2 2 2 2 2 2 2/ / / / /-( ) ´ -( ) ´ -( ) ´ -( ) ´ -( ) ´¼
= ´

88
25
24

49
48

121
120

62´ ´ ´ ´ =. . . / .p

Yet another extraordinary product of Euler’s involving π and the 
primes is the following:

	 p / . . . ;2 3
2

5
6

7
6

11
10

13
14

17
18

19
18

= ´ ´ ´ ´ ´ ´ ´ 	

here the numerators are the odd primes and the denominators are the 
even numbers that are not multiples of 4.

Probabilistic results

Some results in probability involve π. Two celebrated examples are the 
following.

If we choose a whole number at random, then it may have a repeated 
prime factor; for example, 63 = 3 × 3 × 7, with a repeated prime factor of 
3. Or it may have no repeated prime factor, such as 105 = 3 × 5 × 7. What’s 
the probability that a number chosen at random has no repeated prime 
factor? The answer is 6 2/p , which is about 0.608.
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If we now choose two numbers at random, then they may have a factor 
in common; for example, 63 and 91 share a common factor of 7, since 
63 = 7 × 9 and 91 = 7 × 13. Or they may have no common factor other 
than 1, such as 64 and 91. What’s the probability that two randomly 
chosen whole numbers have no factors in common? Again, the answer 
is 6 2/p .

Buffon’s needle experiment

In 1777 an experimental method for finding π was introduced by Georges-
Louis Leclerc, the Comte de Buffon. Suppose that you throw a large num-
ber of needles (or matchsticks) of length L onto a grid of parallel lines at 
a distance D apart, where L < D, and record the proportion of the needles 
that cross a line of the grid. The probability that a needle crosses a line 
can be shown to equal 2 / /p ´L D, from which a value for π can then be 
calculated. For example, in Figure 48, L D/ /=4 5  and five of the ten nee-
dles cross lines; so 2 4 5 5 10/ / /p ´ = , giving an experimental value for π 
of  80 25 3 2/ .= .

Fig. 48.  Buffon’s needle experiment

In 1901 an Italian mathematician called Mario Lazzerini carried out 
such a needle experiment in which L D/ /=5 6 , performing 3408 trials 
and claiming 1808 crossings. This leads to the estimate p =355 113/  
which, as we have seen, gives π to six decimal places. He was lucky. If 
only one of his needles had landed differently, then his value for π would 
have been correct to only two decimal places.
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Gauss’s circle problem

Another problem in which π makes an unexpected appearance arises 
from number theory and is credited to Carl Friedrich Gauss. Let s(n) be 
the number of different ways in which the whole number n can be writ-
ten as the sum of two perfect squares: here, both positive and negative 
squares are allowed, and it matters in which order the squares appear. 
For example, s(5) = 8, corresponding to the eight sums

	 5 2 1 1 2 2 1 1 2

2 1 1 2 2 1

2 2 2 2 2 2 2 2

2 2 2 2 2

= + = + = -( ) + = + -( )
= + -( ) = -( ) + = -( ) + -(( ) = -( ) + -( )2 2 21 2 .

	

Notice that s(n) is the number of points with integer coordinates that lie 
on the circle with equation x y n2 2+ =  (see Figure 49).

The behaviour of s(n) is very erratic. For example, s 7 0( ) =  and 
s 8 4( ) = , while s 250 16( ) =  and s 251 0( ) = . To smooth out the variation, 
we can look at the average of the values over the first n numbers – namely,

	
1

1 2
n

s s s n( )+ ( )+¼+ ( ){ }. 	

0

x2 + y2 = n

x√n

y

Fig. 49.  Gauss’s circle problem
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What is the behaviour of this average as n becomes arbitrarily large? The 
answer is that it tends to a limit, and this limit is π.

π is irrational

Is π irrational, or can it be written as a fraction a/b, where a and b are 
whole numbers? Although everyone expected the former outcome, find-
ing a proof turned out to be very difficult. It was not until 1767 that this 
was successfully achieved by Johann Heinrich Lambert, who showed 
that

If x is a rational number (other than 0), then tan x must be irrational.

Turning this around, it follows that if tan x is a rational number, then x 
must be irrational or 0. But tan p / 4 1= , which is rational. So p / 4 , and 
hence π, must be irrational.

Sometimes a number is irrational but its square is rational, such as √2 
whose square is 2. But this doesn’t happen here – in 1794 the French 
mathematician Adrien-Marie Legendre proved that p 2  is also irrational.

In Chapter  6 we’ll visit the even harder problem of determining 
whether π is transcendental.

Legislating for π
In 1897 a bizarre event took place in the State of Indiana, USA, where the 
House of Representatives considered and unanimously passed ‘A bill 
introducing a new Mathematical Truth’. This House Bill No. 246 
attempted to legislate an incorrect value for π provided by a local physician, 
Edwin J. Goodwin, M.D. of Solitude, Posey County, who would then 
allow the State to use his value free of charge but would expect royalties 
to be paid to him by anyone else who employed it:

A bill for an act introducing a new mathematical truth and offered as a contri-
bution to education to be used only in the State of Indiana free of cost by pay-
ing any royalties whatever on the same.

According to Dr Goodwin,
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The ratio of the diameter and circumference is as five-fourths to four.

This yields a value for π of 3.2.
For some reason the bill was passed on to the House Committee on 

Canals or Swamp Lands, who then passed it on to the Committee on 
Education.

Be it enacted by the General Assembly of the State of Indiana: it has been found 
that a circular area is to the quadrant of the circumference, as the area of an 
equilateral rectangle is to the square on one side. The diameter employed as the 
linear unit according to the present rule in computing the circle’s area is 
entirely wrong. . . .

This clearly makes little sense, but even so it then went on to scrutiny by the 
Committee on Temperance (!), who recommended its passage. Fortunately, 
a local professor of mathematics, C. A. Waldo of Purdue University, hap-
pened to be visiting the statehouse when the bill was about to be finally 
ratified, and he managed to persuade the senators to stop it just in time. As 
far as we know, it is still with the Committee on Temperance . . . .

Some weird results

The 20th century saw a number of surprising discoveries about π. Here’s 
a small selection.

Around 1913 the Indian mathematician Srinivasa Ramanujan found 
several bizarre approximations to π, including

	 p » + Ö( ) + Ö( )63
25

17 15 5 7 15 5/ , 	

which is correct to nine decimal places, and 

	 p »Ö +( )4 2 29 19 22/ , 	

which is correct to eleven decimal places.
In the following year Ramanujan wrote a remarkable paper, ‘Modular 

equations and approximations to π’, in which he presented many 
extraordinary exact formulas for 1/p , such as



π

74

	

1 8
9801

4 1103 26390
3960

4 4p
=

Ö ( )
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=
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n

n

n!

!
.

	

This series converges extremely rapidly and forms the basis of some of 
today’s fastest algorithms for calculating π. Many years later, in 1989, 
David and Gregory Chudnovsky produced a similar, but even more 
complicated, result:

	 1
12 1

6

3

13591409 545140134

6403200
3p

= -( ) ( )
( ) ( )

´
+

( )=

¥

å
n

n n

n n

n!

! ! nn+1 2/

	

A different type of result was discovered in 1995 by David Bailey, Peter 
Borwein, and Simon Plouffe, and caused a great deal of surprise:

	 p =
+

-
+

-
+

-
+

æ
è
ç

ö
ø
÷

=

¥

å
n

n n n n n0

1
16

4
8 1

2
8 4

1
8 5

1
8 6

. 	

The importance of this result is that, if we work in a base-16 number 
system, rather than in base 10, we can successively calculate each succes-
sive digit of π without having to calculate all the preceding ones first.

Earlier we saw that the Leibniz series

	 p / 4 1 1
3

1
5

1
7

1
9

= - + - + -¼ 	

converges extremely slowly. If we calculate the first 500,000 terms of 
this series to forty decimal places and ignore the rest, then we get the 
following approximation to π, in which the first six digits, 3.14159, are 
correct:

	 p »3 141590653589793240462643383269502884197. . 	

Because the next digit is incorrect, we might expect most of the later 
digits to be erroneous as well but this is not the case. Surprisingly, as Roy 
North of Colorado noticed in 1989, all but these four underlined digits 
turn out to be correct, and similar results hold when more digits of π are 
taken.
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Enter the computer

As soon as desk calculators and computers entered the scene, it became 
possible to use an arctan series to calculate π to a much greater accuracy.

The first advance was in 1949 when John Wrench and L. R. Smith, 
using Machin’s arctan result, put the 18,800 electron tubes of ENIAC (the 
Electronic Numerical Integrator And Computer at the U.S. Army’s 
Ballistic Research Laboratories in Maryland) to good use to calculate π to 
2037 places in 70 hours. Machin’s result was also used by S. C. Nicholson 
and J. Jeenel in 1955 to find π to 3089 decimal places in just 13 minutes 
on the Naval Ordnance Research Calculator NORC. Meanwhile, pro-
gress was being made in England: in 1957 George E. Felton used a differ-
ent arctan series to calculate π to 10,021 decimal places in 33 hours on 
the Ferranti PEGASUS computer, though not all were correct.

At this stage IBM (International Business Machines Corporation) 
entered the scene. In 1958 François Genuys used an IBM 704 computer 
in Paris to produce 10,000 decimal places in 100 minutes, and in 1959 
they improved this to 16,167 places, calculated in 4.3 hours. Then, in 
1961, using IBM 7090 computers, J. M. Gerard of London found 20,000 
places in 39 minutes, while Daniel Shanks and John Wrench in New York 
obtained 100,000 places in 8.7 hours.

The first people to calculate one million decimal places were Jean 
Guillard and Martin Bouyer, who in 1973 achieved this target on a CDC 
7600 machine in 23.3 hours. The scene then moved to Japan, where 
Yoshiaki Tamura, Yasumada Kanada, and others gradually pushed the 
number of places up to 10 million in 1983, 100 million in 1987, and 538 
million in 1989. Using very sophisticated arctan formulas, Kanada and his 
team carried out their calculations in base 16, where the individual digits 
of π could be calculated one at a time (see the result of Bailey, Borwein, and 
Plouffe above), before translating their conclusions to base 10.

Meanwhile, in New York City, the Chudnovsky brothers were devel-
oping algorithms to use on their home-built supercomputers to push 
the numbers even higher, and in 1989 they were the first to exceed one 
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billion places. There was then a frantic race between them and the 
Japanese group, with a trillion places being achieved in 2002 and 10 tril-
lion places in 2011. Since then the number of calculated places has 
increased to over 20 trillion.

Why bother?

Why do we need to calculate so many digits? After all, just a handful of 
decimal places is sufficient for most everyday uses – for example, 3.14 
is correct to about 0.5 per cent, and 3.1416 is within 0.0002 per cent of 
its true value. NASA’s Jet Propulsion Laboratory in California uses 
only 15 places: even the calculations on their furthest spacecraft (some 
12.5 billion miles away) are then correct to within a couple of inches. 
And just 39 decimal places (already known back in the 17th century) 
are sufficient to determine the circumference of a circle surrounding 
the visible universe (about 289 billion light years) to within the diameter 
of a hydrogen atom.

One reason for calculating so many digits is that the results can be 
used to test the speed and accuracy of a new computer. If you have a new 
machine you can ask it to print out the millionth (or the billionth or the 
trillionth) digit of π and see whether, and how quickly, it produces the 
correct answer.

Another reason is that the availability of such extensive lists enables 
us to search for patterns (if there are any) among the digits – for example, 
do all ten digits from 0 to 9 occur equally often in the expansion of π? 
The following list shows remarkable similarities in the occurrences of 
these digits among the first trillion digits of π and provides evidence for 
the answers to such questions:

0	 99,999,485,134
1	 99,999,945,664
2	 100,000,480,057
3	 99,999,787,805
4	 100,000,357,857

5	 99,999,671,008
6	 99,999,807,503
7	 99,999,818,723
8	 100,000,791,469
9	 99,999,854,780
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Measuring the Earth

Let’s end this chapter with a simple puzzle that appeared in 1702 in The 
Elements of Euclid by the Cambridge mathematician William Whiston. 
You may find its answer surprising.

The circumference of the Earth is about 25,000 miles (= 132 million 
feet). Assuming the Earth to be a perfect sphere, suppose that we tie a piece 
of string of this great length tightly around its equator. We then extend this 
string by just 2 6 3p »( ).  feet, and prop up the string equally all around the 
equator (see Figure 50). How high above the ground will the string be?

?

Fig. 50.  Tying a string around the Earth

Most people think that the gap will be extremely small – perhaps a tiny 
fraction of an inch – but the answer is one foot! (In metric terms, the 
Earth’s circumference is about 40,000 kilometres, and adding just 
2 metres of string produces a gap of about 0.3 metres.)

In fact, we get the same answer whether we tie the string around the 
Earth, a tennis ball, or any other sphere. For if the sphere has radius r feet, 
then the original string has length 2p r . When we extend the string by 2π 
feet, the new circumference is 2 2 2 1p p pr r+ = +( ) , so that the new 
radius is r + 1: that is, one foot more than before.



Fig. 51.  The title page of John Napier’s Mirifici Logarithmorum, 1614
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CHAPTER 4

e

The exponential number

How fast do things grow? We often use the phrase ‘exponential growth’ 
to indicate something that grows very fast, but how quickly is this?

This chapter concerns the irrational number

	 e = ¼2 718281828459045235360287471352. . 	

The symbol e was first used for this number by Leonhard Euler in an 
unpublished paper from around 1727, and in a letter of 1731. It first 
appeared in print in 1736 in Volume 1 of his two-part work Mechanica on 
the mathematics of motion.

As with π, various mnemonics have been devised for remembering 
the first few digits of e. To get the digits count the letters in the words of 
these sentences:

In Glasgow I lectured on geometry. (2.71828)
To disrupt a playroom is commonly a practice of children. (2.718281828)
We require a mnemonic to remember e whenever we scribble math. (2.7182818284)

and, if we allow the letter O to represent zero,

In showing a painting to probably a critical or venomous lady, anger dominates. 
O take guard, or she raves and shouts. (2.71828182845904523536)

Polynomial and exponential growth

To illustrate what is meant by ‘exponential growth’, let’s start with a 
story concerning the invention of the game of chess (see Figure 52).
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The wealthy king of a certain country was so impressed by the newly intro-
duced game of chess that he offered the wise man who’d invented it any reward 
he wished. The wise man replied:

My prize is for you to give me 1 grain of wheat for the first square of the chessboard, 2 grains 
for the second square, 4 grains for the third square, and so on, doubling the number of 
grains on each successive square until the chessboard is filled.

The king was amazed to have been asked for such an insignificant reward 
(or so he believed), until his treasurers calculated the total number of grains of 
wheat to be

	 1 2 2 2 2 22 3 4 63+ + + + + +. . . .

This works out at 264 − 1 = 18,446,744,073,709,551,615 grains, enough wheat 
to form a pile the size of Mount Everest. Placed end to end they would reach to 
the nearest star, Alpha Centauri, and back again!

256 512 1024 2048 4096 8128 …

263

Fig. 52.  Grains of wheat on a chessboard
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Comparing types of growth

Let’s see how quickly various sequences can grow.
A simple form of growth is linear growth, illustrated by the sequence of 

counting numbers

	 1 2 3 4 5 6, , , , , , . . . ; 	

–we refer to this sequence by its nth term, n.
Somewhat faster is quadratic growth, involving the perfect squares n2:

	 1 2 3 4 5 6 1 4 9 16 25 362 2 2 2 2 2, , , , , , . . . . , , , , , , . . . .or 	

Even more rapid is cubic growth, involving the cubes n3:

	 1 2 3 4 5 6 1 8 27 64 125 2163 3 3 3 3 3, , , , , , . . . , , , , , , . . .or 	

These are all examples of polynomial growth, since they involve powers 
of n.

Alternatively, we could look at powers of 2, or of any other number. 
As we saw in the chessboard story, the sequence 2n of powers of 2 starts 
off fairly slowly –

	 1 2 4 8 16 32, , , , , , . . . 	

– but it soon gathers pace because each successive term is twice the pre-
vious one.

The sequence 3n of powers of 3 takes off more quickly:

	 1 3 9 81 243 729, , , , , , . . . . 	

These are examples of exponential growth, where n is the exponent.
This distinction between polynomial growth and exponential growth 

was already recognized by Thomas Malthus in 1798. In his Essay on 
Population he contrasted the steady linear growth of food supplies with 
the exponential growth in population. He concluded that, however we 
may cope in the short term, the exponential growth would win in the 
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long term, and that there would be severe food shortages – a conclusion 
that was borne out in practice.

To compare polynomial growth and exponential growth in greater 
detail, let’s calculate the running times of various polynomials and expo-
nentials when n = 10, 30, and 50, for a computer performing one million 
operations per second:

Clearly, exponential growth is generally much greater than polynomial 
growth: algorithms that run in polynomial time are generally thought to 
be ‘efficient’, whereas those that run in exponential time normally take 
much longer to implement as the input size increases, and are considered 
‘inefficient’.

Introducing logarithms

The exponential number e is intimately linked with logarithms, so before 
going further let’s delve into the nature and history of these.

Logarithms to base 2

Early ideas of logarithms (the word means ‘ratio-numbers’) appeared 
around the year 1500, when Nicolas Chuquet of France and Michael 
Stifel of Germany explained how to turn certain calculations involving 

 n = 10 n = 30 n = 50

polynomial    
n 0.00001 seconds 0.00003 seconds 0.00005 seconds
n2 0.0001 seconds 0.0009 seconds 0.0025 seconds
n3 0.001 seconds 0.027 seconds 0.125 seconds
n5 0.1 seconds 24.3 seconds 5.2 minutes

exponential    
2n 0.001 seconds 17.9 minutes 35.7 years
3n 0.059 seconds 6.5 years 2.3 × 1010 years



e

83

multiplication and division into simpler ones involving addition and 
subtraction. To illustrate this they listed the first few powers of 2,

and observed that
To multiply powers of 2, we add their exponents.
For example, to multiply 16 = 24 and 128 = 27 we write

	 16 128 2 2 2 2 20484 7 4 7 11´ = ´ = = =+ . 	

We now introduce logarithms: for x = 2n we’ll write log2 x = n (pro-
nounced ‘log-to-the-base-2-of-x’). Then

	 log log , log log , log log ,2 2
4

2 2
7

2 2
1116 2 4 128 2 7 2048 2 11= = = = = = 	

and

	 log log log log .2 2 2 216 128 2048 11 4 7 16 128´( ) = = = + = + 	

These calculations illustrate the general rule that

The logarithm of a product is the sum of the logarithms of the separate 
terms.

In symbols:

	 log log log .2 2 2a b a b´( ) = + 	

So far we’ve defined these logarithms only for powers of 2, but they are 
also defined for numbers other than integers. For example, it can be 
shown that log2 3 = 1.585 . . . , log2 5 = 2.322 . . . , log2 15 = 3.907 . . . , and

	 log log . . . log log .2 2 2 23 5 15 3 907 1 585 2 322 3 5´( ) = = ¼= ¼+ ¼= + 	

In general, to multiply two (or more) numbers we look up their loga-
rithms, add, and then locate the number whose logarithm is their sum.

For division we can take a similar approach:

n 1 2 3 4 5 6 7 8 9 10 11 12

2n 2 4 8 16 32 64 128 256 512 1024 2048 4096



e

84

To divide powers of 2 we subtract their exponents.
For example, to divide 4096 = 212 by 512 = 29 we write

	 4096 512 2 2 2 2 812 9 12 9 3¸ = ¸ = = =- . 	

Because log2 4096 = 12, log2 512 = 9, and log2 8 = 3, we can then write

	 log log log log .2 2 2 24096 512 8 3 12 9 4096 512¸( ) = = = - = - 	

In general, the logarithm of a quotient is the difference of the logarithms 
of the separate terms.

In symbols:

	 log log log .2 2 2a b a b¸( ) = - 	

So to divide two numbers we look up their logarithms, subtract, and 
then locate the number whose logarithm is their difference.

Up to now we’ve considered only logarithms based on powers of 2, 
but we can carry out similar processes with powers of other numbers, 
and relations of the form

	 log log log , log log logn n n n n na b a b a b a b´( ) = + ¸( ) = - 	

hold for logarithms to any other number base n.

The logarithms of Napier and Briggs

Since the Middle Ages calculations that turn multiplications into additions 
or subtractions have been known in trigonometry. For example, using 
the addition formulas for cosine, we have

	 cos cos cos sin sin

cos cos cos sin sin ,

x y x y x y

x y x y x y

+( ) = -

-( ) = +

	

and so

	
cos cos cos cos

sin sin cos cos

x y x y x y

x y x y x y

= + + -

= - - +

( ) ( ){ }
( ) ( )

1
2
1
2 {{ }.
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So the product of two cosines or sines can be written as the sum or differ-
ence of two cosines.

In the 16th century, following an idea suggested in Michael Stifel’s 
Arithmetica Integra of 1544, mathematicians developed another method 
for replacing multiplication by addition: this was to turn geometric pro-
gressions whose successive terms have a common ratio r,

	 a a r a r a r a r, , , , , . . . ,´ ´ ´ ´2 3 4 	

into arithmetic progressions whose successive terms have a common 
difference d,

	 a a d a d a d a d, , , , , . . . .+ + + +2 3 4 	

This process was called prosthaphairesis, from the Greek words for ‘addition’ 
and ‘subtraction’.

In 1614 the Scotsman John Napier or Neper, Eighth Laird of Merchiston 
(to the south-west of Edinburgh), produced his Mirifici Logarithmorum 
Canonis Descriptio (Description of the Wonderful Canon of Logarithms) 
(see Figure 51 which opens this chapter). This work contains extensive 
tables of logarithms of the sines and tangents of all the angles from 0 to 
90 degrees in steps of 1 minute of arc; his emphasis on the ‘circular func-
tions’ of trigonometry, arising from his interest in spherical geometry, 
was so that his tables could be used by navigators and astronomers. 
Napier justified his work as follows:

Seeing there is nothing, (right well beloved students in the mathematics) that is 
so troublesome to Mathematicall practise, nor that doth molest and hinder 
Calculators, than the Multiplications, Divisions, square and cubical Extractions 
of great numbers, which besides the tedious expence of time, are, for the most 
part subject to many slippery errors. I began therefore to consider in my 
minde, by what certaine and ready Art I might remove those hindrances, And 
having thought upon many things to this purpose, I found at length some 
excellent briefe rules to be treated of (perhaps) hereafter.

Napier’s ‘excellent briefe rules’ were not based on 2 and are not the ones 
that we use now, but originated from the above idea of prosthaphairesis. 
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He considered two points moving along straight lines – one (PQ) of finite 
length and the other (L0L) of infinite length (see Figure 53) – as follows:

the first point moves from P along PQ in such a way that its speed at each 
point is proportional to the distance that it still has to travel to Q.
the second point, representing its ‘Napierian logarithm’ (which we’ll write 
as logN), starts from L0 and travels at constant speed towards L for ever.

So, in successive periods of time, the distances still to be travelled by 
the first point form a geometric progression, and the distances already 
travelled by the second point form an arithmetic progression.

Napier took 10−7 as his successive time intervals and then multiplied 
his results by 107, in order to avoid the use of decimal fractions which 
were still largely unfamiliar at the time. It follows from his construction 
that the logarithm of 10,000,000 is 0, and that as n decreases its loga-
rithm logN n increases. It also follows that

	 log log log log ,N N N Na b a b´( ) = + - 1 	

so that for each calculation he had to subtract the cumbersome term  
logN 1 = 161,180,956.

Napier was not the first to introduce logarithms. A few years earlier a 
similar approach had been taken by the Liechtensteinian clockmaker 
Joost Bürgi who worked in Prague. But Bürgi didn’t publish his results 
until 1620, by which time Napier’s logarithms were already widely 
known.

0 1 2 3 4 5 6 .  .  .

…P

L0 L

10,000,000 0
Q

constant speed

Fig. 53.  Constructing Napier’s logarithms
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In 1615 Henry Briggs, the first professor of geometry at Gresham 
College in London, heard about Napier’s logarithms and was wildly excited 
by them. He included them in his lectures, enthusing that Napier had

set my Head and hands a Work with his new and remarkable logarithms . . .  
I never saw a Book which pleased me better or made me more wonder.

But Napier’s logarithms were cumbersome to use, and Briggs wished to 
redefine them so as to avoid having to subtract logN 1 in every calculation:

I myself, when expounding this doctrine to my auditors in Gresham College, 
remarked that it would be much more convenient that 0 should be kept for the 
logarithm of the whole sine [namely, 1].

Briggs went up to Edinburgh for two summers to stay with Napier, and it 
is recorded that when they first met they spent the first quarter-hour 
looking at each other in admiration without speaking a word. The out-
come of their meetings was that Briggs started to construct ‘logarithms 
to base 10’ in which

	 log , log , log , , log .10 10 10 101 0 10 1 100 2 10= = = = =and if thenx x nn 	

Other values he found by interpolation – for example,

	 10 3 162 3 162 0 51 2
10

/ . log . . .= ¼ ¼=so 	

In order to find all these intermediate values and to obtain the necessary 
accuracy in his tables, he calculated √10, √√10, √√√10, . . . , eventually 
taking the square root fifty-four times, all to thirty decimal places! Since 
log10 1 = 0, as he had demanded, Briggs’s logarithms satisfied the simpler 
fundamental rule:

	 log log log .10 10 10a b a b´( ) = + 	

In 1617 Briggs produced his Logarithmorum Chilias Prima (The First 
Thousand Logarithms), a small pamphlet of sixteen pages containing his 
calculations (see Figure 54). Seven years later, after he had left London to 
become the first Savilian Professor of Geometry at Oxford University, he 
followed this with his Arithmetica Logarithmica, an extensive collection of 
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logarithms to base 10 of the integers from 1 to 20,000 and from 90,000 
to 100,000, all calculated by hand to fourteen decimal places. The gap in 
these tables between 20,000 and 90,000 was filled in by the Dutch math-
ematician Adriaan Vlacq and published in 1628.

In the 1630s a number of mechanical instruments based on logarith-
mic scales were created. Designed to be used for complicated calcula-
tions, particularly by astronomers and navigators, these included the 
slide rule which was used for over 300 years until the advent of the pocket 
calculator in the 1970s.

Logarithms were soon recognized as being of immense value to those 
needing to carry out extensive calculations. In the 1733 English edition 
of his Item de Natura et Arithmetica Logarithmorum Tractatus Brevis (A Short 
Treatise of the Nature and Arithmetick of Logarithms) the Oxford math-
ematician and astronomer John Keill observed that

By their assistance the Mariner steers his Vessel, the Geometrician investigates 
the Nature of the higher Curves, the Astronomer determines the Places of the 
Stars, the Philosopher accounts for other Phenomena of Nature; and lastly, the 
Usurer computes the Interest of his Money.

Fig. 54.  Some of Briggs’s 1617 logarithms
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Indeed, according to the French mathematician and physicist Pierre-
Simon Laplace, by ‘shortening the labours’ involved in calculations, 
Napier’s logarithms ‘doubled the life of the astronomer’.

Enter the calculus

The 17th century saw the development of the calculus, culminating in the 
achievements of Isaac Newton and Gottfried Wilhelm Leibniz. The sub-
ject was made up from two seemingly unrelated strands, now called dif-
ferentiation and integration. Differentiation is concerned with how things 
move or change, and is used to find velocities and the slopes of tangents to 
curves; for example, if the curve is y = xn, then its slope (denoted by dy/dx) 
is nxn−1. Integration is used to find areas of shapes – in particular, the area 
under a curve. Of particular interest to us is the area under a hyperbola.

In the 1640s the Flemish Jesuit and mathematician Gregory of Saint-
Vincent investigated the area under the rectangular hyperbola y = 1/x, 
and in his Opus Geometricum of 1647 he showed that the area between x 
= a and x = b is the same as the area between x = c and x = d whenever the 
ratios b/a and d/c are equal (see Figure 55).

0

y

a c db

y = 1/x

x

Fig. 55.  The area under the hyperbola y = 1/x
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On perusing Saint-Vincent’s work, his student Alfonso de Sarasa real-
ized that the area under the curve y = 1/x satisfies the basic equation satis-
fied by the logarithm function – namely, if A(t) is the area between x = 1 
and x = t, then

	 A a b A a A b´( ) = ( )+ ( ) 	

(see Figure  56). Details of the calculation are given in Box  6 for those 
familiar with integration.

At this time the connections between this logarithm function and the 
exponential number e were unrecognized. As we shall see, however, 
Napier’s logarithms were ‘nearly’ logarithms to base 1/e, and the area 
under a hyperbola is a logarithm to base e, but the nature and properties 
of the number e had not yet been clarified.

In the 1660s Nicolaus Mercator, and independently Isaac Newton and 
James Gregory, were investigating the area under the hyperbola y = 1/(1 + x); 
this is similar to the previous hyperbola, but translated one unit to the left 
(see Figure 57).

0

y

x1 b a×ba

y = 1/x

Fig. 56.  The area under the hyperbola y = 1/x
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They began with the identity

	 1 11 2 3 4+( ) = - + - + --x x x x x . . . , 	

which can be verified by multiplying both sides by 1 + x and noticing that 
most of the terms on the right cancel out, leaving just 1, or by summing 

Box 6:  The area under a hyperbola

For any t ≥ 1, let A(t) be the area under the hyperbola y = 1/x between x = 1 and x =  t.
Then, on splitting up the range of integration [1, ab] into [1, a] and [a, ab], 
we have

	
A a b

x
dx

x
dx

x
dx

ab a

a

ab

( ) .´ = = +ò ò ò
1 1

1 1 1 	

The first integral on the right is simply A(a).
For the second integral we substitute u = x/a, so that x = au, dx = a du, and the 
limits of integration become 1 and b. Then the second integral becomes

	

1 1

1 1b b

au
a du

u
duò ò= = ( )A b . 	

It follows that A(a × b) = A(a) + A(b).

y = 1/(1+x)

y

x0–1

Fig. 57.  The hyperbola y = 1/(1 + x)
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the geometric series on the right. They then integrated this infinite 
series term by term between 0 and 1, using the fact that the integral of 
xk is xk+1/(k + 1) for each number k, and obtained the new series

	 log( ) . . . .1 1
2

1
3

1
4

1
5

2 3 4 5+ = - + - + -x x x x x x 	

(We suggested a similar method in Chapter 3 to find the infinite series for 
arctan x.)

This series for log (1 + x) appeared in print for the first time in 1668, in 
Mercator’s Logarithmotechnica, but was already known to Newton, who 
hadn’t bothered to publish it. It is valid for all values of x between −1 
and 1, and also for x = 1 when it gives

	 log . . . .2 1 1
2

1
3

1
4

1
5

= - + - + - 	

Again, these are ‘logarithms to base e’, but at the time this was neither 
specified nor fully understood. Newton also used such a series to calcu-
late a logarithm to no fewer than 55 decimal places (see Figure 58).

Fig. 58.  Part of Newton’s calculation of the area under a hyperbola



e

93

A problem of interest

So what exactly is this number e, and how did it arise?
In 1683 the Swiss mathematician Jakob Bernoulli was concerned with 

problems of calculating interest. Given a sum of money to invest at a 
given rate of interest over a number of years, how fast will it grow? The 
answer depends on whether we use simple or compound interest, and 
on how often we calculate the interest.

As an example, suppose that we invest £100 at an annual rate of 10 per 
cent over a number of years. With simple interest the amount increases 
linearly – to £110 after one year, £120 after two years, and so on. After k 
years our £100 has risen to £100 + 10k.

What happens with compound interest? After one year the amount 
rises to £110, as before. But after two years we’ve added a further 10 per 
cent, not of £100 but of £110, giving us £110 + £11 = £121. After three 
years we’ve added a further 10 per cent of £121, giving us £133.10, and so 
on. After k years our £100 has risen to £100 × 1.1k.

Let’s now change the problem. Bernoulli wanted to find out what 
would happen if we calculate the interest more frequently – say, n times 
per year, or even continuously.

Suppose we calculate the interest after every period of six months 
(n = 2). Then after the first period the amount increases by 1

2
10´æ

è
ç

ö
ø
÷ = 5 

per cent to £100 × 1.05 = £105, and after the second period it increases by 
a further 5 per cent, not of £100 but of £105, giving us £105 + £5.25 = 
£110.25 – that is, £100 × 1.052.

Suppose we next calculate the interest every three months (n = 4). 
Then after the first period the amount increases by 1

4
10´æ

è
ç

ö
ø
÷ = 2 1

2
 per 

cent to £100 × 1.025 = £102.50, after the second period it becomes £100 
× 1.0252 ≈ £105.06, after the third period it becomes £100 × 1.0253 ≈ 
£107.69, and by the end of the year it has become £100 × 1.0254 ≈ £110.38.

In a similar way, if we calculate the interest n times per year, then after 
each period the amount increases by 10/n per cent – that is, it is multiplied by  
 1 0 1+ . / n – and at the end of the year it has become £100 × ( . / )1 0 1+ n n. For 
example, if we calculate the interest every month, then the final amount 
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is £100 × ( . / )1 0 1 12+ 12 = £110.47, and if we calculate it every day, then the 
final amount is £100 × ( . / )1 0 1 365+ 365 = £110.51.

As the year is further subdivided, what happens to these amounts? Do 
they increase without bound or do they settle down to a limiting value? 
And what happens if the interest is calculated continuously? It turns out 
that, in either case they approach a limit of just under £110.52, which is 
obtained by multiplying £100 by e0.1, where e is the exponential number. 
So what is this number e?

To find out, we’ll repeat the above process but we’ll start with just £1 
and increase the rate of interest to the unlikely annual rate of 100 per 
cent. What happens when the year is then divided into shorter periods? 
We obtain the following list of final amounts in pounds, calculated to 
five decimal places:

What we’ve done to obtain these results is to note that if the year is 
divided into n periods, then after each period the amount is multiplied 
by 1 1+ / n, so that the final amount is ( / )1 1+ n

n. We also see that, as n 
increases indefinitely, these numbers tend to a limiting value that cor-
responds to when the interest is calculated continuously. This limiting 
value is the exponential number that Euler called e. (Bernoulli had called 
it b, but there’s no suggestion that either of them deliberately chose the 
first letter of his name for this constant.)

In the same way, if the rate of interest is x, then the final amount is 
obtained by multiplying the original sum by the limiting value of the 
expression ( / )1+ x n n, which turns out to be equal to ex. For example, as we 
saw earlier when the rate of interest was 10 per cent or 0.1, the limiting 
value is obtained by multiplying the original sum of £100 by e0.1 ≈ 1.1052, 
giving £110.52.

period: year half-year quarter-year two months month

final amount: 2.00000 2.25000 2.44141 2.52153 2.61304

period: week day hour minute second

final amount: 2.69260 2.71417 2.71813 2.71828 2.71828
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Properties of e

The greatest advances in understanding logarithms, the exponential 
function, and the connections between them, were made in the early 
18th century. The main figure in this story was Leonhard Euler, who 
investigated the main properties of the exponential number e and the 
function y = ex, and who placed e at the centre of discussions of the loga-
rithmic function. In 1748 his celebrated Introductio in Analysin Infinitorum, 
mentioned in the Introduction, brought together many results from his 
earlier works. Here are some of his main findings.

e as a limit

In the previous section we saw that e is the limit of the numbers ( / )1+ x n n 
as n increases indefinitely, and that ex is the limit of ( / )1+ x n n for any 
number x. To summarize, using the notation of limits, we can write:

	 lim / lim / .( ) ( )
n

n

n

n xn e x n e
®¥ ®¥

+ = + =1 1 1and 	

e as an infinite series

As Isaac Newton had already discovered, the number e is also the sum 
of the infinite series

	 e = + + + + +1 1
1

1
2

1
3

1
4! ! ! !

. . . , 	

where the numbers in the denominators are the factorials n! that we 
introduced in Chapter  2 in connection with Liouville’s transcendental 
number.

More generally we have, for any x,

	 e x x x xx = + + + + +1 1
1

1
2

1
3

1
4

2 3 4

! ! ! !
. . . . 	

This series converges for all values of x.
In fact, these series converge quickly because the factorials increase 

very rapidly; for example, taking just the first ten terms of the series for e 
yields the approximation e ≈ 2.7182787 . . . , which is accurate to five 
decimal places.
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For those familiar with the binomial theorem, Box  7 shows the 
connection between these two expressions for ex – as a limit and as an 
infinite series.

Box 7:  Linking two expressions for ex

We start with the binomial expansion for (1 + a)n:
	 ( )

!
( )

!
( )( )

!

( )( )( )

1 1
1
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2

1 2
3

1 2 3
4

2 3+ = + + +

+

- - -

- - -
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n n n n
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Putting a = x/n gives
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which we can rewrite as
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We now take the limit as n increases indefinitely.
Then the left-hand side converges to ex and each bracket of the form 

( / )1- k n  on the right converges to 1, leaving
	

e x x x xx = + + + + +1
1
1

1
2

1
3

1
4

2 3 4

! ! ! !
. . . .

	

The multiplication rule

Earlier we saw that to multiply powers of 2 we add their exponents. 
A similar multiplication rule holds for powers of e:

	 e e e x yx y x y´ = + , .for any numbers and 	

This basic rule can be proved by multiplying together the infinite series 
for ex and ey.

The slope of the graph of y = ex

The graph of the function y = ex is shown in Figure 59. One of its most 
important features is that the slope at each point x of the graph is also ex 
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– that is, the slope at any point is the y-value; a reason for this is given in 
Box 8, for those familiar with calculus. It follows that the curve becomes 
steeper and steeper as x increases.

1

0 x
x

y

slope
= ex

Fig. 59.  The slope at each point of the curve y = ex is ex

Box 8:  The slope at each point x of the graph of y = ex is ex

If we take the series for ex,

	 e x x x xx = + + + + +1
1
1

1
2

1
3

1
4

2 3 4

! ! ! !
. . . , 	

and differentiate the right-hand side one term at a time, we get

	 0
1
1

1
2

1
3

1
4

1
1
1

1
2

1
3

2 3+ + + + + = + + ++
!
( )

!
( )

!
( )

!
( ) . . .

! ! !
1 2 3 42 2x x x x x x .. . . .= ex

It follows that the slope at each point of the graph of y = ex is ex.

In the language of differential equations, it follows that y = ex is a solution of 
the equation dy/dx = y. In fact, the only solutions of this differential equation 
are y = ex and its multiples y = Cex, where C is a constant.

We can also draw the graphs of other exponential functions such as  
y = 2x, or in general y = kx for any number k > 1. Here the shape of the 
curve is similar to that of y = ex, and the slope of the graph at the point x is 
loge k × kx. If k = e, then loge k = 1 and the slope is ex as before.
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Exponentials and logarithms are inverse functions

Earlier we saw that if x = 2n then n = log2 x; similarly, if x = en then n = loge x. 
These connections link exponentials and logarithms and suggest the 
fundamental connection between the functions y = ex and y = loge x 
(where e is the base of the logarithms): they are ‘inverses’ of each other. 
In symbols,

loge e
x = x  and e xe xlog = .

It follows that:

if we take x, calculate ex, and take the logarithm (to base e) of the result, 
we get back to x.

if we take x, calculate loge x, and take the exponential of the result, we get 
back to x.

This inverse relationship had been observed by John Wallis in 1685 and 
was developed by Euler in his Introductio of 1748.

We often simplify loge x to ln x, where ‘ln’ means ‘natural logarithm’. 
With this notation,

	 y e x yx= =if andonly if ln . 	

We shall use ln from now on.
Since y = ex and y = ln x are inverses of each other, their graphs can be 

obtained from each other by reflection in the line y = x (see Figure 60).
We can also use this inverse relationship to show that the multiplica-

tive rule for exponentials and the basic rule for logarithms are essentially 
the same result.

For, the multiplicative rule for exponentials is ex × ey = ex + y .
Writing x = ln a and y = ln b, we have a × b = ex × ey = ex + y = e(ln a + ln b),
and so, on taking logarithms of both sides, ln (a × b) = ln a + ln b,
which is the basic rule for logarithms.
Conversely, the basic rule for logarithms is ln (a × b) = ln a + ln b.
Writing a = ex and b = ey, we have ln (ex × ey) = ln ex + ln ey = x + y,
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and so, on taking exponentials of both sides, ex × ey = ex + y,
which is the multiplicative rule for exponentials.

e is irrational

In 1737 Euler proved that e is an irrational number – that is, it cannot be 
written as a/b, where a and b are integers. Noting that finite continued 
fractions always correspond to rational numbers, he proved that infinite 
continued fractions (such as the continued fractions for π in Chapter 3) 
must correspond to irrational numbers. He then showed that e can be 
written as an infinite continued fraction, as follows (here the counting 
numbers 1, 2, 3, 4, . . . appear as both numerators and denominators):
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1

10 x

y

y = ln x

y = x

y = ex

Fig. 60.  The graphs of y = ex and y = ln x
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Because this continued fraction for e continues for ever, e must be irrational.
Another proof that e is irrational uses the infinite series for e. It is due 

to Joseph Fourier, best known for his work on Fourier series, and is given 
in Box 9.

Box 9:  The number e is irrational

We shall assume that e = a/b is a rational number, where a and b are positive 
integers, and obtain a contradiction. We shall need the series for e:
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But the first term is an integer, and so is each of the terms in the second 
bracket, so N is an integer.

Moreover, N > 0, because e
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on summing the geometric progression.
Now b > 1 since e is not an integer, and so 1/b < 1.
It follows that N is an integer lying strictly between 0 and 1, which is impossible.
This contradiction shows that e is irrational.

In Chapter 6 we’ll visit the harder problem of determining whether e is 
transcendental.
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Napier’s definition of the logarithm

We conclude this section by returning to our earlier claim that Napierian 
logarithms are ‘nearly’ logarithms to base 1/e. We recall that Napier com-
pared the movements of two points over successive time intervals of 
length 10−7 in order to avoid the use of decimal fractions, and his definition 
amounts to the following:

	 if then logy y x
x

N= -( ) =-10 1 107 7 , . 	

If we now re-scale y and x by a factor of 107, by writing Y = y/107 and  
X = x/107, then

	 Y = -( )-1 10 7 107 X
. 	

But as n increases indefinitely, e−1 is the limiting value of ( / )1 1- n n, and so 
1 10 7 107

-( )-  is very close to e−1. It follows that Y is very close to (1/e)X, and 
so log1/e Y is very close to X – that is, Napierian logarithms are ‘nearly’ 
logarithms to base 1/e, as we claimed.

Hanging chains and derangements

Let’s consider two contrasting situations where exponential functions 
arise.

Hanging chains

What U-shaped curve is taken by a hanging chain (see Figure 61)? Galileo 
Galilei considered this problem in his Two New Sciences of 1638, and claimed 
that it approximated a parabola. That this is not the correct curve was 
proved by Joachim Jungius in a posthumous publication of 1669.

Fig. 61.  A hanging chain
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The curve’s properties were studied by Robert Hooke in the 1670s, 
and its equation was later obtained by Gottfried Wilhelm Leibniz, 
Christiaan Huygens, and Johann Bernoulli, who showed its connection 
with the exponential functions y = ex and y = e–x. If we add and subtract 
these functions, we obtain the so-called hyperbolic functions,

	 cosh ( sinh ( ,) )x e e x e ex x x x= + = -1
2

1
2

- -and 	

whose graphs are shown in Figure 62. The curve y = cosh x is the shape 
taken by a hanging chain and is called a catenary after the Latin word ‘catena’ 
for a chain; the use of the word ‘catenary’ for such a curve is attributed to 
Thomas Jefferson.

y

y = cosh x y = sinh x

1

0

y = 1
2 ex y = 1

2 e–x

x

Fig. 62.  The graphs of y = cosh x and y = sinh x

Although hyperbolic functions are defined in terms of exponentials, 
their properties are remarkably similar to those of the trigonometric 
functions. For example, compare

sin sin cos cos sin

sinh sinh cosh cosh sin

x y x y x y

x y x y x

+( ) = +

+( ) = +and hh ,

sin sin cos sinh sinh cosh ,

cos sin

y

x x x x x x

x x

2 2 2 2

12 2

= =
+ =

and

and annd cosh sinh .2 2 1x x- =
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Even their power series are very similar:

	
sin . . . sinh .

! ! ! ! ! !
x x x x x x x x x= - + - + = + + + +1
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1
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1
6

1
2

1
4

1
6

2 4 6 2 4 6- and .. .

	
The trigonometric and exponential functions seem very different, so 
what is the reason for these similarities? After all, as we saw in the 
Introduction, the graphs of y = sin x and y = cos x oscillate indefinitely, 
whereas the graph of the exponential function y = ex goes shooting off to 
infinity when x becomes large. All will be explained in Chapter 6.

Derangements

In 1708 Pierre Rémond de Montmort posed the following problem in his 
Essay on the Analysis of Games of Chance:

How many permutations of the numbers 1, 2, . . . , n leave no number in its 
original position?

Such rearrangements are now known as derangements. For example, when 
n = 4 there are 4! = 24 possible permutations of the four numbers 1, 2, 3, 4, 
but only nine of these are derangements, with no number in its usual 
ordering of 1 2 3 4: 

	2 1 4 3,  2 3 4 1,  2 4 1 3,  3 1 4 2,  3 4 1 2,  3 4 2 1,  4 1 2 3,  4 3 1 2,  4 3 2 1.

The derangement problem is sometimes expressed in a more popular 
form:

If we randomly place a number of messages into addressed envelopes, what is 
the probability that no message ends up in its correct envelope?

To answer this question, we’ll let dn denote the number of derangements 
of n letters (for example, d4 = 9). Then the table overleaf gives the values of 
n, n!, dn, and the corresponding probability dn/n!, for n ≤ 8.

As n increases, it seems as though the probability dn/n! approaches a 
fixed value that is close to 0.3679. But what is this value exactly?
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 n 1 2 3 4 5 6 7 8

 n! 1 2 6 24 120 720 5040 40320

 dn 0 1 2 9 44 265 1854 14833

dn/n! 0 0.5 0.3333 0.375 0.3667 0.3681 0.3678 0.3679

Around 1779 Euler became interested in the derangement problem, 
and used a counting argument to show that

	 d n d n dn n n= - + -- -( ) ( ) .1 1 21 	

For example, when n = 4 we have d4 = 3d3 + 3d2 = (3 × 2) + (3 × 1) = 9.
He then solved this equation to give

	 d nn n
= - + - + ±( )! . . . .

! ! ! !
1 1

1
1
2

1
3

1 	

For example,

	 d
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= 24 − 24 + 12 − 4 + 1 = 9, as expected.

Unfortunately, the formula for dn can be time-consuming to evaluate 
for all but very small values of n – but there’s a quicker way. Because

	 e- = - + - + -1 1 1
1

1
2

1
3

1
4! ! ! !

. . . , 	

dn is very close to n! × e−1. Indeed, it turns out that

For every n, the number of derangements of n symbols is the integer 
closest to n!/e.

For example, when n = 8, n!/e = 14832.9 . . . , and so dn = 14833.

Exponential growth and decay

We conclude this chapter by returning to the subject of exponential 
growth, and to the related topic of exponential decay. For this section 
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we assume some knowledge of differential equations: the results 
will  not be needed in later chapters, and the section can be omitted 
if desired.

Population growth

How fast does a population grow?
If N(t) is the size of a population at time t, and if the population grows 

at a fixed rate k proportional to its size, then it satisfies the differential 
equation

	 dN dt kN/ .= 	

It follows that dN/N = k dt, and we can integrate this equation to give

ln N = kt + constant, or (in terms of exponentials) N(t) = Cekt,

where C is another constant.
If the initial population is N0 when t = 0, then N0 = Ce0k = C, so C = N0 

and the population at time t is

	 N t N ekt( ) = 0 . 	

This is an example of exponential growth (see Figure 63).

N

N0

0 t

Fig. 63.  Population growth
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Cooling of a cup of tea

How fast does a cup of tea cool?
By Newton’s law of cooling, the rate at which tea cools is proportional 

to the difference in temperature between the tea and the surrounding 
room: if T(t) is the temperature of the tea at time t and T0 is the tempera-
ture of the room, then the rate of cooling is given by

	 dT dt K T T/ ( ,)= - - 0 	

where K is a constant; the negative sign arises since the temperature is 
decreasing. This equation can then be written as dT/(T − T0) = −K dt, which 
can then be solved to give the temperature of the tea at time t as

	 T t T Ce Kt( ) = + -
0 , 	

where C is a constant which we can find if we know the initial tempera-
ture of the tea.

This is an example of exponential decay (see Figure 64).

The half-life of radium

Another example of exponential decay concerns radioactive material 
such as radium (see Figure 65). Here the radium decays according to a 
similar formula,

	 dm dt Km/ ,= - 	

T0

0
t

T

Fig. 64.  The cooling of a cup of tea
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where m(t) is the mass of the radium at time t, and K is a constant.
As above, we can rewrite this equation as dm/m = −K dt, and we can 

then solve it to find m(t). The answer is

	 m t m e Kt( ) = -
0 , 	

where m0 is the amount of radium at time t = 0.
To find the constant K, we usually introduce the ‘half-life’, the time T 

taken for the radium to reduce to half of its original size. Then, after 
time T,

m0/2 = m0e−KT, so eKT = 2 and KT = ln 2.
Substituting this back into the original solution gives the mass of the 

radium at time t as

	 m t m e t T( ) = -( )
0

2ln / . 	

For example, if the original mass of the radium is 1 mg, and if the half-life 
is 1590 years (as it is for radium-226), then the mass in milligrams after t 
years is given by

	 m t e t( ) = -( )ln / .2 1590 	

m0

m

0

m0/2

T
t

Fig. 65.  The decay of radium



Fig. 66.  Sir William Rowan Hamilton scratches his quaternions on a bridge in 
Dublin
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CHAPTER 5

i

The imaginary number

We have shown the symbol Ö–a  to be void of meaning,
or rather self-contradictory and absurd.

Augustus De Morgan

The story of i concerns the square root of minus 1 and the so-called 
imaginary numbers. But is there such a thing as Ö -1?  After all, if you 

square either 1 or −1 you get 1, so what can you possibly square to get −1?
The answer began to emerge in the 16th century, but even three 

centuries later there was still much confusion about the subject. In 1831 
Augustus De Morgan, Professor of Mathematics at University College, 
London, made the above remark in his book On the Study and Difficulties of 
Mathematics, and the Victorian Astronomer Royal, George Airy, com-
mented:

I have not the smallest confidence in any result which is essentially obtained by 
the use of imaginary symbols.

In 1854 George Boole, founder of ‘Boolean algebra’, described the square 
root of −1 as ‘an uninterpretable symbol’ in his celebrated logic book 
Laws of Thought.

Earlier, Gottfried Wilhelm Leibniz had been more encouraging, claim-
ing that

The imaginary numbers are a wonderful flight of God’s spirit; they are almost 
an amphibian between being and not being.
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But the great Euler, who made so many contributions to the develop-
ment and use of these imaginary numbers, seemed to take an uncharac-
teristically different view:

All such expressions as Ö- Ö-1 2, , etc., are consequently impossible or imagin
ary numbers, since they represent roots of negative quantities; and of such 
numbers we may truly assert that they are neither nothing, nor greater than 
nothing, nor less than nothing, which necessarily constitutes them imaginary 
or impossible.

It was René Descartes who first called these numbers imaginary, in his 
Discourse on Method of 1637. They’re now called complex numbers, a name 
given to them in 1831 by Carl Friedrich Gauss. But how did they arise? 
And why did they cause so much confusion for several centuries?

Different types of numbers

In Chapters 1 and 2 we looked at how our number system is built up. 
Starting with the counting numbers, 1, 2, 3, . . . , we obtained all the integers 
– positive, negative, and zero. This was a non-trivial process, extending 
over thousands of years, and negative numbers were initially treated 
with the same ridicule that the imaginary numbers would later have to 
face. These days, when we have no difficulty understanding negative 
temperatures in our weather forecasts, it seems hard to see why negative 
numbers caused so much suspicion.

Another crucial step was to divide one integer by another to give frac-
tions, or rational numbers. All we need to remember is not to divide by 0, 
and that different fractions can represent the same rational number; for 
example, 1

2
 is the same as 2

4
 or -

-
35
70

. But many numbers cannot be written 
as fractions – for example, Ö Ö2 73, , and the numbers π and e that we met 
in Chapters 3 and 4. These are the irrational numbers, which when com-
bined with the rational numbers form the real numbers.

For many purposes the real numbers are all we need. But suppose that we 
now agree to allow this mysterious object called ‘Ö -1’. We can then form 
many more ‘numbers’, such as 3 4 1+ Ö- . Ignoring for the moment what 
they actually mean, we can carry out simple calculations with these objects.
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Addition is easy:

	 ( ) ( ) ( ) ( ) .2 3 1 4 5 1 2 4 3 5 1 6 8 1+ Ö- + + Ö- = + + + Ö- = + Ö- 	
So is multiplication (after we’ve replaced Ö- ´Ö-1 1 whenever it appears 
by −1):

( ) ( ) ( ) ( ) ( )

( )

2 3 1 4 5 1 2 4 3 1 4 2 5 1

15 1 1

+ Ö- ´ + Ö- = ´ + Ö- ´ + ´ Ö-

+ ´Ö- ´Ö-

= + Ö- + Ö- -8 12 1 10 1 15

= - + + Ö- =- + Ö-( ) ( ) .8 15 12 10 1 7 22 1

For convenience, from now on we’ll usually follow Euler who in 1777 
replaced the cumbersome symbol Ö -1  by the letter i (the first letter of 
‘imaginary’), so that i2 1= - ; for example, the result of this last calcula-
tion would be written more clearly as

	 2 3 4 5 7 22+( )´ +( ) = - +i i i. 	

We’ll need some terminology in what follows. Given a complex number 
of the form a + bi, we say that a is its real part and that b is its imaginary part: 
if b = 0  we get the real number a, and if a = 0  we get the ‘imaginary num-
ber’ bi. We also say that the conjugate of z a bi= +  is the complex number 
z a bi= - , its modulus or absolute value z a bi= +  is the real number 
Ö +( )a b2 2 , and if z ¹ 0  its argument arg argz a bi= +( )  is arctan b/a. For 
example, the real part of the complex number 3 4+ i  is 3, its imaginary 
part is 4, its conjugate is 3 4- i , its modulus 3 4+ i  is Ö + =Ö =( )3 4 25 52 2 , 
and its argument is arctan 4

3
 (which is about 53° or 0.93 radians). The 

geometrical meanings of these terms will become clear later on.

We can carry out all the usual arithmetic operations on complex 
numbers, as follows:

Addition:      a bi c di a c b d i+( )+ +( ) = +( )+ +( )
Subtraction:   a bi c di a c b d i+( )- +( ) = -( )+ -( )
Multiplication: a bi c di ac bd ad bc i+( )´ +( ) = -( )+ +( )

(after replacing i2 by −1).
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To divide a bi+  by c di+  we first multiply the numerator and denominator 
by the conjugate of c di+ , as follows:

	 a bi
c di

a bi c di

c di c di

ac bd bc ad i

c d

+
+

=
+( ) -( )
+( ) -( )

=
+( )+ -( )

+( )
=

2 2

aac bd
c d

bc ad
c d

i
+
+

+
-
+

æ
è
ç

ö
ø
÷2 2 2 2

. 	

Solving equations

Let’s now return to our various types of numbers and look at them from 
a different point of view.

If we’re restricted to the counting numbers, then we can solve certain 
algebraic equations. For example, the equation that we now write as 
x+ =3 7  has the solution x = 4. But to solve the equation x+ =7 3  (a task 

considered impossible for many centuries), we need to expand our num-
ber system to include the negative integers, and the solution is x = -4. 
We can now solve all equations of the form x a b+ = , where a and b are 
integers.

The next stage is to bring in fractions. Using these we can solve an 
equation such as 7 5x = : the solution is x = 5

7
. We can now solve any linear 

equation – those of the forms ax b=  or ax b c+ = , where a, b, and c are 
integers or rational numbers with a ¹ 0.

Once we’ve introduced irrational numbers, we can go beyond linear 
equations and look at equations such as x2 2=  (with its solutions 
x =Ö2   and x = -Ö2 ), and x x4 210 1 0- + =  (with its solutions 
x x x=Ö +Ö =Ö -Ö = -Ö +Ö2 3 2 3 2 3, , , and x = -Ö -Ö2 3 ). But we still 
can’t solve all quadratic equations, because to solve the equation x2 1= -  
we need to introduce another type of number, the square root of −1. 
Once we’ve done so, we can then solve any quadratic equation.

To illustrate this, let’s consider three particular quadratic equations.
For the quadratic equation x x2 4 3 0- + = , we can factorize directly:

	 x x x x2 4 3 3 1 0- + = -( ) -( ) = , 	

so there are two real solutions: x =3 and x =1.
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For the quadratic equation x x2 4 4 0- + = , we can again factorize directly:

	 x x x x2 4 4 2 2 0- + = -( ) -( ) = , 	

so we have a repeated real solution: x = 2.
But to factorize the quadratic equation x x2 4 5 0- + = , we need to bring 

in i =Ö -1:

	 x x x i x i2 4 5 2 2 0– – – – ,+ = ( ) +( ) = 	

so there are two complex solutions: x i= +2  and x i= -2 .
To explore the differences among these solutions, let’s recall the quad-

ratic equation formula:

	
if thenax bx c x

b b ac
a

2
2

0
4

2
+ + = =

- ± -
, .

	

Taking a =1  and b = –4, as in the above three equations, we deduce that 
the equation x x c2 4 0- + =  has the solutions

	 x c c= ±Ö -( ){ } = ±Ö -( )4 16 4 2 2 4/ . 	

When c =3, we have x = ±Ö2 1,  giving the two solutions x = 3 or x = 1, as 
before.

When c = 4, we have x = ±Ö2 0,  giving the single solution x = 2.
When c =5, we have x = ±Ö -2 1, giving the two solutions x i= +2  and 

x i= -2 .

If we now draw the graphs of these three quadratic equations (see 
Figure 67 overleaf ), we find that

the curve y x x= - +2 4 3  crosses the x-axis twice (when x =3  and x =1);
the curve y x x= - +2 4 4  just touches the x-axis (when x = 2);
the curve y x x= - +2 4 5  (with complex solutions) misses the x-axis 
altogether, so the solutions are truly imaginary: they’re there, but you 
can’t see them!

The fundamental theorem of algebra

What happens for higher-degree equations, such as

	 x x x x x x6 5 4 3 212 60 160 239 188 60 0- + - + - + = ? 	
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Can this be solved? If so, can we solve it with just real and complex num-
bers, or do we need to introduce yet another type of number?

Around 1700 there was some discussion about what forms the solutions 
of these more complicated equations might take. By this time, polynomial 
equations of degrees 1, 2, 3, and 4 (those involving terms up to x4) had been 
solved, as we’ll see, but what about equations of degree 5 or more, which no 
one could solve in general? There seemed to be several scenarios:

One can solve all equations using only real and complex numbers.
One may need to introduce new ‘hyper-complex’ numbers to solve some 

equations.
Some equations might have solutions that aren’t numbers and don’t 

behave like them.
Some equations might not have solutions of any kind.

y

3

2

1

–1

1 2 3 40

y = x2 – 4x + 3

x

y

4

3

2

1

1 2 3 40

y = x2 – 4x + 4

x

y

5

4

3

2

1

1 2 3 40

y = x2 – 4x + 5

x

Fig. 67.  The graphs of three quadratic equations
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To get a feeling for which of these is actually the case, let’s first try to 
take the square root of i – that is, we’ll solve the equation x i2 = . Do we 
need to introduce further ‘numbers’, or are our existing complex num-
bers sufficient? If the latter, then we can write x a bi= + , and so

	 x a bi i a b abi i2 2 2 2 2= +( ) = -( )+ =, .giving 	

On comparing real and imaginary parts we see that

	 a b ab a b a b2 2 0 2 1 1
2

1
2- = = = =Ö = = -Öand giving or, . 	

So the solutions are x i= +( ) Ö1 2/  and x i= +( ) Ö– 1 2/ , and complex 
numbers are all we need in this case.

In fact, complex numbers are always enough to solve any polynomial 
equation. For example,

	 x x x x x x

x x x x x x

6 5 4 3 2

2 2 2

12 60 160 239 188 60

4 3 4 4 4 5

- + - + - +

= - +( ) - +( ) - +(( )
= -( ) -( ) -( ) - +( )
= -( ) -( ) -( ) - -( ) - +

x x x x x

x x x x i x i

1 3 2 4 5

1 3 2 2 2

2 2

2 (( ) ,

	

so the solutions of the polynomial equation

	 x x x x x x6 5 4 3 212 60 160 239 188 60 0- + - + - + = 	

are x =1 3 2, , (twice), 2+ i, and 2- i.
This is a special case of what came to be known as the fundamental 

theorem of algebra. It can be stated in various ways:

Every polynomial p(x) with real coefficients can be factorized into linear 
and quadratic polynomials with real coefficients.

Every polynomial p(x) with real coefficients can be factorized completely 
into linear factors with complex coefficients.

Every polynomial equation p x( ) = 0  has at least one real or complex 
solution.

Every polynomial equation of the form p x( ) = 0  of degree n has exactly 
n real or complex solutions (as long as we count them appropriately).
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For a long time these observations were folklore, but they seem to have 
been first stated formally in 1629 by the Flemish mathematician Albert 
Girard:

Every equation of algebra has as many solutions as the exponent of the highest 
term indicates.

But others also seemed aware of it. For example, René Descartes stated 
the result in his Discourse on Method in 1637.

It was not until the 18th century that the matter received any serious 
discussion – notably by Jean le Rond d’Alembert, Leonhard Euler, Joseph-
Louis Lagrange, and Pierre-Simon Laplace. Carl Friedrich Gauss dis-
missed these earlier efforts and gave the first ‘proof’ of the fundamental 
theorem in his doctoral dissertation of 1799, but it too was deficient 
and  not easy to patch up. In 1814 an attempt was made by the Swiss 
mathematician Jean-Robert Argand, whom we meet again later, but it 
was also incomplete. Gauss subsequently provided three corrected 
proofs – but the waters surrounding all these attempts are very murky 
and it is difficult to be sure who gave the first ‘rigorous’ proof.

The origins of i

Let’s look briefly at some early attempts to solve equations.
The following problem in sexagesimal notation appeared on a 

Mesopotamian clay tablet dating from around 1800 bc:

I have subtracted the side of my square from the area: 14,30.
You write down 1, the coefficient.
You break off half of 1. 0;30 and 0;30 you multiply. You add 0;15 to 14,30.
Result 14,30;15.
This is the square of 29;30. You add 0;30, which you multiplied, to 29;30.
Result: 30, the side of the square.

Writing this in modern algebraic notation, interpreting ‘the side of a 
square’ as x and ‘the area’ as x2, and rewriting all the sexagesimal num-
bers in decimal form (for example, 14 30 14 60 30 870, = ´( )+ =  and 
0 30 1

2
; = ), we obtain the quadratic equation
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	 x x2 870- = . 	
The above steps then give us successively:

	
1 870 870 870 29 29 301

2
1
2

1
2

1
4

1
4

1
4

1
4

1
2

1
2

1
2

, , , , , .´ = + = Ö = + =
	

The solution x =30  is correct, since 30 30 8702 - = .
This is just one of a dozen or more similar problems on the same clay 

tablet, which may therefore have been used for teaching purposes. 
It turns out that if we apply the same operations to the general equation 
x bx c2 - = , we get
	 b b b b b b c b c

b b c b b

, , , , ( ),

( )

1
2

1
2

1
2

1
4

1
4

1
4

1
2

1
4

1
2

2 2 2

2 2

´ = + Ö +

+ Ö + = +Ö{ ++( )}4c .

	

This is the result obtained by the quadratic equation formula.

So the Mesopotamians of 4000 years ago could solve particular 
instances of what we now call ‘quadratic equations’, and they used 
essentially the same sequence of operations that we use today – but 
there  were  differences. For a start, their idea of subtracting a side of a 
square from the area makes no sense to us geometrically. Moreover, they 
seemed to be satisfied with finding just one solution: any suggestion that 
there might be others didn’t arise, and here the other solution (−29) 
would have been meaningless to them anyway, because it’s a negative 
number.

Somewhat later, in the Greek world of the first century ad, a certain 
amount of fudging was used when the square root of a negative quantity 
unexpectedly turned up. In his Stereometria, Heron of Alexandria was 
attempting to find the height h of a frustum of a pyramid (that is, a pyra-
mid with its top chopped off), where the sides a and b of the base and the 
top and the slant edge-length c are given numbers (see Figure 68).

In one of his examples Heron took the lengths a and b to be 28 and 
4  units and the slant edge-length c to be 15, presumably unaware that 
such a frustum is not physically possible. Here the appropriate formula 
turns out to be
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	 h c a b=Ö - -{ ( ) ,}2 21
2

	

which in this particular case is

	 Ö - -( ) = Ö -( ) = Ö-{ .}15 28 4 225 288 632 21
2

	

This answer was clearly far too dangerous to contemplate and it appeared 
in the Stereometria simply as √63.

In the 9th century ad Islamic scholars in Baghdad became interested 
in solving equations. In his book Kitāb al-jabr w’al muqābalah, from whose 
title we derive our word algebra, the Persian mathematician al-Khwārizmı ̄ 
presented a lengthy account of how to solve quadratic equations. Since 
negative numbers were still not considered meaningful, he split the 
equations into six types, corresponding (in modern notation) to the 
forms

	 ax bx ax b ax b ax bx c ax c bx ax bx c2 2 2 2 2= = = + = + = = +, , , , , ,and 	

where a, b, and c are positive constants. He then proceeded to solve par-
ticular instances of each type using a geometrical form of ‘completing 
the square’; an example was the equation x x2 10 39+ = , for which he 
found the solution x =3. There was no discussion of the negative solu-
tion −13, and even a simpler equation such as x+ =1 0 would have been 
considered as having no solutions.

a

c

b

Fig. 68.  Finding the height of a chopped-off pyramid
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Later, around the year 1100, the Persian poet and mathematician Omar 
Khayyám, best remembered for his classic collection of poems called the 
Rubaiyat, carried out a similar classification of cubic equations (those 
involving x3) in which all the constants are positive; in this case there are 
fourteen different types.

In the early 16th century the algebraic scene moved to Italy. In 1545 
Girolamo Cardano of Milan published an important algebra book, his 
Ars Magna (The Great Art) (see Figure 69), in which he explained how to 
solve a number of problems that give rise to algebraic equations. One of 
these problems asked how one can divide 10 into two parts whose prod-
uct is 40. Taking the parts to be x and 10 − x, he tried to solve the quad-
ratic equation

	 x x x x´ -( ) = - + =10 40 10 40 02– , .that is 	

He obtained the solutions 5 15+Ö-  and 5 15-Ö- , and could see no 
meaning to these. But after remarking

Nevertheless we will operate, putting aside the mental tortures involved,

he found that everything works out correctly:

	 ( ) ( )5 15 5 15 10+Ö- + -Ö- = 	

	 ( ) ( ) ( ) ( ) .5 15 5 15 5 15 25 15 402 2+Ö- ´ -Ö- = - Ö- = - - = 	

In view of the ‘mental tortures’ involved, Cardano was led to complain:

So progresses arithmetic subtlety the end of which is as refined as it is useless.

In his Ars Magna Cardano also showed how to solve cubic and quartic 
equations – equations of degrees 3 and 4. Following Scipione del Ferro, 
Niccolò Tartaglia, and other Italians, the method he described for solv-
ing a cubic equation of the form x cx d3 + =  involved finding two other 
numbers u and v satisfying the equations

	 u v d uv c– ,( )= =and 1
3

3
	

leading to a solution of the form x u v= Ö - Ö3 3 .
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Fig. 69.  Cardano’s Ars Magna
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For example, to solve the cubic equation x x3 6 20+ = , he sought num-
bers u and v satisfying

	 u v uv- = = ´ =20 6 81
3

3and ( ) . 	

Because v u= -20  we have

	 uv u u u u= -( ) = - =20 20 82 . 	

This is a quadratic equation which he easily solved to give

	 u v= +Ö = - +Ö10 108 10 108, .so that 	

The solution for x then has the form 3 3Ö - Öu v , which is

	 x = Ö +Ö( )- Ö - +Ö( )3 310 108 10 108 . 	

This is cumbersome, but if you now work this number out on a calcula-
tor, you’ll get the much simpler answer 2, which clearly satisfies the 
original equation. But Cardano (having no calculator) seemed unable to 
perform the necessary simplifications.

The situation was clarified by Rafael Bombelli, an engineer from 
Bologna who was an expert in draining swampy marshes. In his Algebra 
of 1572 he applied Cardano’s method to the cubic equation x x3 15 4= +  
and found that

	 x i i= Ö +Ö-( )+ Ö -Ö-( ) = Ö +( )+ Ö -( )3 3 3 32 121 2 121 2 11 2 11 . 	

This involves imaginary numbers – but this equation actually has three 
real roots, 4 2 3, - +Ö , and - -Ö2 3, with no imaginary numbers in sight! 
This seemed paradoxical; indeed Leibniz, who was dissatisfied with 
Bombelli’s explanations, later asked:

How can it be that a real quantity, a root of the proposed equation, is expressed 
by the intervention of an imaginary?

But after some investigation Bombelli noticed that

	 2 11 2 2 11 23 3+ = +( ) = ( )i i i iand – – , 	
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and so, on taking the cube roots, he found that

	 x i i= +( )+ ( ) =2 2 4– , 	

as expected. He was then able to calculate the other two roots. As the 
French mathematician Jacques Hadamard was later to observe:

The shortest path between two truths in the real domain passes through the 
complex domain.

But Bombelli went even further, and proposed the following general 
rules for dealing with these complex numbers:

Plus times plus of minus, makes plus of minus.
Minus times minus of minus, makes plus of minus.
Plus of minus times plus of minus, makes minus.
Plus of minus times minus of minus, makes plus.

We can interpret these by writing +1 for ‘plus’, −1 for ‘minus’, + i for ‘plus 
of minus’, and −i for ‘minus of minus’, giving us the rules

	 +( )´ +( ) = + -( )´ -( ) = + +( )´ +( ) = - +( )´ -( ) = +1 1 1 1i i i i i i i i; ; ; . 	

Picturing complex numbers

How can we visualize complex numbers? Before answering this we 
first  look at some geometrical constructions of René Descartes and 
John Wallis.

Constructing square roots

In his Discourse on Method of 1637 Descartes presented geometrical con-
structions for various algebraic operations. For example, following 
Euclid, he gave the following ruler-and-compasses construction for find-
ing the square root of a positive quantity (see Figure 70):

To find the square root of GH, draw FG with length 1 and bisect the line FH at 
the point K.

Draw the circle with centre K and radius FK.



i

123

Draw the line at G perpendicular to FH, and let I be the point where this per-
pendicular line meets the circle.

Then GI is the required square root.
For, by the similar triangles ∆FGI and ∆GIH, we have GI FG GH GI/ /= , and so 

GI FG GH GH2 = ´ = .

Descartes also gave the following construction for finding the positive 
solution of the quadratic equation x ax b2 2= +  (see Figure 71):

Draw a line LM of length b and draw the line LN perpendicular to LM and of 
length 1

2
a .

Draw the circle with centre N and radius LN.
Draw the line MN and extend it to the point O on the circle.

F 1 G K
H

I

Fig. 70.  Constructing a square root

N

1
2 a

1
2 a

L b M

1
4 a 2+b 2

O

Fig. 71.  Solving a quadratic equation
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Then OM is the required solution.
For, by the Pythagorean theorem, OM ON NM a a b= + = +Ö +1

2
1
4

2 2( ).

Influenced by Descartes, other 17th-century mathematicians attempted 
to picture algebraic ideas. In particular, Wallis gave a similar construc-
tion to that of Descartes for constructing the square root of a product bc, 
when b and c are both positive. As he wrote in his Treatise on Algebra of 1685:

Forward from A, I take AB b= + ; and Forward from thence, BC c= + ;
(making AC AB BC b c= + + = + + , the Diameter of a Circle:)
Then is the Sine, or Mean Proportional BP bc= Ö+ .

This corresponds to drawing a circle with diameter AC of length b c+  
and constructing a perpendicular from the point at distance b from A 
(see Figure  72); the length of this perpendicular is then the required 
square root Öbc .

Wallis then tried to modify this process in order to construct the 
square root of bc when b is negative and c is positive (see Figure 73):

A
b B O c

C

P

√bc

Figs. 72, 73.  Finding the square root of bc when b is positive and when b is negative

OB –b A

√–bc

P

C

c

But if Backward from A, I take AB b= - ; and then Forward from that B BC c, = + ; 
(making AC AB BC b c= - + = - + , the Diameter of the Circle:)

Then is the Tangent or Mean proportional BP bc= Ö- .

This time b is measured to the left of A and the length of the tangent BP is 
the required square root Ö-bc .

Wallis also attempted a construction that hinted at the idea of an imagin
ary number being at right angles to a real one, but didn’t quite get there.
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The complex plane

Pictorial representations of complex numbers were first introduced by 
the self-taught Norwegian–Danish surveyor Caspar Wessel. Unfortunately, 
his article (in Danish) was overlooked for a hundred years and his ideas 
had no influence on the development of the subject. Similar representa-
tions may also have been obtained by the Frenchman Henri Dominique 
Truel and by Gauss, but neither published his results at this time.

In 1797 Wessel presented a paper to the Royal Danish Academy of 
Sciences ‘On the analytic representation of direction’, in which he out-
lined the idea of what we now call the complex plane. He considered each 
complex number a + bi as the point in the plane with Cartesian coordinates 
(a, b), or as the vector from the origin (0, 0) to this point. Figure 74 shows 
the four points (1, 2), (3, 1), (−2, 1), and (3, −2) that correspond to the 
complex numbers 1 2 3 2+ + - +i i i, , , and 3 2- i. The x-axis of real num-
bers a a= ( , )0  is called the real axis, and the y-axis of imaginary numbers 
bi b= ( , )0  is called the imaginary axis.

To add two complex numbers, we add the corresponding vectors 
using the parallelogram law. This corresponds to the addition rule:

	 a bi c di a c b d i+( )+ +( ) = +( )+ +( ) . 	

For example, as illustrated in Figure 75,

2i

y

–2i

i

–i

–2 –1 1 2 3 x0

1 + 2i

3 – 2i

–2 + i
3 + i

Fig. 74.  Points in the complex plane

4

y

3

3 x

2

2

1

1
0

1 + 3i

3 + 4i

2 + i

Fig. 75.  The addition rule



i

126

	 1 3 2 3 4+( )+ +( ) = +i i i. 	

We can also write each non-zero complex number z a bi= +  in polar form 
as [r, θ], where

	
r z a bi a b= = + =Ö +( )2 2

	
is the modulus of z, the length of the line segment from the origin O to 
the number a bi+ , and

	 q = arctan b a/ 	
is the argument of z, the angle (in radians) between the line segment from 
O to a bi+  and the positive x-axis (see Figure 76).

y

b

O xar cos  θ

θ

r sin  θr

a + ib

Fig. 76.  The polar form of a complex number

We note that:
For a non-zero point a a= ( ), 0  on the real axis, r a=  and q = 0  (or 2π, 

or −2π, or 100π, or any other integer multiple of 2π);
for a non-zero point bi b= ( )0,  on the imaginary axis, r b=  and q p= / 2  

(or π/2 + any integer multiple of 2π).
We also see that the polar point [r, θ] corresponds to the complex 

number r i( )cos sinq q+  with Cartesian coordinates ( , sin )r rcosq q .
We’ll need this result in Chapter 6, noting in particular that there are 

infinitely many possible values for the angle θ, the argument of z, all dif-
fering by integer multiples of 2π.

Using the polar form we can easily multiply two complex numbers 
together: we simply multiply the corresponding moduli r and add the 
corresponding angles θ. This corresponds to the multiplication rule:
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	 [ , , , ].r s rsq j q j´] [ =] [ + 	

This is because, by the addition formulas for cosine and sine,

r i s i rs i i

rs

(cos sin ) cos sin (cos sin ) cos sin

(

q q j j q q j j+ ´ +( ) = + +( )
= ccos cos sin sin ) (sin cos cos sin )

cos ( ) sin

q j q j q j q j
q j

- + +{ }
= + +

i

rs i (( ) .q j+{ }

It follows from the multiplication rule that multiplying a complex 
number z r=[ , ]q  by i =[ , / ]1 2p  gives [ , / ]r q p+ 2 , which corresponds to 
rotating z anticlockwise through a right angle. For example, multiplying 
the complex number 3 2+ i  by i to give - +2 3i  corresponds to such a 
rotation (see Figure 77). (As the telephone operator said: ‘The number 
you’ve dialled is purely imaginary: please rotate your phone through 90° 
and try again’.)

Similarly, multiplying by i twice gives a rotation through two right 
angles – that is, a rotation of the plane through p = °180 . This rotation 
sends each complex number a bi+  to its negative - -a bi, corresponding 
to the rule i i´ = -1  (see Figure 78).

Using the multiplicative rule, Wessel also calculated the powers of 
complex numbers. For example, on taking r s= =1  and j q= , we have

	 [ , , , ] (cos sin ) cos sin .1 1 1 2 2 22q q q q q q q´] [ =] [ + = +or i i 	

Fig. 78.  Multiplying by i2 1= -

3i

2i

i

–i

–2i

–3i

–3 –2 –1 1 2 3

y

x

3+2i

–3–2i = –1(3+2i)

0

3i

2i

i

–i

–3 –2 –1 1 2 3

y

x

3+2i

–2+3i
= i(3+2i)

0

Fig. 77.  Multiplying by i  
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On replacing 2θ by θ and taking square roots, we then have

	
cos sin ( sin ) ./1

2

1

2

1 2q q q q+ = +i icos

These are special cases of an important result known as De Moivre’s 
theorem, one form of which Abraham De Moivre discovered in the early 
18th century:

For any number n i n i nn, (cos + ) =cos +q q q qsin sin .

Note that, when we replace θ by –θ, then cos cos( )- =q q  and 
sin( ) sin- = -q q , and so:

For any number n i n i nn, (cos ) =cosq q q q- -sin sin .

We shall need these results in Chapter 6.

We’ll conclude this section by finding the complex nth roots of the 
number 1 for each positive integer n. For example,

n z z z
z z

= - = - + =
= = -

2 1 1 1 0
1

2: ( )( ) ,the square roots satisfy
and are and 11.

	

Here are some further complex roots of 1:

n z z z z= - = - + + =3 1 1 1 03 2: ( )( ) ,the cube roots satisfy 	

and are andz z i z i= = - = - - Ö1 3 31

2

1

2

1

2

1

2
, , .+ Ö

	

n z z z z= - = - + + =4 1 1 1 1 04 2: ( ) ( ) ( ) ,the fourth roots satisfy 	
and are andz z z i z i= = - = = -1 1, , , .

	
n

z z z z z z z

=

- = - + - + + + =

6

1 1 1 1 1 06 2 2

:

( )( )( ) ( ) ,

the sixth roots satisfy

	

and are

and

z z z i z i

z i z

= = - = + Ö = - Ö

= - + Ö = - -

1 1 3 3

3

1

2

1

2

1

2

1

2

1

2

1

2

1

2

, , , ,

, 11

2
3Ö i.
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By the Pythagorean theorem we can represent the unit circle with centre 0 
and radius 1 by the simple equation z =1. If we plot these complex roots 
of 1, we find that they always lie on the unit circle at the corners of a 
regular polygon (see Figure 79).

Fig. 79.  The complex nth roots of 1, for n = 3, 4, and 6

1

n = 3

– –1 √3i2
1
2

– +1 √3i2
1
2

i

–i

n = 4

–1 1

1–1

n = 6

– –1 √3i2
1
2

– +1 √3i2
1
2

+1 √3i2
1
2

–1 √3i2
1
2

To find the complex nth roots of 1 for an arbitrary value of n, we note 
that, by De Moivre’s theorem with q p= 2 / n ,

	 (cos / sin / ) cos sin ,2 2 2 2 1 0 1p p p pn i n i in+ = + = + = 	

and more generally, for any integer k,

	 (cos / sin / ) cos sin .2 2 2 2 1 0 1k n i k n k i k inp p p p+ = + = + = 	

So the nth roots of 1 are the complex numbers

	 cos for2 2 0 1 2 1k n i k n k np p/ sin / , , , , . . . , .+ = - 	
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For example, taking n = 3 and k = 0, 1, and 2, we find the cube roots of 1 to be

	 cos cos and cos0 0 2 3 2 3 4 3 4 3+ + +i i isin , / sin / , / sin / ,p p p p 	

which turn out to be 1 1 31
2

, - +Ö( )i , and 1
2

1 3- -Ö( )i , as above.

Argand and Gauss

The complex plane is often called the Argand diagram, although this is not 
historically accurate, as we’ve seen. But the ideas were already ‘in the air’ 
and were rediscovered more than once – in particular by the Swiss-born 
bookshop owner Jean-Robert Argand.

In 1806 Argand wrote an Essay on the Geometrical Interpretation of Imaginary 
Quantities, which he printed privately for his friends without his name on 
the title page. He sent a copy to the famous French mathematician 
Adrien-Marie Legendre, who in turn sent it to another mathematician 
called François Français, who then died shortly after. Fortunately, his 
brother Jacques, also a mathematician, was looking through François’s 
papers. Intrigued by the results that they contained he published his own 
paper on the subject, mentioning Legendre’s letter and inviting the origin
ator of the ideas to make himself known. Again fortunately, Argand 
learned about this request and did so.

In Germany the complex plane is often called the Gaussian plane. Gauss 
had already been working on related ideas for some years but never told 
anyone, claiming in 1812 that

I have in my papers many things for which I could perhaps lose the priority of 
publication, but you know, I prefer to let things ripen.

Gauss finally committed himself on the subject in 1831, and such was his 
reputation that complex numbers received a great boost. As he observed:

That this subject has hitherto been considered from the wrong point of view 
and surrounded by a mysterious obscurity, is to be attributed largely to an ill-
adapted notation. If, for instance, + - Ö-1 1 1, ,  had been called direct, inverse, 
and lateral units, instead of positive, negative, and imaginary (or even impos-
sible), such an obscurity would have been out of the question.



i

131

In particular, he studied the mathematical properties of what are now 
called the Gaussian integers. These are complex numbers of the form a bi+  
where a and b are both integers, and they behave surprisingly like the 
ordinary integers; for example, we can factorize them into ‘primes’ in 
only one way, just like factorizing an ordinary whole number into its 
prime factors.

Generalizing complex numbers

The idea of representing each complex number x iy+  as a point (x, y) in 
the plane was developed by Sir William Rowan Hamilton, the Astronomer 
Royal of Ireland.

Hamilton’s quaternions

Even as late as the 1830s there was still a great deal of confusion about 
complex numbers. This situation had persisted for several centuries and 
it fell to Hamilton to diffuse much of the suspicion.

Hamilton proposed that the complex numbers a bi+  should be 
thought of more concretely as pairs of real numbers (a, b), which we com-
bine by using certain specified rules. These rules he took to be

	 a b c d a c b d a b c d ac bd ad bc, , , , , , ,( )+ ( ) = + +( ) ( )´( ) = - +( )and 	

corresponding to the equations

	 a bi c di a c b d i

a bi c di ac bd ad bc i

+( )+ +( ) = +( )+ +( )
+( )´ +( ) = -( )+ +( )

,

.
	

Here the pair (a, 0) corresponds to the real number a, the pair (0, b) 
corresponds to the imaginary number bi, and the equation 

0 1 0 1 1 0, , ,( )´( ) = -( )  a restatement of the equation i i´ = -1. Hamilton’s 
approach was completely successful, and the complex numbers at last 
became almost universally accepted.

Hamilton then tried to extend his ideas to three dimensions. If the 
points (a, b) of the plane correspond to complex numbers of the form 
a bi+ , where i2 1= - , then the points (a, b, c) of three-dimensional space 
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should surely correspond to objects of the form a bi cj+ + , where i and j 
are both taken to be imaginary square roots of −1, so that i j2 2 1= = - . 
Certainly, addition works well:

	 a bi cj d ei fj a d b e i c f j+ +( )+ + +( ) = +( )+ +( ) + +( ) . 	

But he couldn’t make multiplication work:

a bi cj d ei fj ad be cf ae bd i af cd j bf ce ij+ +( )´ + +( ) = ( )+ +( ) + +( ) + +( )– – .. 	

This gives four terms, rather than three, and the problem was to get rid of 
the last term, involving the product ij. We cannot let ij = 0, because then

	 0 1 1 1
2 2 2= ( ) = ´ = -( )´ -( ) =ij i j . 	

Hamilton tried everything, such as writing ij =1  or ij = -1 , but nothing 
seemed to work, and in a letter to one of his sons he later recalled:

Every morning, on my coming down to breakfast, your little brother William 
Edwin and yourself used to ask me, ‘Well Papa, can you multiply triples?’ 
Whereto I was obliged to reply, with a shake of the head: ‘No, I can only add 
and subtract them’.

Hamilton struggled with his triples for several years, until one day he 
took a walk along the Royal Canal in Dublin:

As I was walking with Lady Hamilton to Dublin, and came up to Brougham Bridge, 
I then and there felt the galvanic circuit of thought close; and the sparks which fell 
from it were the fundamental equations exactly as I have used them ever since.

I pulled out on the spot a pocket book and made an entry . . . it is fair to say 
that this was because I felt a problem to have been at that moment solved – an 
intellectual want relieved which had haunted me for at least fifteen years since.

Hamilton was so excited that he carved his fundamental equations on 
the bridge (see Figure 66 which opens this chapter).

What Hamilton had eventually come up with were his quaternions: 
these are objects of the form a bi cj dk+ + + , where a, b, c, and d are real 
numbers and i, j, and k are all imaginary square roots of −1, so 
i j k2 2 2 1= = = - . Addition worked as expected, but in order to make 
multiplication work he had to abandon the familiar ‘commutative law’ of 
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arithmetic, according to which X Y Y X´ = ´ , for all X and Y; for example, 
3 4 4 3´ = ´ .

Instead, Hamilton needed to impose the following non-commutative 
multiplication rules:

whenever they occur:
replace by , but replace by ,i j k j i k´ ´ -

replace by but replace byj k i k j i´ ´, ,-

replace by , but replace by .k i j i k j´ ´ -

We can depict these rules diagrammat-
ically (see Figure  80): when we travel 
clockwise around the circle, the results are 
positive; when we go counter-clockwise, 
they’re negative. We can also express the 
rules more concisely as

	 i j k i jk2 2 2 1= = = = - . 	

There’s now a plaque on Brougham Bridge that commemorates the dis-
covery of these equations (see Figure 81), and over the years the Irish Post 
Office has issued a number of stamps featuring them (see Figure 82).

Hamilton’s quaternions have many applications in geometry and 
physics. They can be used to represent rotations in three and four dimen-
sions and so arise in many contexts, such as the theory of relativity, film 
animation, and the tracking of satellites.

k

i

j

Fig. 80.

Fig. 82.  An Irish postage stamp 
of 1983

Fig. 81.  The plaque at Brougham 
Bridge
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But initial reactions to them were mixed. William Thomson (later 
Lord Kelvin) was unenthusiastic:

Quaternions came from Hamilton after his really good work had been done; 
and though beautifully ingenious, have been an unmixed evil to those who 
have touched them in any way, including Clerk Maxwell.

And yet James Clerk Maxwell had written some years earlier:

The invention of the calculus of quaternions is a step towards the knowledge of 
quantities related to space which can only be compared, for its importance, 
with the invention of triple coordinates by Descartes. The ideas of this calcu-
lus, as distinguished from its operations and symbols, are fitted to be of the 
greatest use in all parts of science.

Octonions

Can we go any further? We’ve described number systems with one term 
(the real numbers), two terms (the complex numbers), and four terms 
(the quaternions). Are there similar systems with a higher number of 
terms? Augustus De Morgan was unsure:

I think the time may come when double algebra [the algebra of pairs of num-
bers (complex numbers)] will be the beginner’s tool; and quaternions will be 
where double algebra is now. The Lord only knows what will come above the 
quaternions.

It turns out that just one further system ‘comes above the quaternions’ 
– but only if we agree to abandon yet another arithmetical law. These new 
numbers are the octonions, or octaves, introduced independently in the 1840s 
by John Graves (a friend of Hamilton) and the English mathematician 
Arthur Cayley. Each octonion consists of eight terms of the form

	 a bi cj dk el fm gn ho+ + + + + + + , 	

where a, b, c, d, e, f, g, and h are real numbers and i, j, k, l, m, n, and o are 
square roots of −1:

	 i j k l m n o2 2 2 2 2 2 2 1= = = = = = = - . 	
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As before, such objects can be added term by term, but multiplication is 
more complicated, being defined by seven sets of equations, such as:

	 i jk lm on kj ml no= = = = - = - = - . 	

The full set of equations is rather indigestible, but we can use the diagram 
in Figure 83 and ‘follow the arrows’ to derive them all. For example,

whenever we come across l m´ , we replace it by i.
But when the arrows are reversed, we insert a minus sign:

whenever we come across m l´ , we replace it by –i,
and so on.

All multiplications can then be successfully carried out, but we have 
to abandon the commutative law as before, and we also have to lose the 
‘associative law’, according to which X Y Z X Y Z´( )´ = ´ ´( ), for all X, Y, 
and Z; for example, 3 4 5 3 4 5´( )´ = ´ ´( ).

Can we go yet further? We’ve produced number systems with one, two, 
four, and eight terms, so might there be a similar system with sixteen terms? 
With no more arithmetical laws to abandon, the answer must surely be ‘no’, 
and this was eventually confirmed in 1898 by the German mathematician 
Adolf Hurwitz. We have indeed come to the end of this particular road.

o

i

n

k

m

l

j

Fig. 83.  Multiplying octonions



Fig. 84.  Euler’s identity, from his Introductio in Analysin Infinitorum
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CHAPTER 6

eip + =1 0

Euler’s equation

We’ve looked in turn at each of the numbers 1, 0, π, e, and i, each 
with its rich associations and its own story. Now is the time to 

bring them together. An equation that combines such varied entities 
must be profound indeed.

To motivate Euler’s equation, we note the following interconnections:
the trigonometric functions y x= sin  and y x= cos  are related to a circle;
the exponential and logarithmic functions y ex=  and y = ln x are related 

to a hyperbola;
the hyperbola and circle are related to each other (because both are conic 

sections).
So are there any direct relationships between the exponential and loga-
rithmic functions and the trigonometric ones?

There are indeed no real reasons why there should be any such rela-
tionship, but there are complex reasons! Introducing complex numbers 
leads to such connections, and realizing this was one of Euler’s greatest 
achievements. In his Introductio of 1748 he presented a proof of Euler’s 
identity:

	 e x i xix = +cos sin . 	

But by then, several other results linking these functions were already ‘in 
the air’. These included the following ‘near misses’ to the discoveries of 
Euler’s identity and Euler’s equation.
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Two near misses

In 1702 Johann Bernoulli presented a formula for the area of a sector of 
a circle which implies the following equation linking π, i, and the loga-
rithm of a negative number:

	 p = -( )1
1

i
ln . 	

He also obtained the identity

	 arctan ln ,x
i i x

i x
=

+
-2

	

which indicates that inverse tangents and logarithms of complex num-
bers are, in some sense, the same. And around 1712 Roger Cotes was 
investigating the surface areas of ellipsoids and discovered that, for any 
angle φ,

	 ln cos sin .j j j+( ) =i i 	

In this section we look at these near misses of Johann Bernoulli and 
Roger Cotes, before turning to the fundamental contributions of 
Leonhard Euler.

Johann Bernoulli

As we saw in Chapter 4, the logarithm function y = ln  x is defined for all 
positive values of x. But can it be defined when x is negative? This ques-
tion caused much disagreement between Gottfried Leibniz, who believed 
the logarithm of a negative number to be ‘impossible’, and Johann 
Bernoulli, who used the basic equation

	 ln ln lna b a b+ = ´( ) 	

to prove that, for any number x,

	 2 ln ln ln ln ln
ln ln 2

2( ) ( ) ( ) ( ) ( )
( ) ln ln

- = - + - = - ´- =
= ´ = + =

x x x x x x
x x x x xx,

	

and so, for all x x x, ln ln-( ) = . In particular, ln ln-( ) = =1 1 0.
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In 1702 Bernoulli was investigating the area of a sector of a circle of 
radius a with its centre at the origin O – the shaded area in Figure  85 
bounded by the x-axis and the line joining O to the point (x, y) on the 
circle: he found this area to be

	 a
i

x iy
x iy

2

4
ln .

+
-

	

y

a

aO x

(x, y)

Fig. 85.  The area of a sector

y

a

O a x

(0, a)

Fig. 86.  The area of a sector

Leaving aside for the time being the meaning of the logarithm of a 
complex number, Euler later observed that this formula simplifies to 
a i2 4 1/ ln -( )  when x = 0. Because such a sector clearly has a non-zero 
area (see Figure 86), he deduced that the logarithm of −1 cannot be zero, 
contradicting Bernoulli’s result above. Moreover, since this sector is a 
quarter-circle with area pa2 4/ ,

	 p
p

a a
i

i
2 2

4 4
1 1= -( ) -( ) =ln , .and so ln

	

Although Euler wrote down this last result explicitly, he doesn’t seem 
to  have taken exponentials to deduce that eip = -1, which is Euler’s 
equation. Indeed, Euler often credited Bernoulli with discovering this 
value for ln (−1), but Bernoulli didn’t include it in his 1702 paper or in any 
later work, continuing to insist that ln -( ) =1 0 .
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Roger Cotes

In Chapter 3 we described Roger Cotes’s introduction of radian measure. 
During his short lifetime he produced only one published work, a paper 
entitled Logometria, which appeared in 1714 and included a detailed dis-
cussion of the logarithmic spiral; this curve with polar equation r ek= q  
(where k is a constant) occurs in nature and had previously been studied 
by Jakob Bernoulli, Johann’s elder brother. Cotes died at the age of 33 and, 
as we saw in Chapter 3, his mathematical works, including his findings 

Box 10:  Bernoulli’s arctan result

A standard result in calculus is that
	

arctan x
x

dx=
+ò
1

1 2
.

	

If we now allow the use of complex numbers, we can split 1/(1 + x2) into par-
tial fractions:
	

1
1

1
2

1
1

1
12+

=
-

+
+

æ
è
ç

ö
ø
÷x ix ix

,
	

because 1 1 12+ = -( ) +( )x ix ix . We therefore have:

arctan x
x

dx
ix

dx
ix

dx

i
i x

dx i
i x

dx

=
+

=
-

+
+

=
+

+
-

ò ò ò1

2

1

2

1

2

1

2

1

2

1
1

1
1

1
12

òòò
= + - - = ( )+

-
i ii x i x i i x

i x2 2 2
ln ( ) ln ( ) ln .

	

Bernoulli’s 1702 paper also contained an unfinished calculation 
involving an arctan integral, leading him to assert that ‘imaginary loga-
rithms express real circular functions’. The details are given in Box 10 for 
those familiar with calculus.
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on logarithms and geometric curves, were published by his cousin in the 
book Harmonia Mensuarum.

Cotes was attempting to find the surface area of the ellipsoid obtained 
by rotating an ellipse around the x-axis (see Figure 87). The details are 
somewhat complicated, but he managed to find two mathematical 
expressions for the required area – one involving logarithms and the 
other involving the inverse sine function. Both of these expressions 
involved an angle φ, where cosj = b a/  and a and b are the half-lengths 
of the ellipse’s axes. He first proved that the surface area is a certain mul-
tiple of ln cosj j+( )i sin , and then proved it to be the same multiple of 
iφ. Equating these results he deduced the identity

	 ln cos sin ,j j j+( ) =i i 	

which gives a connection between logarithms and trigonometric func-
tions. If he’d then taken exponentials (which he didn’t), he’d have discovered 
Euler’s identity in the form

	 e iij j j= +cos sin . 	

Another near miss!

x

y

z

Fig. 87.  Cotes’s ellipsoid
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Euler’s identity

We now come to Euler’s most celebrated result, relating the exponential 
function y ex=  and the trigonometric functions y x=cos  and y x= sin . 
Recall that these functions can be expanded as power series, valid for all 
values of x:

	 e x x x x x x xx = + + + + + + + +1 1
1

1
2

1
3

1
4

1
5

1
6

1
7

2 3 4 5 6 7

! ! ! ! ! ! !
. . . , 	

cos . . . ,

sin

! ! !

! ! ! !

x x x x

x x x x x

= - + - +

= - + -

1 1
2

1
4

1
6

1
1

1
3

1
5

1
7

2 4 6

3 5

and

77 + . . . .

	

Because the exponential function shoots off to infinity as x becomes 
large, whereas the cosine and sine functions forever oscillate between 1 
and −1, there seems to be no relationship between these functions.

But as Euler discovered in 1737, there is indeed a fundamental connec-
tion if we allow ourselves to introduce the complex number i, the square 
root of −1. One way of seeing this, as Euler showed, is to start with the 
power series for ex, and to replace x by ix:

e ix ix ix ix ix ixix = + ( )+ ( ) + ( ) + ( ) + ( ) + ( )1 1

1

1

2

1

3

1

4

1

5

1

6

2 3 4 5 6

! ! ! ! ! !
++ ( ) +1

7

7

!
. . . .ix

	

Since i2 1= - , it follows that i i i3 4 1= - =, , etc., and so

	 e x x x x x x xix i i i i i i i= + - - + + - - +1
1 2 3 4 5 6 7

2 3 4 5 6 7

! ! ! ! ! ! !
. . . 	

	 = - + - + }{ + - + - +{
=

}1 1

2

1

4

1

6

1

1

1

3

1

5

1

7

2 4 6 3 5 7

! ! ! ! ! ! !
. . . . . .

c

x x x i x x x x

oos sin .x i x+
	

As we’ve seen, this result,

	 e x i xix = +cos sin , 	

Euler’s identity, is one of the most remarkable equations in the whole of 
mathematics.
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This passage from Euler’s Introductio is shown in Figure 84 which opens 
this chapter. As Euler himself commented:

From these equations we can understand how complex exponentials can be 
expressed by real sines and cosines.

Box 11:  Another proof of Euler’s identity

By adding and subtracting the identities

cos sin (cos sin ) cos sin (cos sin ) ,nx i nx x i x nx i nx x i xn n+ = + - = -and

Euler deduced that
	 cos {(cos sin ) (cos sin ) }nx x i x x i xn n= + + -1

2
	

and
	 sin {(cos ) (cos ) }.nx x i x x i x

i
n n= + - -1

2
sin sin 	

He then took x to be infinitely small and n to be infinitely large, in such 
a way that nx has the finite value v. But x v n= /  is small, and so the power 
series for sin x and cos x tell us that, to a first approximation, sin x x v n= = /  
and cos x =1  (ignoring terms in x2, x3, x4, . . .).

This gives
	 cos and

sin

v iv n iv n

v iv n iv n

n n

n

i

= + + -

= + - -

1
2

1
2

1 1

1 1

{( / ) ( / ) }

{( / ) ( / )nn } .

	

Euler now let n increase indefinitely. Then, for any z, (1 + z/n)n can be 
replaced by its limiting value ez (see Chapter 4). So (1 + iv/n)n is replaced by its 
limiting value eiv, and (1 − iv/n)n is replaced by its limiting value e−iv . This gives

	 cos { } sin { },v e e v e eiv iv iv iv

i
= + = -- -1

2
1
2

and 	

and rearranging these gives
	 e v i v e v i viv iv= + = --cos sin cos sin .and 	

Euler gave more than one proof of his identity. Box 11 presents a dif-
ferent approach in which he made use of ‘infinitesimals’. It appears in his 
Introductio in Analysin Infinitorum of 1748 and opens with De Moivre’s 
results, which Euler seems to have discovered independently.
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Some consequences

Euler’s identity has many simple, yet profound, consequences.

Euler’s equation

The most important consequence of Euler’s identity follows when we 
substitute x =p  (the radian form of 180°) to obtain Euler’s equation:

	 e i i ei ip pp p= + = - + = - + =cos sin , .1 0 1 1 0so 	

Although Euler must surely have made this deduction, it doesn’t appear 
explicitly in any of his published works.

In 1959 the English schoolteacher L. W. H. Hull illustrated Euler’s equa-
tion pictorially. Putting x i= p  into the power series for ex, he obtained

	 e i i iip p p p p p p= + - - + + - -1 1

2 6

1

24 120

1

720

2 3 4 5 6 . . . . 	

He then started at the point 1 on the complex plane, added iπ, subtracted 
1
2

2p  and i
6

3p , added 1
24

4p  and i
120

5p , subtracted 1
720

6p , and so on. This 
produced a spiral path that converges to the sum of the series, which 
is  eip = -1  (see Figure 88).

De Moivre’s theorem

We saw in Box 11 how Euler used De Moivre’s results to derive his identity. 
Conversely, Euler’s identity gives us a very simple proof of De Moivre’s 
theorem:

	 for any number n i e e n i nn i n i n, (cos sin ) ( ) cos sin .( )q q q qq q+ = = = + 	

So, in some sense, De Moivre’s theorem and Euler’s identity are equiva-
lent results.

Multiplying complex numbers

In Chapter 5 we saw that if [r, θ] and [s, φ] are complex numbers written 
in polar form, then

	 r s rs, , , .q j q j[ ]´ =] [ +éë ùû 	
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We proved this by using the addition formulas for cosine and sine, but it 
also follows easily from Euler’s identity, because

	 [ , , ] (cos sin ) cos sinr s r i s i

re se rs ei i i i

q j q q j j
q j q j

´] [ = + ´ +( )
= ´ = + == = ++rs e rsi( ) [ , ].q j q j

	

To explore this connection further, we recall from Chapter 4 that the 
exponential function satisfies the basic identity

	 e e ea b a b+ = ´ . 	

If we now replace a by iθ and b by iφ, we have e e ei i i iq j q j+ = ´ , which we 

can rewrite as

	 e e ei i i( + )q j q j= ´ . 	

Applying Euler’s identity to each term of this equation and rearranging 
the result, we have:

	 cos( ) sin ( ) (cos sin ) cos sin

(cos cos sin

q j q j q q j j
q j
+ + + = + ´ +( )

=
i i i

- qq j q j q jsin ) (sin cos cos sin ).+ +i
	

–1

0 1 x

y

1
21+iπ – π2

1+iπ

1
21  π2 i

6 π3––iπ+

Fig. 88.  Hull’s spiral diagram
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Equating real and imaginary parts now gives us

	 cos ( ) cos cos sin sinq j q j q j+ = - 	

and
	 sin( ) sin cos cos sin ,q j q j q j+ = + 	

which are the addition formulas for cosine and sine. Once again, math-
ematical results that originally looked very different are seen to be essen-
tially the same.

Relating the trigonometric and hyperbolic functions

Euler’s identity expresses the exponential function in terms of cos x and 
sin x. Let’s now reverse the process.

It follows from the equation e x i xix = +cos sin , on replacing x by –x, 
that

	 e x i x x i xix- = - + - = -cos cos( ) ( ) .sin sin 	

Adding and subtracting these two equations gives

	 cos ( ) sin ( ).x e e x e eix ix ix ix

i
= + = -- -1

2

1

2
and 	

These remarkable results, which appeared in Box 11, show how by allow-
ing complex numbers we can express the standard trigonometric func-
tions in terms of the exponential function.

If we now replace x by ix in these expressions for cos x and sin x, we get

	 cos ( )

sin ( ) )

ix e e x

ix e e x i

x x

x x

i i

= + =

= - = - =

-

-

1

2

1

2

1

cosh and

( sinh sinhh x,

	

where cosh x and sinh x are the hyperbolic functions introduced in 
Chapter 4. So

	 cosh and sinh for allx ix x i ix x= = -cos sin , . 	

By using complex numbers we’ve obtained simple relationships 
between the trigonometric functions and the hyperbolic ones. These 
connections explain why they share such similar properties, as we saw in 
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Chapter 4. For example, we can deduce from the identity cos sin2 2 1z z+ =  
that cosh sinh2 2 1x x- = , because

	 cosh sinh cos cos2 2 2 2 2 2 1x x ix i ix ix ix- = - -( ) = + =sin sin . 	

Roots of 1

In Chapter 5 we found the following complex nth roots of 1, for n = 2 3 4, , , 
and 6:

n = -2 1 1: and

n i i= - +Ö - - Ö3 1 1 3 1 31
2

1
2

: , ( ), ( )and

n i i= - -4 1 1: , , , and

n i i i i= - +Ö -Ö - +Ö - -Ö6 1 1 1 3 1 3 1 3 1 31

2

1

2

1

2

1

2
: , , ( ), ( ), ( ), ( ).and

If, for each value of n, we add up these roots we get the sum 0 in every 
case. But does this happen for all values of n?

To answer this, recall from Chapter 5 that the nth roots of 1 are the 
complex numbers

	 cos2 / + sin 2 / , for =0, 1, 2,... , 1.k n i k n k np p - 	

By Euler’s identity, these are

	 e k nk i n2 0 1 2 1p / , , , , . . . , .for = - 	

We want to show that the sum of all these values is 0. But if z e i n= 2p / , then 
this sum is

	 1 2 3 1+ + + +¼+ -z z z zn . 	

Summing this geometric progression gives ( )/ ( )z zn- -1 1 , which is 0, 
because zn =1 . So

For any n, the complex nth roots of 1 have sum 0.
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For example, when n = 2, we have

	 e e i0 1 1 0+ = + -( ) =p , 	

so this result can be thought of as a generalization of Euler’s equation.

The golden ratio

What has the golden ratio to do with any of these results?

Recall from Chapter 2 that if j = +Ö1
2

1 5( )  is the golden ratio, then
	 j j j- -= Ö -( ) - = -1 11

2
5 1 1and . 	

We also saw above that, for all x,

	 sin .x e e
i

ix ix= ( )1
2

- -
	

If we now choose x i= lnj , so that ix = – lnj  and –ix = lnj , then

	 sin .i e e
i i i

iln ln lnj j jj j( ) = ( ) = -( ) = -( ) =-1

2

1

2

1

2 2

1 1- - 	

On multiplying by 2π and taking exponentials, we have

	 e i i i ie e e2 2 2 21 1 0p j p p p jsin ln lnor( ) ( )= = = - + =/ sin, . 	

This last equation connects 1, 0, π, e, i, and φ,  which are six of the most 
important numbers in mathematics (or seven, if we include the 2)!

e and π are transcendental

In Chapter 2 we saw that the numbers Ö Ö Ö +Ö2 7 2 33, , , and i are algebraic 
numbers – they’re solutions of polynomial equations with integer coeffi-
cients. We also stated that the numbers e and π are transcendental – neither 
is the solution of any such equations. We can deduce this from a result of 
Ferdinand Lindemann who discovered it around 1882 while investigat-
ing the transcendence of π. A simple form of it is:

If r is a non-zero algebraic number (real or complex), then er is transcen-
dental.

On taking r =1  we deduce immediately that e is transcendental.
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Now suppose, for a contradiction, that π were algebraic. Then iπ would 
also be algebraic, since i is algebraic ( )i2 1= -  and the product of alge-
braic numbers is algebraic. So, on taking r i= p  in Lindemann’s result, 
we’d deduce that eiπ is transcendental. But, by Euler’s equation, eiπ has the 
value −i, which is not transcendental. This contradiction shows that π is 
not algebraic, and is therefore transcendental.

By proving that π is transcendental, Lindemann had finally answered 
a long-standing problem of the ancient Greeks, who had asked whether 
one can ‘square the circle’:

Using only a ruler and compasses, can one construct a square with the 
same area as a given circle?

Lindemann’s negative answer to this question proved, once and for all, 
that it is impossible to square the circle.

What are ln i, ii, and i iÖ ?

Three of the most unexpected results in this subject concern the loga-
rithm of i, the ith power ii, and the ith root i iÖ . None of these has just one 
value – in fact, they all have infinitely many – while the last two (which 
look highly complex) take only real values!

Earlier we saw some of the difficulties involved with defining the loga-
rithm of a negative number. Euler brilliantly clarified the whole issue by 
defining the logarithm of a complex number.

What is ln i?

We’ve seen that any non-zero complex number can be written in polar 
form as

	 z r i rei= +( ) =cos sin .q q q 	

It follows, on taking logarithms, that

	 ln ln ln ln ln ln argz re r e r i z i zi i= = + = + = +q q q . 	

This identity gives the logarithm of any non-zero complex number z. 
But, as we saw in Chapter 5, arg z has infinitely many values, all differing 
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by multiples of 2π. It follows, as Euler discovered, that the logarithm of a 
non-zero complex number has infinitely many values, all differing by 
multiples of 2π i. As he explained in 1748:

In the same way that to one sine there correspond an infinite number of differ-
ent angles I have found that it is the same with logarithms. Each number has an 
infinity of different logarithms, all of them imaginary unless the number is real 
and positive. Then there is only one logarithm which is real, and we regard it as 
its unique logarithm.

Two special cases are particularly important.
When z r k= - = - = = - = +1 1 1 1 2, , ( ) (and arg orq p p p , for any integer k).
So one value of ln (−1), corresponding to q p= , is

	 ln ln-( ) = + =1 1 p pi i, 	

as we saw earlier, and the full list of possible values is

	 . . . , , , , , , , , . . .- - -5 3 3 5 7p p p p p p pi i i i i i i 	

When z i r i= = =, 1 , and q p= =arg i / 2  (or p p/2 2+ k , for any integer k).
So one value of ln i, corresponding to q p= /2, is

	 ln lni i i= + =1 2 2p p/ / , 	

and the full list of possible values is

	 . . . , / , / , / , / , / , / , / , . . . .- - -11 2 7 2 3 2 2 5 2 9 2 13 2p p p p p p pi i i i i i i 	

What are ii and i iÖ  ?

To find the ith power ii we use this last result, that

	 ln ori i i k i= +( )p p p/ / .2 2 2 	

Then one value of ii is

	 i e e e ei i i i i= = = = Ö( ) -ln / / / ,p p p2 2 1 	

a real number that is approximately 0.2078795763. The other values of ii 
all have the form e k- +p p/2 2 , so ii has infinitely many values, all of them real:
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	 . . . , , , , , , , . . . ./ / / / / /e e e e e e- - -9 2 5 2 2 3 2 7 2 11 2p p p p p p

	

Similarly, one value of the ith root i iÖ  is

	 i i i i i ii i e e e eÖ = = = = = Ö( ) ( )( )1 1 1 2 2/ / ln / / / ,p p p 	

a real number that is approximately 4.8104773821. The other values of 
i iÖ  all have the form e kp p/2 2+ , so i iÖ  also has infinitely many values, all of 
them real:

	 . . . , , , , , , , . . . ./ / / / / /e e e e e e- -7 2 3 2 2 5 2 9 2 13 2p p p p p p
	

These results are very surprising. Even Euler himself, in a letter to his 
colleague Christian Goldbach, wrote that this last result ‘seems to me to 
be very odd’. And in one of his lectures Benjamin Peirce, the distinguished 
professor of mathematics at Harvard University from 1831 to 1880, was 
so taken with proving that i i eÖ = p /2  that, according to one of his students,

after contemplating the result for a few minutes he turned to his class and said 
very slowly and impressively, ‘Gentlemen, that is surely true, it is absolutely 
paradoxical, we can’t understand it, and we don’t know what it means, but we 
have proved it, and therefore we know it must be the truth’.

Finally, we note that if we take the equation i i eÖ = p /2 and raise each side 
to the 2ith power, then

	 ( ) ( ) ,/i i i ii i e eÖ = = - =2 2 2 21 and p p 	

so that eip = -1, and we have obtained Euler’s equation yet again!

Who discovered Euler’s equation?

What should we call the equation eip + =1 0 ?
We’ve seen how it can easily be deduced from results of Johann 

Bernoulli and Roger Cotes, but that neither of them seems to have done so. 
Even Euler seems not to have written it down explicitly – and certainly it 
doesn’t appear in any of his publications – though he must surely have 
realized that it follows immediately from his identity, e x i xix = +cos sin .
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Moreover, it seems to be unknown who first stated the result explicitly, 
although Jacques Français, who appeared briefly in Chapter 5 in connec-
tion with the Argand diagram, certainly wrote about it in 1813–14 in a 
French mathematical journal.

But almost everybody nowadays attributes the result to Leonhard 
Euler. For this reason we’re surely justified in naming it ‘Euler’s equation’, 
to honour the achievements of this truly great mathematical pioneer – a 
word that describes him so well, and which appropriately includes 
among its letters our five constants pi, i, o, one, and e.
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