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Abstract. In 2002, algebraic attacks using overdefined systems of equa-
tions have been proposed as a potentially very powerful cryptanalysis
technique against block ciphers. However, although a number of convinc-
ing experiments have been performed against certain reduced algorithms,
it is not clear wether these attacks can be successfully applied in general
and to a large class of ciphers. In this paper, we show that algebraic
techniques can be combined with side-channel attacks in a very effec-
tive and natural fashion. As an illustration, we apply them to the block
cipher PRESENT that is a stimulating first target, due to its simple
algebraic structure. The proposed attacks have a number of interest-
ing features: (1) they exploit the information leakages of all the cipher
rounds, (2) in common implementation contexts (e.g. assuming a Ham-
ming weight leakage model), they recover the block cipher keys after the
observation of a single encryption, (3) these attacks can succeed in an
unknown-plaintext/ciphertext adversarial scenario and (4) they directly
defeat countermeasures such as boolean masking. Eventually, we argue
that algebraic side-channel attacks can take advantage of any kind of
physical leakage, leading to a new tradeoff between the robustness and
informativeness of the side-channel information extraction.

1 Introduction

In classical cryptanalysis against block ciphers, an adversary is usually provided
with the inputs/outputs of a target algorithm. Side-channel attacks additionally
provide him with some partial information on the cipher intermediate values,
leaked by a device performing a cryptographic computation. Such attacks are
therefore much less general - since they are specific to a given implementation -
but often much more powerful than classical cryptanalysis. Hence they are con-
sidered very seriously by cryptographic devices (e.g. smart cards) manufacturers.
Following the publication of the first Differential Power Analysis (DPA) in the
late nineties [13], various types of side-channel attacks have been proposed in
order to carry out effective key recoveries (see, e.g. [16] for a survey). Most of
these techniques share a divide-and-conquer strategy in which different parts of
a target key (e.g. physical bytes, typically) are recovered separately. They also
generally exploit the leakages corresponding to the first (or last) rounds of a block
cipher, where the diffusion is sufficiently weak for some parts of the intermediate
key-dependent computations to be easily enumerated and predicted.
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As a matter of fact, these side-channel attacks are quite demanding in leaked
information since they use physical measurements to identify key bytes exactly.
Also, they usually do not exploit particular weaknesses of the block ciphers.
Therefore, an intriguing question is to know if an adversary could use side-
channels to recover simple targets rather than exact key byte values and then
use this partial information in a more elaborated offline cryptanalysis step. In
other words, can we stop measuring earlier and still have the complexity of a
key recovery that does not grow exponentially with the key size?

In this paper, we answer this question positively and show that combining
powerful (template-like) side-channel attacks with algebraic cryptanalysis allows
performing key recoveries with extremely restricted access to the target devices.
Still, the attack is general and can work in a flexible manner that includes the two
following phases. First, the adversary selects as many intermediate computations
in the target algorithm as possible and measures their physical leakage. For each
of these intermediate computations, he recovers some partial information. This
partial information can be represented by a surjective function of which the
output has been recovered thanks to a side-channel attack. As a typical example,
if a device leaks an information that is strongly correlated with the Hamming
weight of the target intermediate computations results, this function could be
the Hamming weight function. But any other type of function (and hence leakage
model) could be considered. It is eventually the adversary’s choice to select a
target that is both informative and robust. At the extremes, a bijective function
is the most informative but recovering its output by a side-channel attack may
require several measurements - and a surjective function with only one possible
output value yields no information at all. Then, during a second (offline) phase,
the adversary exploits this partial information on the algorithm intermediate
values with an algebraic attack. That is, he writes the block cipher as a system
of quadratic (or cubic, ... ) equations and adds the previously defined functions
with known outputs to the system. In practice, the approach we follow in this
paper is to convert the system of equations representing the block cipher into a
SAT problem and to use an automated solver to perform the key recoveries. It
turns out that this solution yielded very good results. However, it remains an
open question to determine better techniques for this purpose.

The proposed attacks differ from most previously known side-channel attacks
in a number of interesting aspects. First, they potentially exploit the leakage of
all the cipher rounds (classical DPA generally exploits the first or last rounds
only). Second, they can succeed in an unknown plaintext/ciphertext adversarial
context (classical DPA usually requires the knowledge of either the plaintexts or
the ciphertexts). Third, they require much less observations to succeed. In certain
reasonable implementation contexts, we show that the leakage trace of a single
encryption can be sufficient to perform a complete key recovery. This implies that
constructions based on re-keying strategies such as [19, 20] can sometimes be bro-
ken in practice. Eventually, they can deal with block ciphers protected with a
masking countermeasure, e.g. [11]. In particular, we show experiments that break
such masked designs with a single trace, nearly as easily as unprotected ones.



In summary, classical side-channel attacks can be viewed as a combination of
two sub-problems: (1) “how to efficiently recover partial information on certain
parts of a cipher state?” and (2) “how to efficiently exploit this partial infor-
mation?”. Algebraic side-channel attacks raise a new question, namely: “which
partial information should we try to recover?”. It relates both to the previously
mentioned tradeoff between robustness and informativeness and to the selection
of the best target key classes mentioned as an open question in [27].

Y1 St i
. H
H H
H
H 3
H L, 2 algebraic

a , 7 cryptanalysis
)
v
one intermediate value - multiple queries multiple intermediate values - one query

Fig. 1. Standard DPA versus algebraic side-channel attacks.

More precisely, the difference between algebraic side-channel attacks and
standard DPA attacks is illustrated in Figure 1. As already mentioned, stan-
dard DPA attacks exploits a divide-and-conquer strategy and recover several
pieces of a secret key independently. For example, in the left part of the figure,
the set &7 typically contains the 256 candidates for a key byte. In order to recover
the correct one, the adversary targets a single intermediate value (in the set V).
Typically, it could be the output of an S-box in the first cipher round. Each
leakage trace I; provides him with information about this intermediate value
that is then “translated” into subkey information. By combining the leakage
corresponding to several plaintexts (i.e. by increasing the data complexity q),
he finally identifies the key byte exactly. By contrast, an algebraic side-channel
attack aims to limit the data complexity to ¢ = 1 and exploits several (n,) inter-
mediate values within a single leakage trace. This information is then combined
in an offline cryptanalysis step in order to recover the master key at once. Note
that the data complexity is not always equivalent to the number of measure-
ments since the same leakage trace can measured several (n,) times. But the
data complexity is the most relevant quantity to compare from a cryptanalytic
point of view, in particular regarding constructions such as [19, 20].

Related works. The following results can be related to three different lines
of research. First, they aim to recover partial information from a leaking device
in the most efficient way. They consequently exploit techniques such as tem-
plate attacks (e.g. [8,28]) and stochastic models [24]. Second, they take advan-
tage of algebraic cryptanalysis in the black box setting, introduced by Courtois



and Pieprzyk in [9]. In particular, we exploit solutions based on SAT solvers
as described in [1,10]. Eventually, several other papers suggested to combine
side-channel attacks with classical cryptanalysis. The most studied problem is
probably the one of collision-based side-channel attacks, detailed e.g. in [14, 25,
26]. Techniques borrowed from square attacks [6] and differential cryptanalysis
[12] against block ciphers have also been proposed in 2005 and 2006, respectively.
More recently, impossible and multiset collision attacks were presented at CHES
2007 [1]. All these attacks have objectives similar to ours. They usually try to
exploit the information leakages for more than the first block cipher rounds with
advanced cryptanalysis. The goal is to break implementations for which only
those rounds would be protected against side-channel attacks or to reduce the
number of measurements required to perform a key recovery. We finally mention
the recent and very efficient collision-based attacks of [5] that also use algebraic
techniques and therefore closely connect to the present paper. In fact, our pro-
posed cryptanalysis can be viewed as a generalization of such collision-based
attacks. We similarly aim to reduce the data complexity ([5] found 4 < ¢ < 20,
we claim ¢ = 1). The main difference is that we are not restricted to one partic-
ular type of information (i.e. collisions) and are not limited to the exploitation
of the first/last rounds of a block cipher. In principle, our algebraic attacks can
take advantage of any information leakage, from any part of a cryptographic
computation. A consequence is that they can be easily extended to protected
implementations (e.g. masked), contrary to collision-based ones [4].

2 Target cipher

PRESENT is a Substitution-Permutation Network with a block size of 64 bits.
The recommended key size is 80 bits, which should be sufficient for the expected
applications of the cipher. However a 128-bit key-scheduling is also proposed.
The encryption is composed of 31 rounds. Each of the 31 rounds consists of a
XOR operation to introduce a round key K; for 1 < i < 32, where K35 is used
for post-whitening, a linear bitwise permutation and a non-linear substitution
layer. The non-linear layer uses a single 4-bit S-box which is applied 16 times in
parallel in each round. The cipher is described in pseudo-code in Appendix E.

3 Offline phase: algebraic attack

3.1 Deriving the system of equations

The first step in an algebraic cryptanalysis is to describe the target cryptosystem
with a set of polynomial equations involving the key bits as variables. Given such
a representation, exposing the secret key is equivalent to solving the system of
equations. For this purpose, we will denote the bits of the plaintext, ciphertext
and key as P;, C; and K; and look for a set of equations involving these variables
and describing the cryptosystem PRESENT. The most obvious solution would
be to build a system of equations of the form:



Ci1 = fi(Py, ..., Pss, Ky, ..., Kygo)
Cy = fo(Py, ..., Pss, K1, ..., Kgo)

Ces = fea(Pr,..., Poa, K1, ..., Kgo)

However, this kind of representation is quite useless for practical attacks. Due
to the diffusion in the cryptosystem, each equation would involve every single
bit of the plaintext and the key. Due to the 31 successive rounds of non-linear
substitutions, these equations would also include a lot of high degree monomials.
In order to avoid such limitations, the idea developed by Courtois and Pieprzyk
in [9] is to introduce new internal variables in order to work with a large number
of small, low degree polynomial equations instead of a small number of huge, high
degree equations. For PRESENT, we decided to add three groups of variables:

— one variable z; for each input bit of each S-box in the cryptosystem,
— omne variable y; for each output bit of each S-box in the cryptosystem,
— omne variable k; for each bit of each sub-key.

In practice, the substitutions are the only non-linear elements of PRESENT
and are therefore the most challenging parts of the cipher to reduce to low
degree equations. Fortunately, it has been shown in [2] that for small S-boxes,
such equations can be constructed in a simple and systematic manner. As an
illustration, the construction of a system of low degree equations for a 3-bit
S-box is described in Appendix A. Extending this technique to the complete
31-round PRESENT, we can build a system of approximately 40 000 equations
in 7000 variables (50 000 monomials). The most interesting characteristic of this
system is its sparsity. If we represent such a system like a matrix, a line being
an equation, a column being a monomial, the proportion of non-null elements is
very low (approximately 0.0155%). Using a compact representation of the system
matrix consequently improves the attack performances considerably.

Note that we did not consider the key scheduling of PRESENT in our attacks
(i.e. we assumed implementations with securely precomputed round keys). This
allows avoiding the algebraic counterparts of simple power analyzes such as [15]
that would trivially break the implementation. We focused our attention on the
more challenging scenarios where only the cipher rounds are leaking.

3.2 Conversion to a SAT problem

Bard et. al showed in [1] how to reduce a system of equations to a SAT problem.
Most SAT solvers take a formula in conjunctive normal form (CNF) as input. A
problem in CNF is a conjunction (AND) of clauses, each clause being a disjunc-
tion (OR) of literals. The literals are variables (z) or variable negations (Z).

In order to reduce our problem, there are two main steps. First, we need to
translate every monomial of degree higher than 1. If we consider a monomial
T1T2x3%4, We can turn it into a dummy variable a and a set of clauses:

(xryVa)A(zaVa)A(zgVa)A(xgVa)A(aV o ViaVas Vi), (1)



that is equivalent to a = z1x2x314. Hence we can transform each occurrence
of the monomial xx2x374 into an occurrence of the dummy variable a in the
system of equations and include the previous set of clauses in a CNF'. So, for each
monomial of degree d > 1, we introduce one dummy variable and d + 1 clauses.

Secondly, we need to translate the exclusive disjunctions (XOR) of our origi-
nal equations into conjunctions and disjunctions. Translating long XOR-equations
in conjunctive normal form is problematic because the number of new clauses
is exponential in the number of terms in the equation. Hence, we use again
dummy variables in order to bound the number of new clauses in the formula.
We transform each equation z1 ® zo ® 3 P ... ® x,, = 0 into:

21 Do Dr3s®b =0
by s @ a5 Bby =0

by, ®Tp—1 ® 2y =0

This way, we separate each n-term equation into an equivalent set of m = [n/2]—
1 (for n > 2) 4-term equations', via the addition of m dummy variables. After
that, each 4-term equation of the form a ®b® c® d is turned into an equivalent
set of 8 clauses that we add to the previously initiated CNF":

(@vbvevd) ANlavbVeVvd)A(avbVevd)A(aVbVveVvd) A
(@vbvevd) A@vbvevd)A(@vbvevd)A(aVvbVvevd)

Combining these two steps, we can build a CNF formula from our system
of equations. We can estimate the number of different literals in the formula:
Niiteral = Mmon + Nequ * ([Nterm /2] — 1), Were Nypon and neq, are respectively
the number of monomials and equations in the system and nse., is the average
number of terms in an equation (typically quite low, because of the sparsity
of the system). We can similarly estimate the number of clauses: niquse ~
Nmon * (A + 1) + Negu * ([Nterm /2] — 1) % 8, where d is the average degree of the
monomials appearing in the system. Interestingly, the size of the CNF and the
number of literals are linearly dependent in most of the cryptosystem parameters
(block and key size, number of rounds). In fact, only the size of the S-boxes has
more impact, because it not only modifies 7mon and negq, but also d and nierp,.

3.3 Solving the system

We selected zChaff, a SAT solver that was developed by Princeton University [7]
and won the 2004 SAT competition [23]. This solver is not the best SAT solver
available anymore, but it works fine for our experiments. zChaff uses the Chaff
algorithm, which is a refinement of the DPLL algorithm [18]. These algorithms
use a recursive backtracking procedure to find an adequate solution [17]. In

! Using a cutting number of 4 is arbitrary but yielded satisfactory results in our
context. 5-term, 6-term, ... equations could be similarly investigated.



summary, at each step s the procedure assigns a random value (say FALSE) to a
literal «;, and simplifies the formula. If no conflict (empty clause) is detected, the
procedure is repeated for the next step s+ 1. If one or more conflicts are detected,
the procedure backtracks: the formula is restored as it was before assigning z;_.
Then it assigns the opposite value (TRUE) to z;, and continues as previously.
If both values (TRUE and FALSE) were already tried for z;_, the procedure
backtracks to z;, ,, and so on. If the procedure assigns a value to all the literals
and finds no conflicts, the problem is declared satisfiable. If the procedure must
but cannot backtrack (s = 0), the problem is declared unsatisfiable. In practice,
solving the system of equations described in Sections 3.1, 3.2 with the previous
SAT solver is generally hard. Therefore, the idea we propose in this paper is to
take advantage of the additional information provided by side-channel leakages
on the intermediate values during the execution of PRESENT. The next section
describes the online part of this attack. We explain how a leakage model that can
be efficiently exploited in an algebraic cryptanalysis was selected and constructed
for a given device. In addition, we discuss the generalization to other leakage
models and the resulting information vs. robustness tradeoff in Appendix B.

4 Online phase: side-channel attacks

Our experiments target an implementation of PRESENT with an 80-bit key in
a PIC 16F877 8-bit RISC-based micro-controller and exploit the measurement
setup described in [28]. This target device is particularly convenient for a first
investigation since it typically leaks a power consumption that is strongly cor-
related with the Hamming weight of the data it manipulates. For example, the
left part of Figure 2 illustrates the power consumption corresponding to different
8-bit values commuting on the PIC bus, having different Hamming weights: the
bold traces represent the mean power consumption for a given Hamming weight
between 0 and 9; the grey traces represent single measurements. This picture
visually suggests that the Hamming weight of the data commuting on the bus
can be recovered with very high confidence in a single trace. In practice, we used
a Bayesian template attack such as described in [8] to perform a partial key re-
covery for which the target subkey is the Hamming weight of a data commuting
on the bus. That is, we have |S| = 9 (rather than |S| = 256 in standard DPA
attacks). In this setting, we experimented a single-byte success rate (defined in
Appendix C) of 99.3%. That is, given a leakage sample corresponding to some
8-bit byte x, we can recover Wx(z) with probability 0.9932.

Importantly and contrary to most other side-channel attacks, algebraic side-
channel attacks do not only exploit the leakage corresponding to one byte of
the intermediate cipher state at once. On the contrary, they aim to exploit as
much partial information about these intermediate values as possible. Hence,
our attacks exploit a powerful profiling step such that the adversary recovers the
leakages corresponding to the computation of 2 x 8 x 31 = 496 bytes during the

2 Improved techniques such as [28] could be used in more critical contexts.
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Fig. 2. Leakage traces, mean leakage traces and multiple byte success rate.

encryption of a single plaintext. Those bytes relate to the computation of the
key additions (8 bytes per round) and the S-boxes (8 bytes per round) for all
the 31 cipher rounds. As for any profiling step, this requires that the adversary
can manipulate a device with a known key prior to the attack. But once this
profiling is performed, it can be re-used for as many online attacks as possible.

Because a SAT solver can hardly deal with errors in the information it is pro-
vided with, the important quantity in our attacks is not the single-byte success
rate but the multiple-byte success rate. In practice, it can be improved by using
simple error detection and likelihood rating techniques such as:

— Detection of impossibilities: we systematically rejected the leakages samples
that give rise to incoherent inputs and outputs for the S-boxes.

— Selection of most likely Hamming weights: when using only a subset of the
496 available leakages, we used the ones with highest probabilities first.

In addition and when necessary, the success rate of our attacks can be increased
by repeating a measurement for the same input plaintext, therefore keeping
a constant data complexity ¢ = 1. The right part of Figure 2 represents the
multiple-byte success rate as a function of the number of target bytes in the
implementation of PRESENT, with or without error detection and likelihood
rating (EDLR), and for ¢ = 1 and n,, = 1,2. As a matter of fact, the complexity
of this online phase depends on how many bytes of information are required to
solve the system of equations given in Section 3.1, 3.2. Yet, it remains that for
our target device, it is easier to recover the Hamming weight of a byte than the
exact value of this byte, which is the main motivation our attack.

5 Combining algebraic and side-channel attacks

Following the previous section, the partial information provided by side-channel
leakages can be represented by a surjective function of which the output is known.
Given a leakage model and a number of target bytes, an adversary can directly
inject this additional information into the system of Section 3.1, or in its CNF



representation (since the leakage information can be converted into a set of
clauses). In practice, we exploited the Hamming weights of the key addition and
S-box outputs in PRESENT. As mentioned in Section 2, a maximum of 496 bytes
can be extracted. It corresponds to a SAT problem for a 31-round PRESENT
that includes approximately 130 000 variables and 1 100 000 clauses.

5.1 First experimental results

We first applied algebraic side-channel attacks assuming that all the Hamming
weights of the S-box inputs and outputs in PRESENT are correctly extracted.
For comparison purposes, we attacked different reduced-round and extended-
round versions of the algorithm. The results of these attacks are summarized in
Figure 3 from which we obtain the following observations:

1. The success rate of these attacks equals one for all versions of PRESENT.

2. Hence, the important quantity to analyze is the resolution time which seems
to follow an exponential probability distribution.

3. The average resolution time is approximately linear in the number of rounds.
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Fig. 3. 8, 16, 24, 32 and 64-round PRESENT, complete Wy leakages.

5.2 Advanced scenarios

The experiments in the previous section are quite disconnected from practical
attacks since we assume that all Hamming weights are recovered. In practice, the
subkey extraction may suffer from errors and consequently, only a subset of the
496 bytes Hamming weights in a 31-round PRESENT can be exploited. In this
section, we consider advanced scenarios where only parts of the 496 bytes are
targeted. Specifically, we consider two types of contexts: (1) consecutive weights,



i.e. the adversary recovers a number of Hamming weights that correspond to
consecutive rounds in the block cipher, starting from the middle ones and (2)
random weights, i.e. the adversary recovers Hamming weights that correspond
to random bytes in the cipher rounds. We measure the amount of information
extracted in “number of rounds of Wy information”, one round corresponding to
the Hamming weights of 16 intermediate bytes. And we consider that an attack
has failed whenever the solver has not found a solution within 3600 seconds.
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T T

success rate (offline phase)
&

1 T |
i 10 20 25 30 35

number of rounds of WH information

¥
15

Fig. 4. 31-round PRESENT, partial Wg leakages and unknown P,C.

The plain curves in Figure 4 correspond to this more realistic scenario®.
They illustrate that reaching high success rates is significantly more difficult
with random weights. It also shows that recovering the Hamming weights of 4
consecutive rounds is generally sufficient to solve the system of equations. It is
interesting to trade the effectiveness of this offline algebraic phase with the one
of the online phase in Section 4. Indeed, taking advantage of the error detection
and likelihood rating techniques implies a non consecutive selection of weights.

Unknown plaintexts-ciphertexts. In addition, the same figure shows the
success rates when considering attacks in an unknown plainext and ciphertext
adversarial scenario. Quite naturally, it does not affect the results when consecu-
tive rounds are considered. But unknown plaintexts/ciphertexts imply the need
of larger amounts of information when this information is randomly distributed
over the block cipher intermediate values. It is worth noting that most side-
channel attacks (e.g. Kocher’s original DPA [13]) would fail in a similar context.

Masked implementations. We also performed experiments against an im-
plementation protected with a masking countermeasure. In short, masking a
software implementation aims to trade the efficiency and cost of this implemen-
tation for an improved security against side-channel attacks. In general, the most
challenging part to mask in a block cipher is the non-linear S-box. That is, as-
suming a masked plaintext p @ m, we need to generate an output mask ¢ for the

3 Average solving times for advanced scenarios are available in Appendix D.
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S-box S(p @ k). For example, [16] describes a masked software implementation
of the AES in Section 9.2.1. In order to limit the cost overheads, the same pair
of masks (m, q) is used for all the AES S-boxes and in all the AES rounds (4
other masks are used in the MixColumn operation). Applying this solution to
PRESENT would yield very little additional variables for our algebraic attacks.
Hence, we considered a more robust countermeasure (algebraically speaking) de-
noted as duplication in [11] or GLUT in [21] in which a different mask is used for
all the S-boxes and is propagated through the rounds as in Figure 5: an S-box S’
is then used to generate the output masks ¢g. Since PRESENT has 4-bit S-boxes,
this is feasible at a reasonable cost (the memory requirements of S’ equals 28 x 4).

S(ptk)+q

Fig. 5. Masked implementation of PRESENT.

Interestingly, two different strategies can be considered to break this masked
implementation. A simple one is to just neglect the masks and solve the system
as if it had unknown plaintext and ciphertext (i.e. to consider only the upper
part of Figure 5). A more elaborated solution is to build a system of equations
including the new S-boxes S’ and to solve it with known plaintext and cipher-
text. We performed both solutions and the results are summarized in Figure 6.
These attacks show that even a masked implementation can be broken with the
observation of a single encrypted plaintext in our experimental setting. They also
confirm the intuition of the previous section that unknown plaintext/ciphertext
only increases the difficulty of recovering the block cipher key if random weights
are provided to the adversary. In this context, building a more complex system
including the mask propagation leads to better results. It is worth noting that
when building a complete system, more Hamming weights are also extracted per
round. Eventually, we mention that refreshing the masks in every round would
not improve the security either, since the combined information on p ® m @ k
and p ® m @& m’ ® k would allow to easily break the masking too.

Global success rate. Eventually, the previous success rates have been com-
puted for the offline phase of our attacks only. But we can similarly compute the
global success rate, combining the ones of the online side-channel attack and the
algebraic cryptanalysis. For example, Figure 7 presents this global success rate
for an unprotected implementation, in a known plaintext/ciphertext scenario and
with randomly distributed leakages. It illustrates the tradeoff between the two
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phases of the attack. Recovering more Hamming weights increases the probabil-
ity of mistake for one of them - but if all correct, they significantly facilitate the
offline computations. We mention that in this figure, we assume that an incorrect
Hamming weight leads to a failure. But advanced strategies could be considered,
by better dealing with incorrect information (e.g. extracting sets of Hamming
weights including the correct one rather than exact Hamming weights).

O ——©O
EDLR, 5=1 n,=1
—o— EDLR, =1 n,=2
= NEDLR, =1 n,=1
NEDLR, 4=1 n,=2

o
w0

o
=

o
=

o
o

success rate (full attack)
5 o o o
S.h 2 &

=)

(=]

10 12 14 16 18 20 2
number of target rounds

@

Fig. 7. Global success rate, randomly distributed Wg and known P,C.

6 Conclusions and open problems

This paper introduces algebraic side-channel attacks allowing to successfully re-
cover a block cipher key with the observation of a single side-channel trace.
While most side-channel attacks can be generically applied independently of
the algorithms, the proposed technique takes advantage of cryptanalytic tools
that are dependent both on the amount of physical information leakage and
the structure of the target cipher. It trades some of the flexibility of standard

12



DPA for a reduced data complexity. Still, it remains very flexible, since given a
system of equations describing a block cipher (or a masked block cipher), any
type of physical information can in principle be exploited in a straightforward
manner. These results raise two main open questions. A first one is to prevent
algebraic side-channel attacks. Intuitively, this would require to increase the al-
gebraic complexity of both the target algorithms and the information leakages.
Experiments performed against the AES Rijndael (see [22]) suggest that moving
to more elaborated ciphers than PRESENT is not sufficient. Hence, additionally
moving from 8-bit platforms where the Hamming weight leakages are very in-
formative to larger devices is an interesting direction for increasing the security
of cryptographic devices. The impact of former countermeasures against DPA
in this new context (e.g. time randomizations) should also be investigated. A
second question is to improve and optimize the different parts of an algebraic
side-channel attack. It implies to study both the offline cryptanalytic aspects and
the selection of good leakage models. Properly combining these two phases would
allow determining the best tradeoff between the robustness and informativeness
of a side-channel attack that is discussed in Appendix B.
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A Building the system of equations for a 3-bit S-box

Let us consider the 3-bit to 3-bit substitution defined by the lookup table :
S =1{5,3,0,4,7,2,6,1}, with inputs bits x1, 2, x3 and output bits y1, y2, y3
(the most significant bits being x1 and y; ). First, one has to decide the monomials
that will appear in the equations, which significantly impacts their complexity.
In our example, we choose the monomials z;, y;, and z;y; (V1 < 4,5 < 3) so
that we eventually have 16 monomials (including the independent term). Then a
16 x 23 matrix is built in which each row represents a monomial and each column
represents a possible input for the substitution. The matrix is filled as follows:
the element (7,j) is the value of the monomial i if the substitution input is j.
Finally, we perform an gaussian elimination on the matrix : we add and swap
the rows until the matrix becomes upper triangular (i.e. all the elements below
the diagonal are null). In our example, we obtain 8 linearly independent combi-
nations of monomials which are null for every possible input of the substitution,
as illustrated by the following matrices:

1 111111117 1 [11111111]
z1 [00001111 Z3 01010101
ze 00110011 Zo 00110011
z3 01010101 T3 + Yo 00011011
y1 10011010 1 00001111
y2 01001110 1429+ ys3 00000101
ys (11001001 1+ oo+ 23+ 141 00000011
1y, (00001010 . 1+ 21y 00000001
z1y2 [00001110 1421 4+ 29 +y3 + 2101 00000000
z1y3 100001001 1+ 23 + Y1 + Y3 + T1Y3 00000000
Z2y1 (00010010 1+ Y1 +y2 + Y3 + T2y 00000000
z9y2 (00000010 14z +20+23+y1 +21y2 +22y2 (00000000
zoy3 (00000001 1+ T1Y2 + Toys3 00000000
x3y, (00010000 14+ 2o+ 23+ys+ys+21y2+23y1 (00000000
x3y2 01000100 1421+ 22+ y2 + ys + x3Y2 00000000
23y3 (01000001 x1 + Y2 + T3Y3 00000000]

Hence, the equations we are looking for in order to describe our substitution are:

O0=1+x1 +m2+ys+x191

0= +x3+y1 +ys + 2193
O0=21+y1 +y2+ys + x2m1
O0=1421+x2+ 23+ 91+ T1Y2 + T2y2
0=z +z1y2 + T2¥3
0=1+x2+ x5+ y2 +ys + 21y2 + T3y1
O0=1421+x2+y2+ys+ x3Y2
0=u21+y2 +23y3
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Note that in general, large S-boxes are quite unfavorable for an algebraic rep-
resentation. The number of linearly independent equations produced is equal to
Negu = Mmon — 2", Where np,opn is the number of monomials used and n is the
input size of the substitution. This relation implies that the number of mono-
mials (and thus the complexity of the equations) needs to grow exponentially to
match the size of the substitution input. This explains why PRESENT, with its
small 4-bit to 4-bit S-boxes is an interesting first target for our attack.

B Information vs. robustness tradeoff

Although the construction of a leakage model and the selection of a target subkey
in Section 4 appears natural for our running device, they are in fact arbitrary to
a certain extent. Indeed, an adversary can generally choose any leakage model as
soon as this model fits reasonably well to the actual measurements. And given
a leakage model, he still has to decide which subkey to recover. In the previous
section and given a byte x commuting on the PIC bus, we decided to guess the
value of the Hamming weight of this byte (which is motivated by reasonable
physical assumptions). But another adversary could decide to guess the exact
value of = (a far more challenging goal) or one bit of x. The selection of a target
subkey with respect to a leakage model gives rise to a tradeoff between the
robustness and informativeness of the partial key recovery that we now discuss.

NS

= Hamming weight
leakage model

O © () = "
t ofofe
Q@ O @ O

leakage sample 1 > leakage sample 1 >

leakage sample 2
leakage sample 2

Fig. 8. Two illustrative leakage probability density functions.

As an illustration, let us imagine two leaking device with a 3-bit ALU and
bus. Let us also assume that these devices leak two normally distributed samples
as intuitively represented in Figure 8. That is, each of the 8 possible values
that can appear on the device bus gives rise to a leakage represented by a two-
dimensional Gaussian curve (i.e. a circle on the figure). From this example, it
quite directly appears that a good hypothetical leakage model for the left leakage
function would be a Hamming weight-like function. By contrast, the right leakage
function does not show such Hamming weight dependencies (since values with
identical Hamming weights do not give rise to similar leakages). In both cases,
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it is the adversary’s choice to select a target subkey that is easy to recover
and informative. Recovering Hamming weights is usually relevant for standard
CMOS devices. But in general, one can decide to extract any type of information
from the leakages. And the better the target subkey actually corresponds the
actual leakages, the more robust and efficient the subkey recoveries. Of course
and on the contrary, more informative the subkeys generally give rise to an easier
solving for the system of equations described in Section 3.

In summary, classical DPA attacks usually directly target key bytes in block
ciphers and this requires to combine the leakages corresponding to several en-
crypted plaintexts. Algebraic side-channel attacks allow focusing on easier tar-
gets and can exploit any information on the intermediate values of a block cipher
that physical leakages may effectively determine. This information can be easily
represented by a surjective function from the target intermediate value space
(i.e. {0,1}® in our example) to an hypothetical leakage space (i.e. {0,1,...9}
in our example). It is then the goal of the SAT solver to find if the extracted
information is sufficient to perform a complete key recovery from it. The answer
depends on the quality of the solver, the specifications of the block cipher and
the quality of its implementation. Hence, algebraic side-channel attack raise a
new research problem, namely: “what is the smallest amount of information that
a side-channel attack has to provide to break a block cipher?” In Section 4, we
show that finding the Hamming weights of the intermediate bytes in PRESENT
is sufficient. But is is an open question to determine if other types of information
(e.g. for dual-rail circuits such as in [29]) can be sufficient.

C Definition of a subkey recovery success rate

Let the adversary Ag,. L be an algorithm with limited time complexity 7, memory
complexity m and queries ¢ to the target implementation (Ex,L). Its goal is to
guess a subley s = 7(z, k) with non negligible probability. For this purpose, we
assume that the adversary Ag, | outputs a guess vector g = [g1,02,...,9|s/]
with the different key candidates sorted according to the attack result: the most
likely candidate being g;. A success rate of order 1 (resp. 2, ...) relates to the
probability that the correct subkey is sorted first (resp. among the two first ones,
...) by the adversary. More formally, we define the experiment:

Experiment EpoCE‘?'LO
iy

s =7(x, k);

g — Ag, L3

if s€[g1,...,90,] then return 1;
else return 0;

The o''-order success rate of the side-channel key recovery adversary Ag, |
against a subkey variable S is straightforwardly defined as:

Succy "% (r,m, q) = Pr [Expj;" = 1] (2)

Ag g L
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When not specified otherwise (as in this paper), a first-order success rate is
generally assumed. Note that [27] also defines an alternative security metric
(namely, the guessing entropy) that can be used to measure the effectiveness
of a side-channel adversary in a more flexible fashion: it measures the average
position of the correct key candidate in the guess vector g.

D Average solving times in advanced scenarios

Table 1. Solving times in advanced scenarios, when a 100% success rate is reached.
Experiments are performed on an Intel-based server with a Xeon E5420 processor
cadenced at 2.5GHz running a linux 32-bit 2.6 Kernel.

Scenario Nbr. of Wx for Average
100% success rate | solving time (s)
Known P,C - consecutive weights 8 rounds 79,69
Known P,C - random weights 18 rounds 117,1
Unknown P,C - consecutive weights 8 rounds 45,59
Unknown P,C - random weights 26 rounds 214,12
Masked system - consecutive weights 16 rounds 393,86
Masked system - random weights 22 rounds 154,32

E Pseudo-code of PRESENT

plaintext key register

addRoundKey
generateRoundKeys() eT—
for i =1 to 31 do bLayer update
addRoundKey (STATE, K;) ¥ 7
sBoxLayer(STATE)
pLayer(STATE) ) ¥
end for sBoxLayer et
addRoundKey (STATE,K32) pLayer

addRoundKey ]

ciphertext

Fig. 9. A top-level algorithmic description of PRESENT.
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