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Abstract. Converting a Boolean mask to an arithmetic mask, and vice
versa, is often required in implementing side-channel resistant instances
of cryptographic algorithms that mix Boolean and arithmetic operations.
In this paper, we describe a method for converting a Boolean mask to
an arithmetic mask that runs in constant time for a fixed order and has
quadratic complexity as the security order increases. A significant im-
provement over previous work that has exponential complexity. We pro-
pose explicit algorithms for a second-order secure Boolean-to-arithmetic
mask conversion that uses 31 instructions and for a third-order secure
mask conversion that uses 74 instructions. We show that our second-
order secure algorithm is at least an order of magnitude faster and our
third-order secure algorithm is more than twice as fast as other algo-
rithms in the literature.
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1 Introduction

Differential Power Analysis (DPA) was introduced as a means of extracting cryp-
tographic keys by Kocher, Jaffe, and Jun [16] in 1999, who noted that the power
consumption of a device was dependent on the operations being performed, and
the value of the operands used. They showed that one could acquire the power
consumption over time while a device was computing a cryptographic algorithm,
and analyze the acquisitions to determine the cryptographic key. Subsequently,
it was shown that the same analyses could be conducted by exploiting other side
channels, e.g., the changes in the electromagnetic field around a microproces-
sor [1,10,25].

A typical DPA attack involves acquiring a series of acquisitions while a device
is operating on varying inputs and analyzing the power traces by comparing
what occurred at the same point in time in each trace. The simplest analysis
is to choose one bit of an intermediate state and divide the set of acquisitions
depending on the value of this bit, make two mean traces and subtract one trace
from the other point-by-point. A significant difference should be visible in the



trace corresponding to where this intermediate state was created by the device.
This is typically referred to as a first-order analysis, as each point in the output
trace is dependent on the same point in time in the acquisitions. If two (or more)
points in each trace are combined, we refer to as a second-order (or higher-order)
analysis.

To prevent the side-channel analyses of a cryptographic implementation, one
would typically apply a random mask to the input such that operating on the
masked data is indistinguishable from random data. A common masking tech-
nique is Boolean masking, where an input word gets masked by a random value.
All operations are then performed using the Boolean-masked data. However,
there exist many cryptographic algorithms that require both Boolean and arith-
metic operations, such as the addition of integers, e.g., SHA-2[22], ChaCha [5],
Blake [2], Skein [9], IDEA [17], RC6 [27], etc. Masked versions of these algorithms
therefore require changing Boolean masks into arithmetic masks, and vice versa,
which we refer to as “Boolean-to-arithmetic” and “Arithmetic-to-Boolean” mask
conversions, respectively.

In 2001, Goubin proposed an efficient constant-time method for Boolean-to-
arithmetic mask conversion [12]. His method is secure against first-order analysis,
but does not resist second-order attacks. The solutions in the literature use
recursive methods [7,28], where the missing carry bits are calculated using a
masked-adder structure, or Look-up Table based methods [30,31], that perform
pre-computations and store intermediates in memory. It has also been suggested
that higher-order versions of Boolean-to-arithmetic mask conversion cannot be
done in constant time [30].

In this paper, we present novel algorithms for higher-order secure Boolean-
to-arithmetic mask conversion. All proposed methods run in constant time and
are independent on the input word size. In particular, we present a second-order
secure algorithm that requires only 31 instructions and a third-order secure
algorithm that requires only 74 instructions. Our algorithms are significantly
faster than the best recursive methods in the literature [7].

This paper is an extended version of previous work first published on the
IACR’s eprint server in 2016 [13]. After a weakness was identified in our third,
and higher-order, algorithms [8], the algorithms were updated and are presented
here. Our second-order secure algorithm remains secure, and is at least one
order of magnitude faster than previous work. The algorithms we present were
tested using exhaustive simulation, inspired by the state-of-the-art Strong Non-
Interference (SNI) notion. Proofs based on this notion are also provided. We
show that our corrected algorithms are, at a minimum, about twice as fast as
related work—including recent work [8].

In addition to the new contributions, we highlight the importance of the
number of random numbers when comparing algorithms. Many algorithms give
an artificially low instruction count hiding a large number of required random
numbers. In comparing our work with other published works we take into account
the number of random values required to implement an algorithm by considering
the number of instructions required to compute an Xorshift random number



generator [21] used by Coron’s explicit implementation [8]. We demonstrate that
our work is about twice as fast as Coron’s in all cases. Moreover, our algorithms
have quadratic complexity with regard to the security order, whereas Coron’s
algorithms have exponential complexity.

The paper is organized as follows. In Section 2, we describe the general
Boolean-to-arithmetic mask conversion problem and discuss previous work. In
Section 3, we present a novel constant-time algorithm to perform a secure second-
order Boolean-to-Arithmetic mask conversion, and generalize it to higher orders
in Section 4. In Section 5, we compare our work with other algorithms in the
literature, and discusses implementation considerations in both software and
hardware in Section 6. Conclusions are drawn in Section 7.

2 Boolean-to-Arithmetic Masking

In this paper, we shall consider operations available in a typical microprocessor
with registers of a fixed bit length. Specifically, we shall consider values that are
in the field (Zox, @, +) where k € Z>¢ is the bit length of the registers used, @ is
a bitwise X0R operation and + is integer addition. Other operations are available
in a typical microprocessor, but are not relevant to the algorithms described in
this paper.

We define the problem of changing a Boolean mask into an arithmetic mask
as follows:

Definition 1 (The problem of converting Boolean to arithmetic masks).
Given &' = x®r, where x,r € (Zor, B, +), as a Boolean masked secret x and r is
a random value taken from Zox, we wish to be able to compute x"" = x + s, with
$ € (Zor,®,+) where k € Z>o, without revealing any information on x through
some side channel. Where =" is the arithmetically masked secret x and s is a
random value taken from Zqgx .

One naive approach would be to perform the conversion directly by simply
removing the Boolean mask and by adding an arithmetic mask afterwards, i.e.,

@er)+s=(z®r)®r)+s=z+s=a",

using the notation given in Definition 1. This, however, would manipulate x
directly, allowing an attacker to use side-channel analysis to determine that a
hypothesized value of z is manipulated during the mask conversion. Hence, one
needs to use an algorithm where all intermediates are statistically independent
of the secret x.

Definition 1 can be generalized to higher-order masking schemes as follows:

Definition 2 (The problem of converting Boolean to arithmetic masks
of higher order). Assuming a masking scheme of order n. Then, given ©’ =
T®rD. .. Ory, where x,1; € (Lox,®,+), k € Z>o fori € {1,...,n}, as a Boolean
masked secret x and n a random values, r; fori € {1,...,n}, taken from Zox, we



wish to compute " = x +s1+ ...+ $p, with 8; € (Zorx,®,+) fori e {1,...,n},
without revealing any information on x through some side channel. Where x'’ is
the arithmetically masked secret x and s;, fori € {1,...,n}, are random values
taken from Zok .

Higher-order mask conversion methods require that the masks used for the
arithmetically masked output are not related to the Boolean masked input to
avoid any side-channel leakage. If we consider, without loss of generality, a
second-order secure Boolean-to-arithmetic mask conversion that uses the same
input masks r; and ro to mask the output, information would leak through the
carries generated from the arithmetic masks. For ease of expression, we shall con-
sider an attacker able to XOR two intermediate states together in a second-order
side-channel attack (a very rough approximation of a second-order side-channel
attack, we refer the interested reader to Mangard et al. [19] for a more detailed
discussion). If an attacker can combine the input 2’ and the output z” using
some side-channel information they obtain the following:

o =@dr &r)® (x+r +12)
=x®r ®r)d((z®T1 & 1) Dra®ca)

=c1 B¢y,

where ¢; and ¢y represent the carries produced in the additions = + r; and
(x 4+ r1) + ro, respectively, as an XOR difference. That is, ¢; = (x + 1) B ax B ry
and ¢; = (x + 71 4+ r2) &z ®ry ®re. We note that ¢; and ¢y are dependent on
z and could be used to conduct a side-channel attack.

To avoid this source of higher-order leakage, the output of the mask conver-
sion needs to be masked with values that are independent of the input Boolean
masks. This can be achieved through re-freshing the masks during the conver-
sion, either once or periodically, as required [7].

In the following, we describe some of the methods for mask conversion that
have been presented in the literature.

2.1 Goubin’s Method

Goubin proposed an efficient method of converting a Boolean mask to an arith-
metic mask at CHES 2001 [12]. His method requires a constant number of in-
structions, is resistant to first-order side-channel analysis and, at the time of
writing, remains the most efficient algorithm known.

The essential observation of Goubin was that the function

Dy(a,b): 72 — Z:a,b— (a®b)+b (1)

is affine over Fy. It follows that (®(a,b) & &(a,0)) is linear for any b € Z. Triv-
ially, we note the same function is valid in the field (Zqx, @, +), for any k € Z>o,
and in the remainder of this paper we shall consider the function:
Q)(a,b) : (Z2k7®7+)2 — (ZQ’H@a +) (2)
a,b— (a®b)+b



for some k € Z>.

Taking the notation from Definition 1, for some arbitrary k in Zx, the above
allows one to mask the computation of &(z’,7) = (2’ @) + r with an additional
random value v € Zyr. We recall 2,7 € (Zor, B, +) and 2’ = x & r. Then,

(' y@r) =@ oo+ or), 3)
which can be followed by an unmasking step using
D(a',y) = (" @7)+7. (4)

Hence, a secure Boolean-to-arithmetic mask conversion can be performed using
the following relationship:

=1 @, y) P,y D)
= el@enN+el@eer)+(er) ()
where, following the notation in Definition 1, s = r, i.e., " = z+7. One can im-

plement this conversion using 7 instructions (2 additions and 5 XOR operations),
as described by Goubin, and is recalled in Algorithm 1.

Algorithm 1: First-order Secure Boolean-to-Arithmetic Masking

Input: 2’ = x & r, the mask r, a random integer v, where
T,T,Y € (Zka®a+)
Output: 2"’ =z +r

t+ ' dry
t<— 1+
t—toa
Yy Dr
21 Dy
Z 2+
223t
return 2

S O Gk W N =

Goubin then proceeds to give a proof of the following:

Lemma 1. An implementation of Algorithm 1 is resistant to first-order side-
channel analysis.

Proof. From Algorithm 1, we can obtain the list of intermediate values Vg, ..., Vg
that appear during the computation of (5):



Vo=7 Vi=[("®v) +1]®a
Vi=y®r Vs=a2'®&vy®r

Vo=2' @~ Vo= (@"@vor)+(vor)
Va=(2' &)+

If we suppose that v is uniformly distributed on Zs«, for some arbitrary k € Zx,
it is easy to see that:

— the values Vj, V1, Vo, and V5 are uniformly distributed on Zqx.
— the distributions of V3, V4, and Vg are dependent on z’ but not on r. a

We note that this proof holds in the field (Zyr, ®, +), for any k € Z>¢, but
not in Z since the carry produced by the most significant bits of = combined
with the arithmetic mask will depend on .

2.2 Recursive Methods

One can also convert a Boolean masked value into an arithmetically masked value
using an addition operation, which generates the required carries that can then
be applied to the Boolean masked input value bit-by-bit. The first application
was proposed by Goubin [12] as a means of converting an arithmetic mask to a
Boolean mask (a topic beyond the scope of this paper), and a similar technique
was described by Goli¢ in 2007 who proposed using the same method for Boolean-
to-arithmetic mask conversion in hardware [11]. Both conversion methods have
a complexity of O(n) with regard to the bit length of the inputs because all n
bits of the input word are processed individually.

Another hardware-oriented design was proposed by Schneider et al. [28], who
presented a conversion method based on a Carry Look-ahead Adder (CLA) struc-
ture which reduces the complexity to O(logn). They adopted a threshold imple-
mentation [23,24] approach to avoid first and second-order side-channel leakage.

Recursive software implementations were proposed by, for example, Karroumi
et al. They described a method adding two Boolean masked values in O(n)
time [15]. Coron et al. [6] were the first to propose the use of Carry Look-ahead
Adders in software, thus reducing the complexity to O(logn). Both works made
use of masked AND operations, as defined by Trichina[29] and Ishai et al.[14],
respectively.

2.3 Higher-Order Boolean-to-Arithmetic Masking

Coron et al. [7] proposed a method for conducting a higher-order Boolean-to-
arithmetic mask conversion (see Definition 2) at CHES 2014. Their algorithm
calculates carries recursively and is built on masked AND and XOR operations that
are resistant to higher-order side-channel analysis. Using these secure operations,
one can construct an adder resistant to higher-order side-channel analysis with
which one can also convert an arithmetic mask to a Boolean mask (the latter
topic being beyond the scope of this paper). The authors reported that their



fastest h-th order Boolean-to-arithmetic mask conversion has a minimum time
complexity of O((2h + 1)?n), with regard to the bit length of the inputs n.

The first look-up table-based conversion algorithm that resists second-order
attacks was proposed by Vadnala and Grofischadl in 2013 [30], where, to achieve
the desired level of resistance, the algorithm adopts the generic second-order se-
cure S-box implementation of Rivain et al. [26]. Using this method, following the
notation in Definition 2, one computes z; +r for fixed r, where z; € {0,...,2},
and then chooses the correct masked output from all the possible values gener-
ated. However, a table with 2% entries is required which is problematic if k is
not small.

An improved version was proposed by Vadnala and Grofischadl in 2015 [31],
where an input k-bit word would be split into p words with smaller bit widths
of £ < 8 bits. The conversion is then done on each word individually, and the
results combined. Their final solution has a time complexity of O(2¢*?p) and a
memory requirement of O(2¢72(¢ + 2)).

3 Constant-Time Second-Order Boolean-to-Arithmetic
Mask Conversion

In this section, we present a novel method to perform second-order secure Boolean-
to-arithmetic mask conversion whose time complexity is independent of the
input-word size. Following the notation in Definition 2, we consider a Boolean
masked input 2/ = x@r) Pro, where z, 71,79 € (Zoyr, @, +), and an arithmetically
masked output " = x + s1 + $2, where $1, 82 € (Zor, B, +).

In the following, we try to express the ideas behind the mask conversion as
clearly as possible. This leads to many instances where an expedient expression
will leak if implemented as shown because of the ordering of operations. We
highlight some of the issues in the text but do not attempt to enumerate all the
possible leaks that could be caused by incorrectly ordering operations.

3.1 Definitions
We recall (2), defined over the field (Zsx, B, +), for any k € Z>q
@(a’b) : (Z2k7@7+)2 — (ZQk7@a +) (6)
a,b— (a®b) +b
for any k € Z>o. We shall also use the function
D(a,b) : (Zor,®,+)* — (Zogk, D, +) (7)
a,b— (a®b) —b

for any k € Z>o. While subtraction is not a field operation, we shall use it
as a convenient way of expressing the addition with the additive inverse of an
operand. Similar to ¢, Goubin notes that

m—r:x/eaé(x’,'y)@@(x’,'y@r), (8)

using the notation in Definition 1, and that @ is also affine over Fy [12].



3.2 The Algorithm
Our conversion method consists of three steps.

1. We compute (z + (r1 @ r2 @ «)) + s1 for some random values «, s1 € Zox.
2. We compute sg — (r1 ® 12 @ «) for some random sy € Zok.
3. Add the results of Steps 1 and 2, resulting in = + s1 + s3.

We describe these steps in detail below.

Step 1: We consider Goubin’s solution to the first-order Boolean-to-arithmetic
mask conversion (5),

r+r=@xor)ed(zdr,y)eb(zdr,ydr). (9)
Let r =r1 ®ry and v = v1 ® 72, where r1,72,71, 72 € Zgr, then

T+ ®r)=(®r Or) DT ® 1 D2, M DY2)
@@(ﬁ@rl@f'z,’)’l Dy b1 @7"2)7 (10)

or, more succinctly, using the notation from Definition 2,

4 (r1 ®ry) = 2" ©P(a’, 71 ©72)
P2, DY D Bra). (11)

Given that @ is affine over Fy, we can split the first @ operation giving,

4+ (r1 @r) =P, ) ® (2!, y2)
O, DY D ®ra). (12)

If one were to compute x + (r; @r2) using the above, a second-order side-channel
attack would be possible for same reason that we require the input and output
mask to be different. That is, the combined leakage of the input 2’ and z+(r; ®ra)
will depend on z (see Section 2).

To overcome this problem, we apply an extra Boolean mask, « € Zgx, to x’
as follows:

(x@a)+ (r1®re) =P ®a,y1) D2’ ®a,vy)
D' D, DY ®r &), (13)

However, (z @ a) + (r1 @ r2) is not useful but can be modified given that @ is
affine over Fy, resulting in

T+ (M @&red®a) =0 ®a,v)® P ®a,y)
BT D, 1 DY ®r Dreda). (14)

If we consider (14), we note that the combination of z + (r; ® re @ «) with
either (2’ ® «,v1) or (' @ «, v2) will not be statistically independent of x. In



both cases, the combination will be dependent on the carry bits produced by the
arithmetic operations, as all variables occur an even number of times. The effect
is similar to that seen if masks are not changed in a higher-order conversion
algorithm, as discussed in Section 2. We can, prevent this by applying a Boolean
mask s1 € Zgr, giving:

(x+(rM@reda)®s; =0 ®a,711) P2 O a,y2)
B B, BB BT D) D s . (15)

The order that (15) is computed is important to avoid combining masks that
would allow a second-order side-channel attack. However, this is quite straight-
forward and will not be detailed here.

Then, given (x4 (r1 ®re ® «)) @ s1, one can apply Goubin’s first-order
Boolean to arithmetic mask conversion, as described in Algorithm 1, which will
produce

r+(r®rda)+s (16)

without any first or second-order leakage.

Step 2: The second step is another Boolean-to-arithmetic mask conversion to
securely compute so — (11 @ ro @ «), where sy represents one of the two output
masks. For this purpose, one can use the first-order secure Boolean-to-arithmetic
mask conversion defined in (5), where we define sy = so @ (r1 @ r2 ® «) as the
Boolean masked input and s§ = s3 — (11 @ ro @ ) as the arithmetically masked
output of the following conversion. Then, given (5), we have

sy = 5h D D(5h,0) DD(sh, Dr1 B2 D), (17)
where § is a random value taken from Zox. If we let 6 = r1, then
sy = sh D P(sh,r1) B P(sh, 12 D), (18)
and, given that @ is affine over Fy, this can be rewritten as
53— (r1 @re @ a) = ®(sh,r1) ® D(sh,12) ® D(sh,a). (19)

Equation (18) requires a total of 7 XORs and 2 additions, whereas Equation (19)
requires 5 X0Rs and 3 additions. Thus, the first equation might be attractive for
hardware implementations in cases where additions are more expensive than X0R
operations.

Step 3: We can now compute the desired arithmetically masked value z” by
combining the output of (16) and (19), i.e.,

=z +(rm@roda)+s1))+(s2—(r®&r®a))

=T+ 851+ S2.



3.3 Implementation Details

Algorithm 2 shows the second-order secure Boolean-to-arithmetic mask conver-
sion described above, which requires 31 instructions. We made some effort to
reduce the number of instructions and random values required without affect-
ing the level of security or the sequence of steps. That is, we compute the steps
given at the beginning of Section 3.2. The details of the steps given above remain
unmodified for clarity.

Algorithm 2: Second-order Secure Boolean-to-Arithmetic Masking.

Input: 2’ =2 ®r; @ re with z,71,72 € Zqr and random numbers
V1,72, 81, 82 € Zyk for some k € Z>g
Output: 2"’ =z + 51 + 52

1 2+<71Dr 12 w4 w+ Y2 23 W adre
2 22D 13 24 12D S1 24 U< S2P 1
3 24 2P 14 u<—udre 25 U U—wW
4 u+—2dz 15 u<—udv 26 W+ w®D S
5 220« 16 U<+ udw 27 V44— w D
6 U< u-+=z 17 v4—ud s 28 W4 W —1T1
Tve2 Oy 18 v < v+ 1o 29 u<—udv
8 v UvD« 19 w4+ udz 30 U uDw
9 vV vt+tm 20 v VvBw 31 z42+4+u
10 w4+ 2’ Do 21 W u—+2 return z
11 w4+ wda 22 2+ vhw

We prove the security of Algorithm 2 using the probing model proposed by
Ishai, Sahai, and Wagner [14], where we seek to show that it is secure for up to
two probes. For this, we use the refined model proposed by Barthe et al. [4] where
we make use of the t-SNT (Strong Non-Interference) construction, with ¢ being
the security order. This allows us to prove that an algorithm is only vulnerable
to a side-channel attack of order n, where n > t + 1 (rather than n > 2¢ 41
required by Ishai et al.).

Lemma 2. (2-SNI of Algorithm 2) Let {a',r1,72} be the input shares of
Algorithm 2, and {2, s1,s2} be the output shares for any set of t intermediate
variables and any subset |k| < ti of output shares such that t + ty < 2, there
exists a subset I of intermediate variables with |I| < 2, such that the distribution
of those t intermediate variables, and the output shares can be perfectly simulated
from {z’,r1, 72}

Proof. We construct two sets I = {a’,r1,r2} and J = {v1,72,a, s1, 82} corre-
sponding to the input shares and the random values required, respectively. We
denote a;, for 1 <14 < 31, as the intermediate values in Algorithm 2, the defini-
tion of which means that is easy to see that each a; can be perfectly simulated
from the input shares and/or the required random values. That is, any internal

10



variable within Algorithm 2 can be perfectly simulated from a subset of elements
from I and/or J. O

This was validated by implementing a simulator and verifying that the distri-
butions of each a;, for 1 < ¢ < 31, are identical for all values of x € Zya, without
loss of generality. Likewise, the simulator also verified the joint distribution of
all possible combinations of pairs of elements in I U J U {aq,...,as1} (i.e., the
union of the set of inputs, required random values, and intermediate states) are
identical for all values of x € Zos, without loss of generality. Thus, demonstrat-
ing that Algorithm 2 is resistant to first and second order side-channel analysis.
We chose the field Zsa to be small enough to make verification trivial and large
enough that carries are propagated as they would be in an arbitrarily large field.

Remark 1. We note our proof is somewhat different to the proofs described by
Barthe et al. [4]. Typically, one would seek to model intermediate states as ran-
dom values to ease the computation complexity of the verification. However, the
combination of Boolean and arithmetic operations makes this difficult, and it
is simpler to model the random values as inputs to determine whether the dis-
tribution of each intermediate state is identical for all values that the masked
input can take.

4 Higher-Order Boolean-to-Arithmetic Masking

To generalize the algorithm described in Section 3, we consider an n-th order
Boolean masking scheme, for n > 2, that masks the secret value = with random
masks 71, ..., r,. That is, we wish to take 2/ = x & @]_, r; and compute 2" =
z+ Y., s; without allowing any n-th order leakage to occur (see Definition 2).

In the following, we try to express the ideas behind the mask conversion as
clearly as possible. This leads to many instances where an expedient expression
will leak if implemented as shown because of the ordering of operations. We
highlight some of the issues in the text but do not attempt to enumerate all the
possible leaks that could be caused by incorrectly ordering operations.

4.1 The Algorithm
Our conversion method consists of four steps.

1. We compute z + (o ® B, ;) + @?;11 p; for some random values o, p1; €
ng .

2. We compute (a ® @), ;) + @;:11 i + @?;11 k; for some random values

K; € ZQk .

We compute @7 k; + 3.7, si for all output masks s; € Zox.

4. We combine the results of Steps 1, 2, and 3 to obtain x + Y ., s;.

©w

We describe these steps in detail below.
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Step 1: We consider Goubin’s solution to the first-order Boolean-to-arithmetic
mask conversion (5):

r+r=(xor)ed(zdr,y)dP(zdr,yDT). (20)

Letr=r1®...&rp,and y =71 DB ... D Vn, where 71, ..., "0, V15, Vn € Lok,
then following the reasoning given in Section 3.2, we can state

x+@n:x/@q§<x/)@%>@95(;5/’@%@”) . (21)
i=1 i=1 i=1

Given that @ is affine over 3, we can split the first @ operation giving,

erEnDn: (nAl)z (@Q ,%)69@<50'7é%@7’i>’ (22)
i=1 =1

where A is a logical-AND operation. That is, we require an XOR with z’ only when
n is odd.

To prevent second-order leakage caused by the combination of the input z’
and the output of (22), we apply an extra Boolean mask, o € Zg», following the
reasoning given in Section 3, i.e.,

x—i—(a@@ri):((n/\l)(m’@a))
(@@ EBa,WZ)@@(fE/EBa,a@é%@Ti)a (23)

i=1
where we compute &(z' B «,;), for i € {1,...,n}, as
P(2’, i) — (2" © %) @ a) +

to avoid any second-order leakage caused by combining (z’ ¢ «) with the output
of (23).

However, the computation would still cause a higher-order leak, i.e., when 2,
a, and (23) get combined. Thus, we are required to add extra masks to prevent
this leakage, and we use p; fori € {1,...,n—1} and also &; for i € {1,...,n—2},
as follows:

o)
@gz (R A1) (@g; @a,m@m)

n—2
&P & a, %))G%P(m P a, a@@%@n) @@iz

=1

12



Note that the masks &; are used to protect the intermediate values of (24) as
there is not a secure way of ordering these terms without causing leakage. The
masks, therefore, need to be interleaved with the computation and removed at
the end.

The result is then passed through a function that will perform a Boolean-to-
arithmetic mask conversion to replace the Boolean operation with an arithmetic
operation, i.e.,

T+ (a@ém) +ne_9m- (25)

Note that the first-order conversion requires sufficient additional masks (9; for
i =1..n — 1) to not cause any leakage, i.e.,

T+ (a@@n) +6§ui:((n71)/\1)o@
n—1 n—1
(@QB(Cﬁi)) ©P (C,EB& EBm) . (26)

i=1

where ¢ = (¢ + (a ® @I, 1)) ® D'

Step 2: In the second step, we wish to compute

n n—1 n—1
(aGB@m) c P+ P o7
=1 =1 =1

for some random values k; € Zgr. In which, we view the combination of any
elements of {k1,..., 601}, {ft1, .-+, tn=1}, and, likewise, the combination of
any elements of (r1 ®... ®r,) as secret. Let

n n—1
e:a@@m@@m, (28)
i=1 i=1

then, given (22), we can compute

(a@@n) —I—G_Bm» =({(n=1)A1l)e)
) (@ (P(E,ﬂi)> ® P (6, @ ki @ 5i> ; (29)
i=1 =1

where §; are random values taken from Zoi for i € {1,...,n — 1}. We note that
the order in which operands are treated is particularly important. For exam-
ple, the terms of the XOR sums need to be computed separately, i.e., @?:1 ri B

B ki =R @)@ (Ke®72) @ ® (K1 D T1) BT
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As a next step, we add n — 1 additional masks, as in Step 1, i.e., we add

random values p; for ¢ € {1,...,n — 1} as follows:
n n—1 n—1
(00 @+ @) =@ =180
i=1 i=1 i=1

D (@ D(e, i) @ Ni) ©P <€, @Hi 52 51) . (30)
i=1 =1

Finally, we can perform a first-order secure Boolean-to-arithmetic mask conver-
sion (similar as described in Step 1) to replace the single Boolean operation with
an arithmetic operation giving

n n—1 n—1
(a@@m@m) D 31)
=1 =1 i=1

which equals to (27).

Step 3: In the third step, we wish to compute @;:11 Ki + Z?zl si, for some
random values to be used as output masks s; € Zyx, for i € {1,...,n}. This can
be achieved by conducting an (n —2)*"-order secure Boolean-to-arithmetic mask
conversion (e.g., using Algorithm 1 when n = 3 or Algorithm 2 where n = 4
etc.) using the input @1, ki ® @1 i, Ai (for i € {1,...,n—2}) are random
values, resulting in @?;11 Ki + Z?;lz s; . Note that we choose the output masks
of the lower-order conversion to be used as output masks for the order we are
considering.
Then one can add s,_1 and s, to get the desired result, i.e.,

n—1 n
i=1 i=1

Step 4: We add the output of each step. Adding the output of Step 1 to the
output of Step 3, produces

n n—1 n—1 n
a:—&-(a@@ri)—k@uiﬁ-@ﬁrﬁ-zsi- (33)
i=1 i=1 i=1 i=1

Then subtracting the output of Step 2 results in
T+ Z S; - (34)
i=1

Complexity

Each of the steps described above, without the use of Boolean-to-arithmetic mask
conversions of a lower order, will have a linear increase in time complexity with
regard to the order of the side-channel resistance. That is, have time complexity
O(n). The recursive call to Boolean-to-arithmetic mask conversions of a lower
order will increase the time complexity to O (nQ)
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4.2 Implementation Details

Algorithm 3 gives an explicit implementation of a third-order secure Boolean-
to-arithmetic mask conversion as an example of the method described above,
which requires 74 instructions.

Algorithm 3: Third-order Secure Boolean-to-Arithmetic Masking.
Input: ' =@ r; §r2 ®rs with x,71, 72,73 € Zor and random numbers 1, 2,

3, B1, B2, 01, 02, K1, K2, o, p1, p2, S1, S2, S3 € Zyk for some k € Z>q
Output: " =z + s1 + s2 + s3

1 24 K1DM 26 W< UuDv 51 2 4 2D Y1;
2 24 2P Ko 27 u+ ' &M 52 2+ z2® 2
3 2+ 2®ry 28 u+—uP o 53 u < 2P
4 2z 2z2Dr3 290 U<+ U+ 54 U < U+ 01
5 2+ 2P 30 u+udm 55 U+ 2@ 0o
6 W<+ 2B [ 31 U+ ud 56 U+ v+ 02
7 U<+ w+ P 32 v 2 Dy 57 u < udv
8 U<+ ud 33 vV VvDa 58 v < 01 D u2
9 v+ 2D P 34 v V+ 72 59 v v Do
10 v+ v+ [ 35 u<udv 60 V< VD 1
11 u+udv 36 v 2’ D3 61 z < 2D v;
12 v w D K 37T v+ vha 62 2+ z+wv
13 v v D [2 38 V< U+ Y3 63 z < 2D u;
14 v v D Ko 39 u<—uhb« 64 V< K1 D sy
15 w4+ vDz 40 u+—udov 65 U< U+ Ko
16 V< v+tw 41 z <7D 66 U <UDV
17 V4 VD p2 42 2 < 2D Y2 67 U< UD Ko
18 w+ udv 43 24— 2D 1ro 68 UV < Ko D s1
19 24 13® U1 44 z < 2D 3 69 V< v+ K1
20 24 2D W2 45 24— 2Drs 70 u$—udv
21 u— woPhrs 46 V¢ 2D« 71 U u -+ S2
22 U <4—u-+r3 a7 z(—m'@z 72 U U+ S3
28 V< wDz 48 z 4 z+ v 73 z<4z2z+u
24 V< UV+ 2 49 2+ z2Du T4 24—z —W
25 U <—udw 50 2z < 2D p2 return z

As previously, we proceed with a 3-SNI proof:

Lemma 3. (3-SNI of Algorithm 3) Let {z/,r1,72,73} be the input shares of
Algorithm 3, and {x" | s1, s2, s3} be the output shares for any set of t intermediate
variables and any subset |k| < ti of output shares such that t + t; < 3, there
exists a subset I of intermediate variables with |I| < 3, such that the distribution
of those t intermediate variables, and the output shares can be perfectly simulated
from {x',r1,7m9,r3}.

Proof. We construct two sets I = {a/,ry,7,73} and J = {y1,72, 73, 51, Pe,
01, 02, K1, Ka, Q, H1, l2, S1, S2, S3} corresponding to the input shares and the
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random values required, respectively. We denote a;, for 1 < ¢ < 74, as the
intermediate values in Algorithm 3, the definition of which means that is easy
to see that each a; can be perfectly simulated from the input shares and/or the
required random values. That is, any internal variable within Algorithm 3 can
be perfectly simulated from a subset of elements from I and/or J. O

Our proof was validated by implementing a simulator and verifying that
the distributions of each a;, for 1 < i < 74 is identical for all values of x €
Zoa, without loss of generality. Likewise, the simulator also verified the joint
distribution of all possible combinations of pairs and triplets of elements in
TuJuU{ay,...,azs} (i-e., the union of the set of inputs, required random values,
and intermediate states) are identical for all values of x € Zsys, without loss of
generality. Thus, demonstrating that Algorithm 3 is resistant to first, second,
and third-order side-channel analysis. In this case the choice of the field Zo4 is
more important as a large field size could not be tested in a reasonable amount
of time.

The number of inputs required for Algorithm 3 would seem to be too large
for an efficient exhaustive search through all the possible sources of third-order
leakage. However, we note that in simulating individual operations only a subset
of the inputs or random values are required. The effect is similar to the use of
gadgets in SNI proofs [4].

More concretely, to conduct a search of this algorithm efficiently the only
combinations where at least one element in the elements chosen from the set
TuJu{as,...,az4} is dependent on z. That is, any combination where none of
the elements were computed from variables dependent on z they can be safely
discarded. For elements in {a,...,ar4} the simplest known expression using
elements of I U J was taken by either following the sequence of instructions, or
from the equations above. These expressions were used to generate a C source
file to analyze that combination, which was then complied with the -Ofast
flag using gece. Thus, 1.29 x 10° C source files were automatically created and
compiled. Executing the resulting binaries required 48 CPU cores running for
twelve weeks.

We test our algorithm as one block because, to date, breaking up our algo-
rithm into gadgets that can be independently verified and creating an algorithm
equivalent to those we propose has a prohibitive cost in performance [8]. That is,
Coron’s algorithm has exponential complexity, with regard to the security order,
compared to the quadratic complexity of the algorithm presented in this paper.

5 Comparison

Table 1 compares the performance of our method with previous work. We con-
sider the work of Coron et al. [7] who proposed a high-order secure Boolean-to-
arithmetic algorithm in 2014. We also discuss the recent results from Coron [8]
and compare it with our results. We do not consider LUT-based methods as they
would require a pre-computation phase and additional memory (see Section 2).
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Table 1. Operation count for different Boolean-to-arithmetic mask conversion methods
up to a security order of eight.

B—~ A Security Order

Conversion 1 ‘ 2‘ 3 ‘ 4‘ 5‘ 6 ‘ 7‘ 8
Goubin’s method (2001) [12] | 7 - - - - - - -
Coron et al. (2014) - 8 bits[7] | -| 909| 1,369| 1,962| 2,619| 3,372| 4,189| 5,171
Coron et al. (2014) - 16 bits [7]| -|1,781| 2,681| 3,842| 5,131| 6,612| 8,221(10,155
Coron et al. (2014) - 32 bits [7]| -|3,525| 5,305| 7,602|10,155|13,092|16,285|20,123
Coron et al. (2014) - 64 bits [7]| -|7,013|10,553|15,122{20,203|26,052|32,413[40,059

Hutter-Tunstall (2016) [13]* | -| 31| 56| 115] 197] 331] 513] 763
Coron (2017) [8] I -] 1ss| 367 803 1,687 N/A[ 7,039
|Our proposal | -| 31| 74| 123] 242] 386] 557 753

¢ The original algorithms have a security flaw from the third order upwards which
were corrected in this version of the paper.

For this comparison, we estimated the operation count of all methods by con-
sidering all necessary operations excluding the generation of random numbers,
loop-instruction overheads, and variable initialization.

We estimate the costs for Coron et al.’s higher-order Boolean-to-arithmetic
mask conversion method [7] as follows. For a single masked AND (SecAnd) oper-
ation [7, Section 3] we estimate the number of required instructions to be

2-(n4+1)-n+25,

with n being the security order. Furthermore, we estimate the higher-order secure
masked addition function (SecAddGoubin) as defined in [7, Section 3.2] to be

(2:(n+1) - n+26+n)
+k—-1)-2-n+1) - n+27+ (2 - (n+1)),

where k represents the bit-width of the operands. The Expand function has an
estimated complexity of 2 - (n + 1) and the FullXor function requires 2 - n + n.

Using these estimations, we calculated the total operation count for a higher-
order Boolean-to-arithmetic mask conversion as defined in [7, Section 5] for reg-
ister sizes of 8, 16, 32, and 64 bits and provide the results in Table 1. It shows
that our solution is faster than Coron et al.’s method from [7] for all considered
register widths and security orders, often by several orders of magnitude. Com-
pared to [8], who adopts our original idea from [13], our solution is faster for any
security order. Specifically, our third-order secure algorithm is more than twice
as fast, and the difference increases to more than an order of magnitude by the
eight order. Our second-order secure algorithm is at least one order of magnitude
faster than previous work.
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Table 2. Number of arithmetic and Boolean operations required for our proposed
method up to a security order of eight.

B—~ A Security Order
1] 2] 3] 4] 5] 6] 7] 8
Arithmetic operations 2 8 18 28 42 56 74 110
5 23 56 95 | 200 | 330 | 483 | 643

Conversion

Boolean operations

Table 3. Comparison of required number of random variables.

B— A Security Order

Conversion 1] 2] 3] 4] 5] 6] 7] 8
Goubin’s method (2001) [12] 1 - - - - - - -
Coron et al. (2014) - 8 bits[7] | -| 66 |127| 221| 331| 465| 615| 806
Coron et al. (2014) - 16 bits[7] | - |122|239| 421| 635| 897 1,191 | 1,566
Coron et al. (2014) - 32 bits[7] | -|234|463| 821 |1,243 | 1,761 | 2,343 | 3,086
Coron et al. (2014) - 64 bits[7] | - | 458 | 911 | 1,621 | 2,459 | 3,489 | 4,647 | 6,126
Hutter-Tunstall (2016) [13] - 5| 11 27 44 81| 120| 199
Coron (2017) [§] S T1n | 32| 77| 170| 359 740 1,505

[ Our proposal | -] 5] 15] 26] 42| 59| 81| 104]

5.1 Performance details

Table 2 lists the number of required instructions for our proposed algorithms in
terms of arithmetic and Boolean operations up to a security order of 8. As a
reference, we also list Goubin’s solution in the first-order case, and our solution
in the other cases.

In Table 3, we list the number of required random variables to perform a
Boolean-to-arithmetic mask conversion. Many mask-conversion proposals give an
artificially low instruction count hiding a large number of required random num-
bers. We list the number of random values required to compute Goubin’s original
method [12], Coron et al.’s method [7], our original solution from 2016 [13], and
Coron’s recent approach [8]. We compare these numbers with the number of
random values required by our proposed algorithm. For the second and third-
order algorithms, we give the number of random values required by our explicit
algorithms, where some random values are used to fulfill several purposes.

The results show that our solution requires significantly fewer random vari-
ables when compared to all other algorithms in the literature. In particular,
when compared to [8], we require almost half the number of random values for
the second-order case, and more than half the number random number is all
other cases, increasing to an order of magnitude by the eighth order.

Finally, we provide a comparison of all solutions that takes into account the
number of randomness required. Table 4 lists the total instruction count for
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Table 4. Total operation count including the generation of random numbers using
Marsaglia’s Xorshift PRNG [21] from Coron’s the open-source C' implementation.

B — A Security Order

Conversion 1 ‘ 2 ‘ 3 ‘ 4 ‘ 5 ‘ 6 ‘ 7‘ 8
Coron (2017)[8]] -| 110] 315 752|1,653(3,482|N/A 14,564
Our proposal - 56| 149| 253| 452| 681| 962| 1,273
| Factor | -[x1.9]x2.1[x2.9]x3.6] x5.1[N/A[x11.4]

the algorithms. We added the number of instructions listed in Table 1 with the
number of instructions required to generate all random numbers that are required
for the mask conversion. For this purpose, we consider a practical implementation
of a Pseudo Random Number Generator (PRNG), like the Marsaglia’s Xorshift
RNG used by Coron [8]. We consider only the XOR instructions, since modern
processors are often able to perform shift operations for free. We also did not
consider typical overheads that are caused by function calls or loading constants
from memory. Therefore we assume that generating a random number takes five
instructions in the comparison given in Table 4.

By considering the cost of generating random values, we show that our pro-
posal is about twice as fast as the next best algorithm for lower orders and
increases to more than ten times faster for the eighth order case and above.

6 Implementation Considerations

All algorithms described in this paper have the property that all calculated
intermediates (and relevant higher-order combinations thereof) are statistically
independent of the secret value x. In the past, it has been shown that the claimed
security order of those algorithms is usually lower when they are directly applied
in software or hardware. For example, in a software implementation intermediate
values are often unintentionally combined by the underlying hardware architec-
ture. One typical cause of leakage is where intermediate values of the algorithm,
which are stored in some registers, get overwritten with other intermediate re-
sults of the algorithms. Other sources of leakage include the combination of
internal signals that depend on two or more intermediate values which are ei-
ther stored in registers (register interferences) or currently (or previously) used
in operations in the processor’s datapath. Hence, implementations of first-order
side-channel resistant algorithms may show first-order leakages in practice, and
the same holds true for higher-order secure algorithms whose resistance level has
shown to be actually lower than claimed [3].

Direct applications of secure algorithms in hardware require similar care when
implemented. Integrated circuits in CMOS, for example, have the property that
many gates make output transitions several times per clock cycle. Such tran-
sitions (glitches) contain information about the secret value, even though all
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intermediates have been carefully masked at the algorithm level [20]. State-of-
the-art countermeasures try to get rid of those physical effects by applying (ad-
ditional) countermeasures at the gate level (e.g., using secure logic styles such as
dual-rail logic [18]) or algorithm level (e.g., using secret sharing and multi-party
computation such as threshold implementations [23]).

Naive implementation of algorithms that have been proven secure—in the
sense that every calculated intermediate is statistically independent of the secret
value—can, therefore, not be automatically considered resistant to side-channel
analysis. However, the algorithms proposed in this paper can be combined with
other countermeasures in order to guarantee resistance at the claimed security
order. We do not provide any further details here since the countermeasures
required will vary from one platform to another.

7 Conclusions

In this paper, we present Boolean-to-arithmetic mask conversion methods that
can be computed in constant time for a masking scheme of second and third
order. We present explicit algorithms for a second-order secure mask conversion
that requires 31 instructions, and a third-order secure mask conversion that
requires 74 instructions. Our second-order secure algorithm is at least one order
of magnitude faster than previous work; and our corrected algorithm for third
order is more than twice as fast.

Our algorithms are shown to be secure under the SNI model, although we
treat our algorithms as a single gadget, rather than break it into smaller gadgets
that can be independently verified. Attempts at achieving this have a large
performance cost [8], i.e., exponential complexity with regard to the security
order, compared to the quadratic complexity of the algorithm presented in this
paper. An efficient method for that would allow one to break our algorithms into
gadgets is left for future research. Also, given the resources required to validate
the SNI proof for Algorithm 3, a similar proof for orders greater than three is
also left for future research.
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