Multiplication over Extension Fields for Pairing-based
Cryptography

an Hardware Point of View

Arthur Lavicel?3, Nadia El Mrabet!, Alexandre Berzati?
, and Jean-Baptiste Rigaud!

! Mines Saint-Etienne, CEA-Tech, Centre CMP, Gardanne, France, firstname.lastname@emse.fr
2 Thales DIS Design Services SAS, Meyreuil, France,
firstname.lastname@thalesgroup.com
3 ARMINES, Paris, France

Abstract. New Number Field Sieves (NFS) attacks on the discrete logarithm problem have
led to increase the key size of pairing-based cryptography and more precisely pairings on most
popular curves like BN. To ensure 128-bit security level, recent costs estimations recommand
to switch for BLS24 curves. However, using BLS24 curves for pairing requires to have an
efficient arithmetic in IF 4.

In this paper, we transposed previous work on multiplication over extesnsion fields using
Newton’s interpolation to construct a new formula for multiplication in F,« and propose
time X area efficient hardware implementation of this operation.

This co-processor is implemented on Kintex-7 Xilinx® FPGA. The efficiency of our design in
terms of time X area is almost 3 times better than previous specific architecture for multipli-
cation in F 4. Our architecture is used to estimate the efficiency of hardware implementations
of full pairings on BLS12 and BLS24 curves with a 128-bit security level. This co-processeur
can be easily modified to anticipate further curve changes.

Keywords: pairing-based cryptography - multiplication over extension fields - polynomial
interpolation - Newton’s formula - exact divisions - hardware implementation - FPGA

1 Introduction

Pairings are mathematical objects known for a long time but recently considered for supporting
cryptographic functions such as identity-based encryption [8], short signature [9] or zero-knowledge
Succinet Non-interactive ARgument of Knowledge (zk-SNARK) [7]. These applications legitimate
the search of efficient implementations of cryptographic pairings in both software [14] and hard-
ware [21]. These researches make pairing-based cryptography a key element of real-life use cases as
in Zcash™ cryptocurrency.

Pairings are bilinear function e : G; X Go — Gg which relied on elliptic curves and extension
fields arithmetic. The efficiency of pairings computation highly depends on the choice of the pairings
family. Therefore most attention was given on pairings on BN or BLS12 because it allows several
algorithmic optimisations.

However, the Number Field Sieve (NFS) attack against discrete logarithms problems presented
in [I7] reduced the security of many pairings families. Barbulescu and al. [3l4] computed the new
required key size and estimated pairing computation time on various curves and for different security
levels. Their results were confirmed at 128-bit security level in [I3].

authors in [4] have estimated that pairings using extension fields of degree multiple of 4 like
BLS24 are theoretically more efficient than other pairings family at 128-bit and 192-bit security
levels. In [4], the authors estimate the complexity of multiplication over extension fields with the
number of modular multiplications required by the formulae given in [I8] and [I1I]. These formu-
lae are based on Newton’s interpolation which minimizes the number of modular multiplications
required to compute multiplication over extension fields. However Newton’s interpolation requires
many other operations to be properly implemented like modular addition or division.

Our contributions: The first contribution of the paper is to update cost estimations of
multiplications over extension fields. Hence we have proposed an hardware design that minimizes
the impact of underestimated extra operations. It implements the multiplier proposed in [I5] and a
custom "adder” used to accelerate the additional modular operations required for Newton’s interpo-
lation: addition, subtraction, double, division by 2 and the exact division by a small constant prime.
This co-processor is built to compute modular multiplication in parallel with other operations and
to support multiplications over different extension fields required for pairing-based cryptography.

We also provide a way to preserve the divisibility properties of numbers during Newton’s in-
terpolation while using modular arithmetic. The implementation of divisions during Newton’s in-
terpolation is based on the method proposed in [I1] to compute them within the time of modular
additions. We implement Karatsuba’s [I8] formulae to compare hardware implementation of both
methods for extension fields of degree 4.

We propose a new formula to efficiently compute multiplication over these fields. The efficiency
of our co-processor in terms of ratio time X area outperforms previous works on hardware imple-
mentation of multiplication over these fields.

Organization of the paper: Section [2| provides some mathematical background for pairing-
based cryptography. An efficient formula for multiplication over extension fields of degree 4 is
presented in Section [3] Section [4] details our ALU for modular arithmetic and divisions with con-
current custom adder and multiplier. In Section [5] we present the performances of our ALU for
multiplications over extension fields of various degrees. Then Section [f] compares our performance
with previous work and gives estimations of pairings performances on BLS12 and BLS24 curves.
Finally, we summarize our work and discuss future research directions in Section [7}

2 Background

2.1 Notation

F,: A finite fields of characteristic p, for p a prime number and n = log,(p).

IF,x: Extension field of degree k of IF,.

M, (resp. I,, A,, Dbl, , Div2,): Multiplication (resp. Inversion, Addition, Double, Division by 2)
in .

D;: Exact division by ¢+ = 3 or 5.

G (resp. G[r]) a group (resp. a subgroup of order r of G).

w (resp, e): Size of the word (resp, number of words)used to represent numbers in F),.

2.2 Arithmetic for pairing-based cryptography

This section briefly recalls the basics of pairings. The reader is invited to refer to [I9] for more
information about pairings and their applications. Let E be an elliptic curve defined over a finite

field F, and r a prime factor of the cardinal of E (denoted #(FE)) such that r?> does not divide
#(E). Let k be the smallest integer such that r divide p* — 1, k is called the embedding degree of E
with respect to r. The definition of a pairing is given in Definition [I}

Definition 1. (Pairing)
Let G1, Gy be subgroups of order r of E. A pairing is a bilinear and non degenerate function e:

e: Gy x Gy — G3, (R, S) — B(R, S)
Generally, we have Gy in E(F,)[r], Gy in E(F,:)[r] and Gz in Fx[r].

Pairing-based cryptography relies on the security of the Discrete Logarithm Problem (DLP)
over elliptic curves (E(FF,) and E(F,«)) and over finite fields (F,). The DLP can be computed for
instance with Pollard’s rho algorithm. Efficient computations of pairings depend on the construction
of pairing friendly elliptic curves over F,,. The most studied construction are KSS [16], BLS [5] and
BN [6]. There exists other pairings friendly elliptic curves presented in the taxonomy of Freeman
and al. [I2]. An elliptic curve is defined by several parameters: its construction method (ex: BN),
its embedding degree: k, and the order r of the groups G, Gy and Gg.

These parameters are use by the Extended Tower Number Field Sieve attack presented in [17] to
reduced the security of many pairings families. Barbulescu and al. [3l[4] computed the new required
key size and estimated pairing computation time on various curves and for different security levels.
Their results were confirmed at 128-bit security level in [13].

2.3 Key size update and complexity evaluation

Before the key size update, much attention was given to Optimal Ate pairings [20] on BN or BLS12
curves. But the extended tower NFS attack presents in [I7] is more efficient on these families
than on families like BLS24. Since the efficiency of the attack is not the same for all curves, the
security impact is also different. In [4], the authors estimate pairing computation complexity with
the number of modular multiplications and inversions. They estimate the cost of multiplication in
F, as M, = e* with e the number of words used to represent p. Before the NFS attack, it was more
efficient to compute pairings on BN or BLS12 curves. However, the authors in [4] show that BLS24
curves could be as interesting as BLS12 curves for the 128-bit security level.

Arithmetic used to implement these operations depends on the pairing family as explained
in [4]. Modular (F,) and extension fields (F,x) arithmetic are the basis of pairings arithmetic.
Hence searching for cost-efficient hardware coprocessor to compute these operations is a way to
enhance the efficiency of pairings implementation.

2.4 Multiplications over extension fields

The two main methods to compute multiplications over extension fields are Newton’s interpolation
from [I1] and Karatsuba’s formulae from [18].

An element A of an extension field of degree &k of), (denoted FF,,x) is a polynomial of degree n, with
0 <n < k—1 with coefficient in F,,. Let P be an irreducible polynomial in IF,, (with no root in]Fp).
Let A and B be two elements of . The results C' of the multiplication of A by B is defined as
the Euclidean remainder of the polynomial A x B by the polynomial P. In this paper, we consider
the following extension fields:

Fp2 = Fpli], with % = —1

p

Fp4 = sz [7}], with v2 =i+ 1
These polynomial are commonly used for pairing on BN curves as explained in [2]. Explicit formulae

are given bellow.

Karatsuba formulae
Let A=ag+a1X,B=0by+bX and C = ¢g + 1 X, A, B € F,2. Then the Karatsuba formula to
compute C = A x B mod X2+ 1 is:

C = (ao =+ alX)(bo + le), (1)
= apbo + (ap + a1)(bo + b1)X + a1b; X2.

The cost of these computations is 3M, + 2A,,. We re-organize Equation [1|to have coefficients of
the polynomial C. Products of each line are denoted u; with 0 < i < 2.
Equation [2| gives the new expression of C:

C:’UQX2+(’U,1 — U2 —UO)X+Uo. (2)

The cost of multiplication of degree n = 1 polynomial is 3M, + 4A,. Then, the total cost of a
multiplication over extension fields of degree 2 is 3M), + 54,,.
To compute multiplication over extension fields of degree 4, we apply Karatsuba formula twice.

Newton’s interpolation
The implementation cost of M), is commonly considered more expensive than implementation’s cost
of A, or Dbl,. Hence the straightforward way to improve multiplications over extension fields is
to reduce the number of modular multiplications. Newton’s interpolation is an alternative way to
do so. This part briefly recalls the method to obtain formulae for computing multiplications over
extension fields using Newton’s interpolation.

Let us consider an element of F,» as a polynomial in unknown X.
Then A(X) = ap+a; X+ -+ar_1 X* L and B(X) = bg+by X+ - -+bp_1 X*~! are two polynomials
of degree k — 1.
Hence, the polynomial C(X) = A(X) x B(X) is of degree 2k — 2.
To compute the polynomial C', we compute the products of 2k — 1 distinct images of A and B as
explained in Note

Note 1. Required steps of Newton’s interpolation
1. Choose 2k — 1 points: (ag, a1, ...a_2), € ng_l such as Vi # j, o # ;.
2. Polynomial interpolation: Evaluate polynomials A and B in these points by computing
A(ao), ey A(O[Qkfg), B(a0)7 ey B(Oézkfg).
3. Evaluation of C: Compute the image of polynomial C in these points (C(a;) = A(a;) X B(a;))
4. Newton’s interpolation 4+ Reconstruction of C with Horner Scheme:
Reconstruct the polynomial C' using Newton’s interpolation formulae.
Remark 1. Newton’s interpolation formulae for multiplication over extension fields of degree 2 (resp.
3) are commonly called Karatsuba (resp. Toom-Cook) formulae [I§].

The complexity of multiplications using Newton’s interpolation depends on the choice of interpo-
lation points (c;) because we have to compute multiplications and exact divisions by the (a; — o).
By choosing the interpolation points as explained in [I1], we can use Newton’s interpolation to
compute multiplication over different extension fields.

Newton’s interpolation reduces the number of modular multiplications but requires extra mod-
ular divisions and more additions than Karatsuba formulae.

3 Our proposition for extensions-fields of degree 4

We follow the steps described in Note[T]to build an efficient formula for multiplication over extension
fields of degree 4. Let A(X) = ag + a1 X + a2 X? + a3 X3, B(X) = by + b1 X + b2 X? + b3 X3 and
C(X) =A(X) x B(X) = co+c1X + c2X? 4+ ¢3X> be three elements of F .

We choose the a;{0,1,—1,2,—2,4, +o0}, with A(+00) = as.

Polynomial interpolation

spl = ag+ as, sp2 = ap + 2%as, A(0) = ao,

Sil = ay + as, si2 = 2a; + 2%ag, A(+00) = as,

A(l) = spl + sil, A(2) = sp2+ si2, A(4) =ap+4(a1 +4(as + 4as)).
A(—1) = spl — sil, A(=2) = sp2 — si2,

It requires 114, 4+ 10Dbl, to compute the interpolation of A.
Evaluation of C:

C(a) = A(a) x B(a) with a € {0, £1, £2,4, +o0}.

It requires 7M.

Newton’s interpolation

¢ = C(0), ¢ = ((C(=2) = cp)} +)3 = ch +)L,
¢ = C(1) -, &b = (((CW) -)t = -t —)b = i,
¢h = (C(=1) — ch +)3, = asb.

2
ch = ((C(2) —ch)5 — 1 — ch)3,

It requires 154, + 9Div2, + 4Divs + 1Djvs.

Reconstruction of C' with Horner Scheme:
Cla) = ch+ X (e + (X — 1)(ch + (X +1)(ch + (X = 2)(ch + (X +2)(c + (X — 4)ch))))
It requires 154, + 5Dbl,,.
Finally, the cost of the polynomial reduction is 6A, 4+ 3Dbl,.
The overall cost is: 7M, +58A, +28Dbl, +9Div2,+4Divs + 1Divs. By considering only modular
multiplications, formulae based on Newton’s interpolation are more efficient than Karatsuba formu-
lae. In practice, the extra costs brought by modular additions and divisions make these two methods
almost equivalent for software implementation at the 128-bit security level as explained in [I1]. Be-
sides, Newton’s interpolation requires divisions by small constant which cannot be computed by
classical adder or subtracter.

Hence efficient hardware implementation of additional operations is important to build efficient
pairing co-processor.

4 A dedicated Arithmetic Logic Unit (ALU) for extension field
operations

We present a generic ALU designed to accelerate multiplication over extension fields by reducing
the penalty brought by additional operations.

4.1 Overall presentation

Our ALU (see Figure [2)) is composed of two Main Processing Units (MPU). First, the multiplier to
compute Montgomery’s multiplications with reduction. Then, the custom ”Adder” is the compo-
nent used to compute modular additions, subtractions, divisions by 2 and exact-divisions by 3 or
5. The RAM stores intermediate results. The ROM drives the two MPUs and replaces a dedicated
FSM. The multiplexer selects the result of the multiplier or the one of the ” Adder” to save it into
the RAM. The proposed solution is generic in terms of words size (w) and in terms of moduli size
n = logy(p). We choose to implement a 64-bit architecture to limit the number of memory-calls.
We give further explanations of this choice in Section [5| Within this article, we use the colour code
in Figure [I] to represent the different parts of the design.

~ addrRom
Write

— addrRam
ROM
cmdAddMul
to represent elements used
u .
red |:| for control and selection; 10 31
green 17777, to represent elements used
. ___1 for storing intermediate results; I
. . dataO
black ——|:|, for other elements in the design. a7
22 9
Write
Fig.1: Color code RAM
64 64
>
dataln
dataload dataload
»—>| Cmd Cmd J«—
Adder Multiplier
64
result result
dataOut
sell
64 data0 datal 64
CLK

Fig. 2: Global architecture of our ALU for log,(p) < 512
4.2 Multiplication

The modular multiplier is based on the optimized architecture of [15] (architecture 2). It is a systolic
architecture composed of e Processing Unit (one for each word of the modulo). It used a variant
of radix-2 Montgomery multiplication to compute modular multiplication. We add a Memory Unit
(MU) to store the modulo and the operands and an Output Manager (OM) to format the output
of a multiplier for the RAM.

4.3 Exact division by a small constant

To efficiently use Newton’s interpolation for multiplications over extension fields of degree k = 4,
we need to compute exact divisions by 2, 3, or 5. In this section, we explain the solution proposed
in [II] and its consequences.

For instance, if we need to divide § in N by 3 during Newton’s interpolation, ¢ will be divisible by
3. There is a number ¢ in N such as § = 30 < § — 20 = 0. Since the first bit of 20 is 0, we can
compute the division by 3 as shown on Figure [3]

The same idea is used for the division by 5: § — 40 = 0.

5 (52 51 60
20 o1 oo 0
. N
v N v \+
=0 g2 g1 g9

Fig. 3: Exact division by 3

Our ALU implements the scheme depicted Figure [3| to compute words divisions by 3 or 5.
A dedicated component for each small constant has been implemented to enhance the maximum
frequency of the design. These three components are instantiated in the component used to compute
the division of a word in four clock cycles.

Divisions calculated during Newton’s interpolation are supposed to be exact (the reminder is
null) but using modular arithmetic, we lose the divisibility of numbers. A possible solution is to use
classical arithmetic during Newton’s interpolation and reduce modulo p after all exact division. In
this case, the size of the operands will double during calculation due to successive multiplications
and additions. We propose a solution to keep using modular arithmetic and save the divisibility
property of numbers by working with a multiple of the prime p as demonstrated on Remark [2]

Remark 2. (Divisibility of an integer and its residue.)
Let a,b € N and p be a prime number. If a is divisible by b (note bla), then a mod (p) is not
necessarily divisible by p but the number a mod (b.p) is divisible by b.

As a consequence of Remark [2] we have to increase the size of the modulus for each successive
division to use modular multiplication and exact division.
Then, the modulus used with Newton’s interpolation is:

m = 3* x5 x p, for multiplication over Fq (3)
A drawback is that increasing the size of the modulus will also increase the cost of multiplications

using Newton’s interpolation.

Division by 2 To compute Newton’s interpolation, we need the modular division by 2. Since we
work modulo p with p odd if A is odd then A + p is even and a division by two correspond to a
shift. We choose to begin the division by 2 with the most significant word to reduce the component
used for the division by 2 to a 1-bit register.

4.4 Design of custom ” Adder”

The modular adder-subtraction can compute additions (or subtractions) and reduction operations
while limiting the number of memory accesses during modular additions.

dataload
64 i o4
64 64
datal
reset_add * reset 2" 64
enable
ecep 822l Reg
enable_a enable .y
Reg > dataOut
* dataOut 64
64 Gt dataB
cOut sub sub
¢ Add
(dataln cln f«—
resef
e result
DFF
by
dataOut 64
|
enable_p enable dataln reset reset_p
dataln
reset CyclReg load load_p
enable
R /
g dataOut
L > dataOut
ataln y
resetn reset 64 64
enable
select wordw_r select
2x3 RegAdd
> dataOut dataA dataB
o sub o]
Red
dataln cln f+—
reset
e result
DFF
64
* dataOut
| selectRes|
Red [fe——
dataln cAdd Jle—r
reset a
enable
select
RegRed sel[e————— sel_add
N d
" dataOut
64 64 .
data0 datal
o e result_add
sell
dataOut
64
S8
g
64 64 g 64
L —Igan <)
divy enable s 7
reset_divy reset Div result|—/—%
= 64
64
dataln
enable_div enable
reset_aiv reset
d divFive
select_w, div lectWord
2 result
Divider

Fig.4: Modular adder-subtracter and divider for log,(p) < 512

During Newton’s interpolation, the majority of exact divisions follows a modular addition or a
modular subtraction. We place our divider after components used for modular additions to save
memory access by computing exact division during the saving step. In this way, our co-processor
can compute a modular addition/subtraction followed by an exact division.

We use two modular adder-subtractions. One to compute the addition (or subtraction) and the
other to compute the modular reduction. The two possible results are stored in two registers Sy and
S7 and the component selectRes (on Figure [4]) is used to select the right result. If the component
selectRes return 0, the right result is the operation without modular reduction otherwise, it is the
result with modular reduction.

We also use several registers to store the carry for the next step of the computation and to store
partial results during exact division. By doing this, we reduce the number of memory access to the
minimum: load operands and store the final result.

5 Hardware implementation of multiplications over extension fields

We implement and compare both Karatsuba and Newton’s interpolation formulae for multiplica-
tions over extension fields of degree 4 with our ALU.

5.1 Implementation of base fields operations

Multiplications over extension fields require different operations. To have a practical example, we
use a single port RAM with a latency of one clock cycle for reading and writing.

Our design is generic in terms of words size (w) and maximum modulo size (log,(p)). We denote
e = [2]. The number of clock cycles required by each basis operation is express in Table

l Operation ‘Number of clock cycles‘
Montgomery multiplication n+3e+1
Load Modulo e+1
Modular reduction 2e +4
Modular addition/subtraction 3e+3
Modular double 2e+ 3
Modular division by 2 2e+3
Modular addition/subtraction and exact division 6e + 5

Table 1: Costs of base fields operations

5.2 Multiplications over extension fields

We design our ALU to parallelize multiplications and additions-like operations. Table [2] gives the
beginning of multiplication over Fp2 scheduling as an example.

[Step] Unit | to [t1 [t2 [t3 T ts
Adder Compute(A(1) = Ao + A1) Compute(B(1)Bo + Bi)
0 RAM [Load(Ao, Bo)|Load(Ao, A1)] Save(A(1)) Load(Bo, Bi1)[Save(B(1))[Save(C(0))
Multiplier Compute(C(0) = Ag X Bo)
Adder Compute(C(0) mod (p))
1 RAM [Load(A1, B1)| Load(C(0)) [Save(C(0) mod (p)) Save(C(0))
Multiplier Compute(C(c0) = A1 X By)

Table 2: Begining of multiplication over Fp> scheduling

For Karatsuba, we can also parallelize the Horner scheme and the polynomial reduction. It is
because there is no division. For extension fields of degree 4, we have to compute all divisions
before applying Horner’s scheme. Only the computation of C(co) could be parallelized with the
computation of the Horner scheme. We decided not to parallelize Horner’s scheme nor polynomial
reduction. It could be a way of further improvement.

The ALU is designed to handle the different sizes of p depending on the chosen pairing family.
Our coprocessor is implemented on Xilinx Kintex 7 FPGA with Vivado design suite 18.1.

Table 3| gives the post place and route area and timings of our design for multiplication over
extension fields of degree 2 and 4 at 128-bit and 192-bit security levels.

The critical path of our design is slightly impected by the size of the modulo so we manage to
running the different version of our ALU at 100MHz. We use Vivado’s IP to implement the RAM
and the ROM. We use the FPGA only as a prototype for our ALU because our goal is to keep our
design light without mapping Digital Signal Processing (DSP) units to make it more suitable for
general-purpose integrated circuits.

Table [3] gives the post place and route timing of multiplications over extension fields of degree
2 and 4 for 128-bit and 192-bit security level. Timings are given in us(t(us) and area are given in
term of slices number (A (slices)). Finaly, performances are given with t(us) x A(slices) ratio.

. . t(ps) A(slices)|| t(us) X A(slices)
Security |Fields|logz (p) e [N K [N K [N
128-bit F,2 460 15.19 1126 17.10x 103

F, | 318 |32.84]29.06|825] 883 [[27.09%x10°]25.66x10°

. F 2 1048 40.47 2415 97.74x103

192-bit |2 - .
F 4 477 49.28[41.95 1126 55.49x10 [47.24><10

Table 3: Implementation results

For multiplications over extension fields of degree 4, we manage to parallelize the majority
of additions-like operations with modular multiplication that makes Newton’s interpolation more
interesting than Karatsuba formulae at both 128-bit and 192-bit security levels.

Table [3] also shows that Newton’s interpolation is more interesting at 192-bit security level than
in 128-bit security level.

At 128-bit security level, we need five 64-bit words to represent a number modulo p and six
64-bit for a number modulo m = 3% x 5 x p. Therefore, we need to increase the size of the ALU to
use Newton’s interpolation at 128-bit security level and it slows down every operation.

At 192-bit security level, number modulo p and m required height 64-bit word. It explains why
Newton’s interpolation is more interesting at 192-bit than in 128-bit security level.

6 Comparison with previous work

Multiplication over Fja is currently used for pairing over popular BN and BLS12 curves. We give
the comparison for a modulus of size logy(p) = 256 which corresponds to the previously required
size for 128-bit security-level to give a fair comparison of our design with previous architecture.

For the sake of fair comparison, we synthesized our ALU on a Virtex 7 to compare it with the
ones proposed in [21]. Results of our comparison are shown in Table

lPlatform‘Design‘t(us)‘F(Mhz)‘ FF ‘ LUT ‘DSP‘Slices‘t(ms) X A(slices)‘
Our [19.02| 125 2564 | 2159 0 755 14.36
21] |1.47 115 |55600({113700| 128 |28400 41.74
Table 4: Comparison of our implementation with previous work for multiplication over Fs

Virtex 7

In [21], authors design a specific architecture to parallelize operations in F, and IFZZ) to compute
pairings over BN curves. They integrated their design with a CPU in the FPGA. This leads to a
time-efficient implementation of multiplication in Fj. But in terms of t(ms) x A(slices)ratio, our
ALU is 2.9 times more efficient for computing multiplication in]Fé. This show that our generic ALU
is as good as specific ALU.

10

Remark 3. We consider the total area as the number of Slices used by each design. In [2], authors
optimized their design for FPGA implementation and Maps DSPs units to achieve a high-speed
design. Our comparison (t(ms) x A(slices)) doesn’t take into account the number of DSP units
but its impact on the total area is not negligible. For example, 64 x 64 bit multiplication can be
implemented on a Virtex7 FPGA with 16 DSP48E1 as in [21] or with 4256 LUTs.

To our knowledge, Wang and al. were the only ones to detail the timings of their IF;‘) implemen-
tation. That is why we only compare our implementation with theirs.

6.1 Estimation of Pairings time at 128-bit security levels

This paper focus on the computation of multiplication over extension fields. In order to estimate
performances of BLS12 and BLS24 implementations with our ALU, we use formulae described
in [4) to implement both pairings in Python. This allows us to take into account all additional
operations. Table [5| presents the estimated calculation times of BLS12 and BLS24 pairings at new
128-bit security level.

Design | Security |curves|Platform|A (slice)|t(ms) [t(s) X A(slices)

this work'| old 128-bit [BLS12]| Kintex-7 885 73.79 65.30
this work'[new 128-bit| BLS12] Kintex-7 | 1126 [101.02 113.75
this work?|new 128-bit| BLS24 | Kintex-7 885 139.62 112.40

this work![new 128-bit| BLS24 | Kintex-7 825 136.24 110.07
Table 5: Estimations

! Estimation without Newton interpolation. ? Estimation with Newton interpolation.

Table [f] also gives the estimated calculation time of BLS12 at the old 128-bit security level
and compares it to previous work to ensure that our estimations are realistic. Since we only give
estimated computation times, we don’t claim to have better pairing accelerator than [I] or [21].

In terms of t(ms) x A(slices) BLS24 curves are more efficient than BLS12 curves at 128-bit
security level with our ALU.

It confirms the conclusion given in [4] that "BLS24 is the new challenger of BLS12 at the 128-
bit security level”. In practice, it will depends on the implementation. With our ALU, additional
operations represent 20% of estimated computation times on BLS12 curves and 23.7% on BLS24
curves.

Table [5| also show that even if Newton’s interpolation leads to more efficient implementations
of multiplication in Fp4, it also leads to less effective implementation of pairings at 128-bit security
level.

As explained in Section At 128-bit security level, we need five 64-bit words to represent
a number modulo p and six 64-bit words for a number modulo m = 3* x 5 x p. It implies that
our implementation of Newton’s interpolation will enhance the performance of the overall pairing
computation only if the number of 64-bit words required to represent a number modulo m is the
same as the one required to represent a number modulo p.

11

7 Conclusion and future work.

Multiplications over Fps should be a major operation for pairings implementations since authors
have estimated in [4] that BLS24 pairing is supposed to be the most efficient pairing at 128-bit and
192-bit security levels. This paper proposes an efficient formula to compute multiplications over
these fields and our ALU outperforms previous work for this operation. This paper focuses on miss-
study additional operations such as exact divisions required to efficiently implement multiplications
over extension fields. We design an ALU to parallelize additional operations with modular multi-
plications and propose a way to keep the divisibility property during Newton’s interpolation while
using modular arithmetic. This allows us to control the exceeding generated by successive opera-
tions during Newton’s interpolation. Our ALU is used to implement multiplications over extension
fields of degree 2 and 4. With our ALU, Newton’s interpolation is more efficient than Montgomery’s
formulae for multiplication over extension fields of degree 4. Our implementation results are used
to refine estimation pairings computation time at 128-bit security level. We show the efficiency of
BLS12 and BLS24 pairings are similar. Furthermore, additional operation represent at least 20%
of pairings computation times on our architecture. These operations cannot be neglected.

Future works: This paper proposes the first hardware implementations of exact division for
Newton’s interpolation using the method proposed in [10]. This operation is miss-studied and it
could be a source of information leakage. Future works will study the security of our ALU against
side channel attacks. We will use our ALU to implement pairings on curves presented by [4] since
there is no implementation of most of the new curves yet. Finally, our ALU will be easily adaptable
to use Newton’s interpolation for multiplication over extension fields of degree 3 and 5 which should
brings to efficient implementation of promising BLS15 and BLS27 curves.

References

1. Ahmad, S.: Public key cryptography using hardware/software co-design for the internet of things. Ph.D.
thesis, George Mason University (2017)

2. Aranha, D.F., Karabina, K., Longa, P., Gebotys, C.H., Hernandez, J.L.: Faster explicit formulas for com-
puting pairings over ordinary curves. In: EUROCRYPT. Lecture Notes in Computer Science, vol. 6632,
pp. 48—68. Springer (2011)

3. Barbulescu, R., Duquesne, S.: Updating key size estimations for pairings. Journal of Cryptology (2018),
https://hal.archives-ouvertes.fr/hal-01534101

4. Barbulescu, R., El Mrabet, N., Ghammam, L.: A taxonomy of pairings, their security, their complexity.
TACR Cryptol. ePrint Arch. 2019, 485 (2019)

5. Barreto, P.S.LL.M., Lynn, B., Scott, M.: Constructing elliptic curves with prescribed embedding degrees.
In: SCN. Lecture Notes in Computer Science, vol. 2576, pp. 257-267. Springer (2002)

6. Barreto, P.S.L.M., Naehrig, M.: Pairing-friendly elliptic curves of prime order. In: Selected Areas in
Cryptography. Lecture Notes in Computer Science, vol. 3897, pp. 319-331. Springer (2005)

7. Ben-Sasson, E., Chiesa, A., Tromer, E., Virza, M.: Succinct non-interactive zero knowledge for a von
neumann architecture. In: Proceedings of the 23rd USENIX Conference on Security Symposium. p.
781-796. SEC’14, USENIX Association, USA (2014)

8. Boneh, D., Franklin, M.: Identity-based encryption from the weil pairing. In: Kilian, J. (ed.) Advances
in Cryptology — CRYPTO 2001. pp. 213-229. Springer Berlin Heidelberg, Berlin, Heidelberg (2001)

9. Boneh, D., Lynn, B., Shacham, H.: Short signatures from the weil pairing. In: Boyd, C. (ed.) Advances
in Cryptology — ASIACRYPT 2001. pp. 514-532. Springer Berlin Heidelberg, Berlin, Heidelberg (2001)

12

https://hal.archives-ouvertes.fr/hal-01534101

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

El Mrabet, N., Guillermin, N., Ionica, S.: A study of pairing computation for elliptic curves with
embedding degree 15. IACR Cryptol. ePrint Arch. 2009, 370 (2009)

El Mrabet, N., Guillevic, A., Ionica, S.: Efficient multiplication in finite field extensions of degree 5. In:
Nitaj, A., Pointcheval, D. (eds.) Progress in Cryptology — AFRICACRYPT 2011. pp. 188-205. Springer
Berlin Heidelberg, Berlin, Heidelberg (2011)

Freeman, D., Scott, M., Teske, E.: A taxonomy of pairing-friendly elliptic curves. Journal of Cryp-
tology 23(2), 224280 (Apr 2010). https://doi.org/10.1007/s00145-009-9048-z, https://doi.org/10.
1007/s00145-009-9048-z

Guillevic, A.: A short-list of pairing-friendly curves resistant to special TNFS at the 128-bit security
level. In: Public Key Cryptography (2). Lecture Notes in Computer Science, vol. 12111, pp. 535-564.
Springer (2020)

Hankerson, D., Menezes, A., Scott, M.: Software implementation of pairings. In: Identity-Based Cryp-
tography, Cryptology and Information Security Series, vol. 2, pp. 188-206. IOS Press (2009)

Huang, M., Gaj, K., El-Ghazawi, T.. New hardware architectures for montgomery modu-
lar multiplication algorithm. IEEE Transactions on Computers 60(7), 923-936 (July 2011).
https://doi.org/10.1109/TC.2010.247

Kachisa, E.J., Schaefer, E.F., Scott, M.: Constructing brezing-weng pairing-friendly elliptic curves using
elements in the cyclotomic field. In: Pairing. Lecture Notes in Computer Science, vol. 5209, pp. 126-135.
Springer (2008)

Kim, T., Barbulescu, R.: Extended tower number field sieve: A new complexity for the medium prime
case. In: Robshaw, M., Katz, J. (eds.) Advances in Cryptology — CRYPTO 2016. pp. 543-571. Springer
Berlin Heidelberg, Berlin, Heidelberg (2016)

Knuth, D.E.: The Art of Computer Programming, Volume 1 (3rd Ed.): Fundamental Algorithms.
Addison Wesley Longman Publishing Co., Inc., USA (1997)

Menezes, A.: An introduction to pairing-based cryptography. In: Recent trends in cryptography. vol. 477,
pp. 47-65 (2009)

Vercauteren, F.: Optimal pairings. IEEE Transactions on Information Theory 56(1), 455-461 (Jan
2010). https://doi.org/10.1109/TIT.2009.2034881

Wang, A.T., Guo, B.W., Wei, C.J.: Highly-parallel hardware implementation of op-
timal ate pairing over barreto-naehrig curves. Integration 64, 13 - 21 (2019).
https://doi.org/https://doi.org/10.1016/;.v1s1.2018.04.013, http://www.sciencedirect.com/science/
article/pii/S0167926018300336

13

https://doi.org/10.1007/s00145-009-9048-z
https://doi.org/10.1007/s00145-009-9048-z
https://doi.org/10.1007/s00145-009-9048-z
https://doi.org/10.1109/TC.2010.247
https://doi.org/10.1109/TIT.2009.2034881
https://doi.org/https://doi.org/10.1016/j.vlsi.2018.04.013
http://www.sciencedirect.com/science/article/pii/S0167926018300336
http://www.sciencedirect.com/science/article/pii/S0167926018300336

	Multiplication over Extension Fields for Pairing-based Cryptography

