Paper 2020/535

Non-Interactive Zero-Knowledge in Pairing-Free Groups from Weaker Assumptions

Geoffroy Couteau, Shuichi Katsumata, and Bogdan Ursu

Abstract

We provide two new constructions of non-interactive zero-knowledge arguments (NIZKs) for NP from discrete-logarithm-style assumptions over cyclic groups, without relying on pairings. A previous construction from (Canetti et al., Eurocrypt'18) achieves such NIZKs under the assumption that no efficient adversary can break the key-dependent message (KDM) security of (additive) ElGamal with respect to all (even inefficient) functions over groups of size $2^\lambda$, with probability better than $\mathsf{poly}(\lambda)/2^{\lambda}$. This is an extremely strong, non-falsifiable assumption. In particular, even mild (polynomial) improvements over the current best-known attacks on the discrete logarithm problem would already contradict this assumption. (Canetti et al. STOC'19) describe how to improve the assumption to rely only on KDM security with respect to efficient functions while additionally assuming public-key encryption schemes, therefore obtaining an assumption that is (in spirit) falsifiable. Our first construction improves this state of affairs. We provide a construction of NIZKs for NP under the CDH assumption together with the assumption that no efficient adversary can break the key-dependent message one-wayness of ElGamal with respect to efficient functions over groups of size $2^\lambda$, with probability better than $\mathsf{poly}(\lambda)/2^{c\lambda}$ (denoted $2^{-c\lambda}$-OWKDM), for a constant $c = 3/4$. Unlike the previous assumption, our assumption leaves an exponential gap between the best-known attack and the required security guarantee. Our second construction is interested in the case where CDH does not hold. Namely, as a second contribution, we construct an infinitely often NIZK argument system for NP (where soundness and zero-knowledge are only guaranteed to hold for infinitely many security parameters), under the assumption that CDH is easy together with the $2^{-c\lambda}$-OWKDM security of ElGamal with $c = 28/29+o(1)$ and the existence of low-depth pseudorandom generators (PRG). Combining our two results, we obtain a construction of (infinitely-often) NIZKs for NP under the $2^{-c\lambda}$-OWKDM security of ElGamal with $c = 28/29+o(1)$ and the existence of low-depth PRG, independently of whether CDH holds. To our knowledge, since neither OWKDM security of ElGamal nor low-depth PRGs are known to imply public key encryption, this provides the first construction of NIZKs from concrete and falsifiable Minicrypt-style assumptions.

Metadata
Available format(s)
PDF
Category
Foundations
Publication info
A major revision of an IACR publication in EUROCRYPT 2020
Keywords
Non-interactive zero-knowledge argumentspairing-free groupsKDM security
Contact author(s)
geoffroy couteau @ irif fr
shuichi katsumata @ aist go jp
bogdan ursu @ inf ethz ch
History
2020-05-07: received
Short URL
https://ia.cr/2020/535
License
Creative Commons Attribution
CC BY

BibTeX

@misc{cryptoeprint:2020/535,
      author = {Geoffroy Couteau and Shuichi Katsumata and Bogdan Ursu},
      title = {Non-Interactive Zero-Knowledge in Pairing-Free Groups from Weaker Assumptions},
      howpublished = {Cryptology {ePrint} Archive, Paper 2020/535},
      year = {2020},
      url = {https://eprint.iacr.org/2020/535}
}
Note: In order to protect the privacy of readers, eprint.iacr.org does not use cookies or embedded third party content.