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ABSTRACT
In this work, we investigate a practical consideration for Electro-
magnetic (EM) side-channel analysis, namely, positioning EM probe
at the best location for an efficient attack, requiring fewer traces to
reveal the secret key of cryptographic engines. We present Multi-
Layer Perceptron (MLP) based probe positioning and EM analysis
method, defining it as a classification problem by dividing the chip
surface scanned by the EM probe into virtual grids, and identifying
each grid location by a class label. The MLP, trained to identify
the location given a single EM trace, achieves 99.55% accuracy on
average for traces captured during different acquisition campaigns.

CCS Concepts
• Security and privacy → Embedded systems security; Side-
channel analysis and countermeasures;

KEYWORDS
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tron, Correlation Analysis

1 Introduction
When an Integrated Circuit (IC) is powered on, current flows be-
tween control, memory, I/O, and other data processing units during
operations, causing a variation of EM field surrounding the chip [2],
which can be picked up by inductive probes. Since the demonstra-
tion of first successful attack on Data Encryption Standard (DES)
and Rivest-Shamir-Adleman (RSA) algorithm using localized EM
radiations in [8], there has been an ever increasing interest on ex-
ploiting EM side-channels to reveal secret keys of cryptographic
engines. Starting from Correlation EM Analysis in [8], much more
powerful attack methods have been proposed, including practi-
cal template attack [7], and other profiling attacks based on deep
learning techniques [15], [5], [3], making the attacks even more
powerful.

Compared to Power Analysis, EM analysis is contactless, non-
intrusive, and permits targetting specific locations [11]. For power
analysis attacks, the most common approach is to insert a small-
valued resistor in the power line, requiring modification of the
Power Delivery Network. On the other hand, EM attack does not
require any such modification. The downside is that EM measure-
ments are much noisier compared to power measurements [8]. Also,
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Figure 1: Location Dependency of MTD: MTD tends to be
different at different locations, and almost the same at the
same location, as observed for EM traces captured from9 dif-
ferent locations around the targeted chip in 3 different ac-
quisition campaigns, where location No. 5 (marked in red)
always had the worst MTD, and location No. 9 (marked in
green) had the best MTD. The average MTD across all loca-
tions is 15×, and in the worst case, >100× higher than the
lowest MTD.

it adds a spatial degree of freedom to the EM wave capturing ex-
periment, because EM radiations are highly location dependent, as
illustrated in Fig. 1, which can both be advantageous (if the best
location, such as, #9 in Fig. 1 is chosen), or disadvantageous (if the
worst location, such as, #5 in Fig. 1 is chosen) to launch an attack.

But positioning the probe identically at the same location can be
quite challenging [14], as small misalignment can result in signifi-
cant differences in captured traces. In the scenarios, where security
evaluation labs want to know the leakage location for their chips,
or to evaluate the software/hardware countermeasures designed
to thwart attacks, a probe positioning method based on already
known location-dependent traces can be quite useful. Also, for an
adversary, the best location to capture EM traces is of paramount
importance, as at some locations, the required number of traces
to reveal the secret key, usually reported as Minimum Traces to
Disclosure (MTD) can be quite high (Fig. 1).
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Probe positioning using Neural Networks has recently been
reported in [14] where the problem has been formulated as a re-
gression problem. Compared to [14], the key contributions of this
work are:

• In this work, the problem of location detection for probe
positioning is formulated as a Classification problem instead
of a Regression problem, from an adversary’s perspective,
where the ultimate goal is to obtain high Signal-to-Noise
Ratio (SNR) signals, which reduces the attack duration ap-
proximately by 1.3-100 times.

• A Multi-layer Perceptron (MLP) has been trained to iden-
tify the probe position from just a single EM trace with
>97.95% accuracy without any pre-processing, which has
been verified for traces captured during 3 different acqui-
sition campaigns on a 6×6 virtual grid covering the whole
chip area.

• A multiple-trace majority voting strategy has been outlined
to account for occasional misclassifications, which, with just
5 traces, can achieve 100% accuracy with the help of the
trained MLP, in a simulated setting.

• High accuracy of MLP in location detection has been ex-
plained by high SNR of the EM traces for probe positioning
problem, and rationale behind higher/lower MTDs observed
at different locations has been related to separation between
mean values for different Hamming Weight (HW) classes.

2 Background and Related Works
Most widely adopted method for probe positioning is visual po-
sitioning using microscope, and camera arrangement or a cam-
era/laser combination [12], which takes a long time for accurate
positioning. Manual probe positioning suffers from precision issue.
Another way of probe positioning is to capture traces from each lo-
cation and correlating them to a profiled trace captured previously
to find the same location again, but this requires an exhaustive
search over all possible locations, as pointed out in [14], thus mak-
ing it a slow process. A better way to further improve this profiling
is to profile the traces from the locations using machine learning
techniques. In [14], a Convolutional Neural Network (CNN)-based
regression problem approach has been adopted to scan and measure
localized EM traces close to the surface of a decapsulated chip using
micro-EM probe.

Although recapsulation of the chip is possible for industrially-
equipped adversaries, as suggested in [8], we point out that an
adversary may not have a very wide window of access to a target
chip, or may not want to leave a mark behind, which might make
decapsulating a chip prohibitive. Moreover, EM attack sensors [10]
can be developed for secure IC, which can detect an approaching
micro-EM probe in close proximity, but does not work if the probes
are more than 200 µm away from the chip. This calls for evaluation
of effectiveness of probe positioning method for probes positioned
above the surface of the package, which may also have very large
diameters compared to micro-EM probes. Larger diameter probes
are frequently used in security evaluation of state-of-the-art secure
ICs, for example, a probe with 0.4 inch (10-mm) loop diameter has
been used in [16].

Machine Learning algorithms, specifically, Neural Networks has
gained attraction from researchers coming from a wide variety of
backgrounds, due to its success in computer vision and pattern
recognition problems. In the Side-Channel analysis community,
Neural Networks have been shown to be quite successful, exceed-
ing the performance of Template Attacks [7], and working even
in cases of severe misalignment, jitter [4], and masking counter-
measures [9]. Two popular forms of Neural Networks, widely used
in classification and regression problems are MLP, and CNN. In
MLP, there can be one or more hidden layers between input and
output layer, which are usually fully connected. Apart from the
input, output, and hidden layer, several other layers can be used,
such as, Batch normalization Layer, to re-normalize the data from
the preceding layer to the next layer, Dropout Layer to randomly
drop out outputs of several neurons from the preceding layer dur-
ing training, thus aiding in generalization. Also, L2 regularization
can be used to ensure that the weights do not grow exceptionally
large. Non-linear activation functions, such as Rectified Linear Unit
(ReLU) and Sigmoid, enable non-linear mapping between input and
output. For classification problems, most widely used loss function
is categorical cross-entropy, in situations where each sample can
be labeled to one class only. During training, back propagation of
errors through the layers adjusts weights to minimize loss with
the help of optimizers such as Stochastic Gradient Descent with
Momentum (SGDM), Adam, or RMSProp. Hyperparamaters, such
as number of hidden layers, number of neurons, activation func-
tion, regularization methods, choice of optimizer, number of epochs,
learning rate etc. have to be fixed prior to training, and optimized
during training phase over several iterations..

Correlation EM Analysis proceeds by computing the correla-
tion coefficients of individual time samples to hypothetical power
consumption calculated by assuming a leakage model and using a
known value (e.g., plaintext), and a guessed value (e.g., keybyte).
Most common leakage model for microcontroller-based implemen-
tations is the HW model. We can evaluate if an implementation is
vulnerable to Correlation Analysis by collecting a lot of traces, and
computing the MTD.

Target Platform

H-field Probe

3D Printer

Figure 2: Experimental Setup shows the components: 3D
printer for XY-scanning of H-field around the chip, an H-
field probe, a Target board with trace capture hardware, and
a PC to communicate with the capture hardware and 3D
printer.
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Figure 3: MLP Architecture: Input Layer takes in the raw
EM traces without any pre-processing, and the Output Layer
(activated by softmax) predicts the location. A single hid-
den layer is formed by 30 Neurons (with ReLU activation),
followed by Batch Normalization Layer, and Dropout Layer
with 50% dropout (not shown).

3 Probe Positioning with MLP
In this section, we elaborate the probe positioning method using
MLP, its training method, accuracy, and the rationale behind such
high accuracy.

3.1 Experimental Setup
To run experiments and validate the idea, we chose CW308T-XMega,
an 8-bit Atmel AVR XMega128 microcontroller based Side-Channel
Analysis (SCA) target from ChipWhisperer [13], running a soft-
ware implementation of unprotected Advanced Encryption Stan-
dard (AES)-128 encryption algorithm at 7.37 MHz clock frequency.
Unlike [14], we do not expose the die with nitric acid, as the goal is
to exploit the EM radiation without any modification to the chip
surface. We take our measurements from about 1 mm above the
chip surface. The capture hardware accompanying the setup sam-
ples the EM waves at 4 times the clock frequency of the target, i.e.,
29.48 MHz. EM waves were measured by a magnetic field (H) probe
with loop diameter of 10 mm from TBPS01 EMC Near-Field Probe
Set which is followed by a wideband low-noise amplifier with 40 dB
gain in the passband. For XY scanning, we use Comgrow Creality
Ender3, an affordable 3D printer costing 220 USD, as a low-cost
alternative to probe station. The precision of the scanner is 100 µm.
Fig. 2 illustrates the complete experimental setup.

3.2 Acquisition Campaigns and Splitting of
Training and Test Sets

Fig. 9(a) shows the virtual 6×6 grid which we have used to cap-
ture EM traces around the chip covering an area of 12mm×12mm.
We have captured EM traces from these 36 locations in 3 separate
acquisition campaigns. The reasoning behind running 3 separate
campaigns is to prove time-invariance of the learned model. In each
campaign, the probe traversed through each of the 36 locations,
and captured 10,000 EM traces with 5000 samples each from each

location for random plaintexts (thus enabling subsequent MTD
analysis) and fixed key. The reason behind collecting a huge num-
ber of traces from each location is to test the robustness of the idea.
Then we have split the total number of traces in two parts:

(1) 3 separate training and validation sets for 3 acquisition cam-
paigns, with 36,000 traces in each (10% of total number of traces),
1/9th of which has been used for validation.

(2) 3 separate test sets for 3 acquisition campaigns, with 324,000
traces in each set (90% of total number of traces).

3.3 MLP Architecture
We do not use Batch Normalization or averaging as pre-processing
steps on the raw input traces, which has been done in [14]. In [14],
20 traces have been averaged to obtain one trace for both train-
ing and test sets, which should increase SNR. As the operating
frequency is relatively low in our setting (hence it does not get
affected by jitter), and the traces are already perfectly aligned, we
adopt Multi-Layer Perceptron as our choice of machine learning
algorithm.

MLP architecture used in this work is shown in Fig. 3. The Input
Layer consists of 5000 neurons, which is equal to the number of
samples in the raw EM traces. The Output Layer has 36 neurons,
corresponding to the number of locations around the chip, where
the traces have been captured from. The activation function chosen
for this layer is softmax. A single Hidden Layer between Input and
Output Layer has been used with ReLU activation, followed by
Batch Normalization Layer and a Dropout Layer with percentage
dropout of 50%.

Figure 4: Training History of MLP: Accuracy and Loss;
Higher accuracy and Lower loss for validation set compared
to training set can be attributed to Dropout Layer, which is
only activated during training.

3.4 Training of MLP
We have used the training and validation sets (comprising a total
of 36,000 traces) to train the MLP. Adam optimizer with a learning
rate of 0.005 and a batch size of 256 has been used to train the
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Figure 5: Accuracy Heatmap: obtained by training the MLP
with traces from one campaign and testing on a separate test
batch, including the test batches from the other two. For the
same campaign, the test set does not include any trace from
the training set.

network for 50 epochs. Number of neurons in the hidden layer
has been optimized by searching over a range from from 10 to
50. It has been observed that for more than 30 neurons, the test
accuracy for the same campaign saturates to 99.98%. As such, for all
results mentioned in this paper, 30 neurons have been chosen for
the hidden layer. The models have been developed in Python using
keras [6] with tensorflow [1] backend. Fig. 4 shows the training
progress of theMLP for 50 epochs. The validation accuracy is higher
and validation loss is lower than respective metrics for the training
set due to the dropout layer, which is activated while calculating
training accuracy and loss, and turned off during testing.

3.5 Performance of MLP
We have tested performance of the MLP for the traces captured in
different acquisition campaigns.We have used the already separated
test set, while evaluating test accuracy for the same campaign. The
resulting accuracy metrics are shown in Fig. 5, from which we can
see that the lowest accuracy is 97.95% and occurs when the model
is trained with acquisition campaign 1 and tested on acquisition
campaign 3. The maximum accuracy is 99.98%, and the average
accuracy across all training scenarios and campaigns is 99.55%.

3.6 Explanation and Implication of High
Accuracy in Location Detection

Such high accuracy mentioned in the previous section for differ-
ent acquisition campaigns, on one hand, proves the success of the
devised method, but a plausible explanation is necessary. To inves-
tigate into that, we have computed the SNR, SNRi for each sample,
tracesi ,i=1,2, ...,5000 of the 5000-samples long trace from a training
set of 36,000 traces for 36 different locations using the equation:

SNRi =
Var [E[tracei |location]]

E[Var [tracei |location]]
.........(1)

where E[.] denotes expected value and Var[.] denotes the variance.
The resulting SNRs have been summarized in the histogram plot in

>2000 Samples have 
SNR>10

Figure 6: Histogram of SNR: SNR of the traces for location
detection scenario has been computed using Eqn.(1). We can
see that >2000 samples (more than 40%) have SNR>10. Also,
it is apparent that SNR degradation is different for different
time samples.
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Figure 7: Misclassified labels: For test traces of Campaign 3,
the highest percentage of misclassified trace for any loca-
tion stays below 0.15%.

Fig. 6. We can see that, out of 5000 samples, more than 2000 samples
have SNR>10 for this classification problem. This explains the high
accuracy of the trained model in identifying the location for unseen
traces. This also means that the traces at different locations across
the chip are very much different, suggesting that a profiling attack
will be very hard to implement if the profiling location and the
attack location are not the same.

3.7 Improving Probe Positioning Accuracy
using Multiple Traces

In the previous sections, we have focused on location detection
using only a single EM trace. In this section, we further investigate
into the misclassified labels, to see if any location has a dominance
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~100% accuracy 
after 5 traces

Figure 8: Multi-Trace Accuracy: Uniform random sampling
from 9000 test traces per location for locations which have
lower than 100% accuracy in Fig. 7, and computing themajor-
ity voting formultiple traces reveals that 5 traces are enough
to reach an accuracy level of 100% (For test traces of Cam-
paign 3, experimented in a simulated setting).

over the errors. Fig. 7 shows that even in the worst case, a single
location has only about 0.15% error rate for test traces in campaign
3, when the model is trained on traces from campaign 3, which
suggests that if we capture multiple traces, the accuracy is likely to
improve. To test this strategy, we create a simulated environment,
where we randomly sample 1,3,5,or 7 traces from the test traces
uniformly, for the locations which have <100% test accuracy, and
run this test 100,000 times. For each run, we compute the majority
label, and compare it to the true label, and average the accuracy
over the 100,000 runs. Fig. 8 shows that such multi-trace majority
voting strategy quickly converges to 100% accuracy, requiring at
best 5 traces. Thismulti-trace strategy does not require prohibitively
large number of traces, thus remains feasible. This can always
compensate for the errors produced by the trained models, as long
as, the required number of traces does not invalidate the benefit of
such a probe positioning method.

4 Attack Efficiency Enhancement with Probe
Positioning

In this section, we show that this probe positioning can effectively
increase the efficiency of an attack, and provide a reasoning behind
such improvement by choosing the best location.

4.1 Attack Model
For this experiment, we assume that the adversary is a weak adver-
sary, thus does not have access to industry-level equipment. Also,
we show a non-profiled attack, based on Correlation analysis, in-
stead of a profiled attack. The assumption is that the adversary can
profile the location-dependent EM traces on a profiling device, and
can also perform a Correlation EM Analysis based on HW leakage
model of the SBox output, to produce a map of MTDs, as shown in
Fig. 9. But such a method would not work if the MTDs significantly
vary for each location over time. We investigated if they remain

more or less consistent across different acquisition campaigns, and
Fig. 9(c)-(d) show that such time-invariance is present, as seemingly,
there is not much difference in MTDmaps for 3 different campaigns,
which ensures that this will be a feasible approach. It is evident from
the figure that the lowest MTDs are at the bottom right locations,
and higher MTDs are along the regions from bottom left corner to
the top right corner. The highest MTD is for location (X,Y) = (3,4)
in the virtual grid. At that location, we could not reveal the secret
key even after capturing 10,000 traces.

In a sense, this attack model uses profiling, but not to reveal
the secret key, but to identify the current location, and to go to
the best location to capture the trace. In the attack phase, the po-
sitioning system will capture a few trace from a random location
around the chip, identify the location, find its position in the learned
co-ordinate system of the profiling device, and move to the best
location to launch an attack.

4.2 Attack Efficiency
The averageMTD across all locations for campaign1 is 1595, whereas
the MTD at the best location is 103 on average, and at the worst
location is >10000. At the second best location, the average MTD is
131. This translates to 1.3-100× improvement in efficiency of the
attack.

In our experimental setting, it takes about 25 milliseconds to
capture a single trace comprising of 5000 samples. So, at the best
location, the attack would require approximately 2.5 seconds, to
capture about 100 traces. Thus lower number of traces to be cap-
tured directly translates to less time required for an adversary to
perform an attack. The motivation behind a perfect positioning
instead of a coarse visual positioning is that, as can be seen in Fig. 9,
a slight movement of the probe can result in significant increase in
MTD, due to the fact that, the best location and the worst location
to launch an attack are not further apart.

4.3 Explanation of variation of MTD with
location

To further analyze variation of MTD with location, we chose to
analyze two of the extremes, namely, the best location, and theworst
location. In this analysis, we have tried to find the samples which
provide the highest separation between the 9 Hamming Weight
class means in each of the aforementioned cases. The reasoning
behind this analysis is that, the sample with the highest separation
between the class means is the sample whichmost frequently shows
up as the highest correlating sample in the traces, while calculating
MTD. We have observed that such a sample is different for the two
different locations (Sample #2056 and Sample #284 for the best and
the worst location, respectively).

In Fig. 10(a)-(b), we see the fitted Gaussian distributions for
the aforementioned samples, when they have been categorized
into their respective Hamming Weight classes. Such distributions
conform to our intuition that, the hamming weight values of 4
and 5 occur most frequently, and 0 and 8 the least frequently, for
uniformly sampled random plaintext values and a fixed key. From
Fig. 10(a), we can see that Hamming Weight class means are well-
separated at the best location, which suggests that as we increase
the number of traces, the sample means will converge to the true
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Figure 9: (a) shows Virtual Grid around Chip. (b)-(d) show
the MTD map for 3 different acquisition campaigns. This il-
lustrates that the MTD map remains almost the same with
respect to time.

mean, and the correct key will emerge. Also note that, the means
decrease linearly from Hamming Weights 0 to 8. This suggests
that a Hamming Weight leakage model for the target platform was
justified. On the other hand, from Fig. 10(b), we can see that, at
the worst location, the distributions completely overlap, and this is
why, even after 10,000 traces, the correct key was not revealed.

5 Conclusion And Future Work
In this work, we have thoroughly investigated the location depen-
dency of EM traces, and by leveraging that fact, showed how an
MLP-based probe positioning method may aid an adversary to
launch an efficient attack, requiring fewer traces than the choice
of a random location, and hence, shorter time. However, we admit
that, even this scenario is idealistic, because the traces will be very
different if the probe height from the chip is changed, or the probe
positioning does not start from one of the locations of the virtual
grid.

Although there is a considerable amount of interest in profiling
attacks due to their more powerful nature, we note that, they will
also be susceptible to such location dependency of EM traces. One
way to fix this issue is to position the probe at the best location each
time. Another way can be to make a location-invariant profiling
model, which will be a very interesting direction for future work,
but based on our analysis, is suspected to be a very hard problem.
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