
Rosita++: Automatic Higher-Order Leakage Elimination from
Cryptographic Code

Madura A. Shelton
University of Adelaide

Australia
madura.shelton@adelaide.edu.au

Łukasz Chmielewski
Radboud University and Riscure

The Netherlands
lukasz@cs.ru.nl

Niels Samwel
Radboud University
The Netherlands
nsamwel@cs.ru.nl

Markus Wagner
University of Adelaide

Australia
markus.wagner@adelaide.edu.au

Lejla Batina
Radboud University
The Netherlands
lejla@cs.ru.nl

Yuval Yarom
University of Adelaide

Australia
yval@cs.adelaide.edu.au

ABSTRACT

Side-channel attacks are a major threat to the security of crypto-
graphic implementations, particularly for small devices that are
under the physical control of the adversary. While several strategies
for protecting against side-channel attacks exist, these often fail
in practice due to unintended interactions between values deep
within the CPU. To detect and protect from side-channel attacks,
several automated tools have recently been proposed; one of their
common limitations is that they only support first-order leakage.

In this work, we present Rosita++, the first automated tool for
detecting and eliminating higher-order leakage from cryptographic
implementations. Rosita++ proposes statistical and software-based
tools to allow high-performance higher-order leakage detection. It
then uses the code rewrite engine of Rosita (Shelton et al. NDSS
2021) to eliminate detected leakage. For the sake of practicality we
evaluate Rosita++ against second and third order leakage, but our
framework is not restricted to only these orders.

We evaluate Rosita++ against second-order leakage with three-
share implementations of two ciphers, present and Xoodoo, and
with the second-order Boolean-to-arithmetic masking, a core build-
ing block of masked implementations of many cryptographic prim-
itives, including SHA-2, ChaCha and Blake. We show effective
second-order leakage elimination at a performance cost of 36% for
Xoodoo, 189% for present, and 29% for the Boolean-to-arithmetic
masking. For third-order analysis, we evaluate Rosita++ against
the third-order leakage using a four-share synthetic example that
corresponds to typical four-share processing. Rosita++ correctly
identified this leakage and applied code fixes.

1 INTRODUCTION

Cryptography is one of the main tools used to protect data, both
in transit and at rest. With the increased proliferation of small
computing devices into every aspect of modern life, secure cryp-
tography is more important than ever. Traditionally, the security
of cryptographic primitives was evaluated in terms of their mathe-
matical function. However, in 1996 Kocher [36] demonstrated that
the computation of a cryptographic primitive can interact with the
environment in which it is computed. Such side channels can leak
information about the internal state of the computation, leading to
a potential collapse of the security of the implementation.

Since then, significant effort has been invested in researching
side-channel attacks. On the offensive side, attacks have been demon-
strated against various types of primitives, including symmetric
ciphers [6, 46], public-key systems [28, 44] post-quantum cryptog-
raphy [2], and non-cryptographic implementations [4, 60, 62, 67].
These attacks exploit various side channels, such as power con-
sumption [37] electromagnetic emanations [24, 52], microarchi-
tectural state [8, 27, 40], and even acoustic and photonic emis-
sions [29, 38]. On the defensive side, proposals range over hard-
ware designs that reduce emissions [15], software solutions that
ensure secret-independent execution [27], adding noise to hide the
signal [45], and information masking techniques [13, 35, 48].

Masking techniques, in particular, are considered promising be-
cause they provide a theoretical basis that guarantees protection.
In a nutshell, these operate by splitting secrets into multiple shares,
such that to recover a secret, an attacker needs to observe all of the
shares that comprise the secret. For example, in order-𝑑 Boolean
masking, a secret 𝑣 is split into 𝑑 + 1 shares, 𝑣0, . . . , 𝑣𝑑 such that for
1 ≤ 𝑖 ≤ 𝑑 , 𝑣𝑖 is chosen uniformly at random, and 𝑣0 is selected such
that 𝑣0 = 𝑣 ⊕ 𝑣1 ⊕ 𝑣2 ⊕ · · · ⊕ 𝑣𝑑 . Such schemes are considered safe be-
cause attackers are limited in the number of observations they can
made on the internal state of the implementations. Thus a 𝑑-order
secure implementation which consists of 𝑑 + 1 shares, is secure
against an attacker that can observe up to 𝑑 internal values [35].

Despite the theoretical security, masked implementations of-
ten fail to provide the promised resistance in practice. A main
cause for this failure is unintended interactions between values
processed by the hardware, which allow an attacker to observe mul-
tiple shares with a single observation [3, 25, 49]. Thus, to protect
against unintended interactions, designers need to first implement
the cryptographic primitives aiming for best protection and then
go through several rounds of evaluation. In each such round, the
implementation is evaluated for the presence of leakage and then
tweaked to eliminate observed leakage. The process usually repeats
until no evidence of leakage is observed. This experimental process
is expensive because it requires significant expertise, both in the de-
sign of cryptographic primitives, and in setting up and performing
analysis of hardware measurements.

To reduce the effort required for producing side-channel resistant
implementations, a designer may elect to use a leakage emulator [11,
42, 49, 65] instead of evaluating the hardware. A recent proposal
goes one step further and suggests Rosita, a tool that combines a

leakage emulator with softwaremanipulation techniques, providing
automatic elimination of side-channel leakage [61]. However, one
limitation of Rosita is that it only provides first-order security and
cannot protect against higher-order attacks. Thus, in this paper we
ask the following question:

Can we automatically detect and correct higher-order side-channel
leakage from implementations protected with masking?

1.1 Our Contribution

In this work we present Rosita++, an extension to Rosita [61]
that performs higher-order leakage detection and mitigation. At
its core, Rosita++ extends the leakage detection and root-cause
analysis capabilities of Rosita to support high-order analysis. It
then uses the Rosita code rewrite engine to modify the evaluated
implementation and eliminate leakage.While Rosita++ can analyse
and fix code at any order, in this work we concentrate on second-
and third-order leakage. We do not investigate orders higher than
three for the sake of practicality. The complexity of third-order
side-channel analysis is significant and the analysis requires tens of
millions of traces (i.e. number of side-channel measurements). We
expect that fourth-order analysis would require at least hundreds
of millions of traces (i.e. months of trace acquisition with a similar
setup to ours), making such analyses impractical in many scenarios.

Implementing Rosita++ is far from straightforward. The main
appeal of high-order secure implementations is that high-order
analysis is significantly more complex then first-order analysis. In
particular, we identify three main challenges: the impact of the
quadratic (for second order) and cubic (for third order) increases
in trace lengths on the statistical tools used for the analysis, the
explosion in the amount of data that needs be processed both due
to the increase in trace length and because of the required increase
in the number of required traces, and the complexities involved in
performing multivariate root-cause analyses.

To address these challenges, we develop statistical software tools
that allow robust and efficient high-order leakage analysis. Our
software tools can combine and analyse millions of traces each
with thousands of sample points and perform efficient bivariate
and trivariate analysis on the combined traces.We believe that these
tools are of independent value for the side-channel community and
could be used for high-order analysis in a wide-range of cases.

We assess the second-order effectiveness of Rosita++ with
three cryptographic primitives, which represent different points
in the design space of symmetric cryptography. Present [56] is a
popular lightweight block cipher with a traditional substitution-
permutation network design. We extend the two-share present
implementation of Sasdrich et al. [56] to support three shares. In
contrast, Xoodoo [19, 20] is a modern cryptographic primitive that
underlies multiple higher-level primitives [19]. We implement a
three-share version of Xoodoo, building on the non-linear 𝜒 layer
from Keccak. Finally, we evaluate Boolean-to-arithmetic mask-
ing [32] which is a cryptographic building block that converts
a Boolean mask to an arithmetic mask, and is often required in im-
plementing side-channel resistant instances of cryptographic algo-
rithms that mix Boolean and arithmetic operations, e.g., SHA-2 [47],
ChaCha [5], Blake [1], Skein [23], IDEA [39], and RC6 [55]. We

implemented the second-order Boolean-to-arithmetic masking of
Hutter and Tunstall [33].

We show that Rosita++ removes all leakage detected in the
real experiment up to 2 million traces in Xoodoo and Boolean-to-
arithmetic masking. For present all but one leakage point were
removed. Further, we find that Rosita++ only requires to emulate
500,000 traces to achieve the same level of protection as achieved
by analysing 2 million side-channel traces from physical hardware.
Rosita++ is available as an open-source project at https://github.
com/0xADE1A1DE/Rositaplusplus.

In summary, in this work we make the following contributions:
• We explore automated tools for automatic second and third order

side-channel detection and protection. (Section 3.1.)
• We develop statistical and software tools for addressing the chal-

lenges. (Sections 3.2 to 3.4.)
• We build Rosita++, the first tool to automatically detect and

remove unintended high-order leakage, evaluate it on three cryp-
tographic primitives and demonstrate its efficiency. (Section 4.)

• We made Rosita++ and the associated tools available as open
source.

1.2 Organisation of this paper

Section 2 introduces the necessary background on side-channel
attacks, masking, univariate and multivariate side-channel leakage
assessment methods, leakage emulators and automatic countermea-
sures, and statistical tools that we use in this work. In Section 3, we
describe the design for Rosita++ and in particular how we extend
Rosita to higher orders and what the challenges we face. We also
describe multivariate root-cause analysis and how Rosita improves
the code security by code rewrites. Subsequently, in Section 4, we
present the results of our evaluation, including both the emulation
results and the complimentary side-channel measurement evalua-
tion. Finally, in Section 5 we conclude the paper.

2 BACKGROUND

2.1 Side-Channel Attacks

Traditional cryptanalysis attacks aim to extract secrets from crypto-
graphic algorithms by focusing on the mathematical aspects of such
algorithms. Side-channel attacks, in contrast, focus on obtaining
internal values processed by the algorithm, which are not expected
to become public. This information is gained by exposing interme-
diate values of an algorithm through the process of collection and
analysis of measurements of physical phenomena. Such phenomena
include timing, power consumption, acoustics, electro-magnetic
emanations or properties such as various internal states of CPU
components.

In 1996, Kocher [36] was the first to publish an exploit of side-
channel leakage to recover secret information that was processed
by a cryptographic algorithm. The algorithm in question was im-
plemented with high performance in mind, and therefore ran in
non-constant time; this allowed the timing differences for differ-
ent inputs to be exploited. Subsequently, Kocher et al. [37] used
side-channel information from power consumption to recover se-
cret information in a new type of attack called Differential Power
Analysis (DPA). In DPA, an attacker calculates a differential trace
by finding the difference between averages of measured traces of

https://github.com/0xADE1A1DE/Rositaplusplus
https://github.com/0xADE1A1DE/Rositaplusplus

a certain bit being 1 or 0 given a plaintext and a guessed part of the
key. With an incorrect guess for part of the key the sum of all differ-
ence of averages along the trace would converge to zero while for
a correct guess this converges to a non-zero value. The model that
Kocher et al. [37] used assumes that each individual bit of an inter-
mediate value contributed to the power consumption of the device
such that (with enough traces) it could be revealed. By extending
the same idea to the power consumption of a register, we arrive at
the Hamming weight model. This model states that the consumed
power is proportional to the number of bits that are set [43].

In another type of attack, called Correlation Power Analysis
(CPA), Brier et al. [10] used the correlation coefficient as a side-
channel distinguisher, i.e. the statistical method used for the key
recovery. CPA allows an attacker to recover parts of a key that
is used in a cipher by using a known plaintext attack: samples
measured using a single probe are correlated against a synthetic
power value that is generated from an intermediate value calculated
for all values that a subkey can take. Commonly, the power model
used for CPA is either Hamming weight or Hamming distance. In
the Hamming distance model the consumed power is proportional
to the number of different bits between two intermediate values.
Such leakage can occur in practice when an intermediate value
stored in a register is overwritten with another value.

2.2 Side-Channel Leakage Assessment

Side-channel leakage assessment measures how vulnerable a device
is to side-channel attacks. This cannot be an exhaustive assessment,
as it is impossible to try all possible attacks on a device. However,
such assessment is still valuable to the manufacturers of secure
devices as they can benchmark a level of security of devices during
the design and manufacturing process.

In side-channel leakage assessment, the main question we try to
answer is whether the evaluated device shows significant leakage.
Therefore, a device must show statistically significant leakage to
be classified as insecure. Standards such as International Standard
ISO/IEC 17825:2016(E) [34] build on a methodology called Test
Vector Leakage Assessment (TVLA) that was initially presented
by Goodwill et al. [31]. The TVLA methodology uses Welch’s 𝑡-
test [66] to detect statistical differences between sample distribu-
tions that are measured when the device processes different inputs.
Two main test configurations are specified: the fixed vs. random
configuration and the fixed vs. fixed configuration. The reason for
calculating such differences is that a protected cipher implementa-
tion should not be emitting any information that would let an eval-
uator differentiate the data it processes. If the calculated difference
is statistically insignificant, the device is regarded as side-channel
free in the context that it was tested on. It has been demonstrated
that the results of 𝑡-tests should not be misinterpreted as a single
test that decides if a device is secure or not [64]. Specifically, the
result only suggests that the 𝑡-test failed to find leakage for the
specific fixed inputs used and number of traces collected from the
device. For different fixed input values or for a greater number of
traces significant leakage could be observable.

Welch’s 𝑡-test defines a statistic called the 𝑡-value which is calcu-
lated from the means (𝑋 1 and 𝑋 2) and variances (𝑠21 and 𝑠

2
2) of dis-

tributions of collected traces at a given sample point. The 𝑡-statistic

follows a Student’s 𝑡-distribution with 𝑣 degrees of freedom. Given
the number of samples in each distribution as 𝑛1 and 𝑛2, the 𝑡-value
(𝑡) and degree of freedom (𝑣) are calculated as:

𝑡 =
𝑋 1 − 𝑋 2√︂
𝑠21
𝑛1
+ 𝑠22

𝑛2

and 𝑣 =

(
𝑠21
𝑛1
+ 𝑠22

𝑛2

)2
(
𝑠21
𝑛1

)2
𝑛1−1 +

(
𝑠22
𝑛2

)2
𝑛2−1

.

The 𝑡-value tells us how significantly different the two distri-
butions are. The hypothesis that these two distributions originate
from the same population needs to be rejected with some given
level of confidence to show that they are different. This process is
known as hypothesis testing. Hypothesis testing is the scientific
method of ruling out hypotheses by rejecting them based on signif-
icant evidence against them. The null hypothesis is the hypothesis
that we assume to be correct by default. In TVLA, we assume that
the device is not leaky until evidence, such as a significant 𝑡-value
from the 𝑡-test rejects it in favour of the alternative hypothesis. The
alternative hypothesis here states that the two sample distributions
are statistically different, which implies that the considered device
is leaky. The threshold value of 4.5 for significant leakage is chosen
at a significance level (𝛼) of 0.00001 under the assumptions that
𝑠1 ≈ 𝑠2 and 𝑛1 ≈ 𝑛2, such that the total number of traces (𝑛1 + 𝑛2)
is greater than 1,000 [57].

Using naive methods to compute 𝑡-values may result in numeri-
cal errors due to cancellation effects [12]. Schneider andMoradi [57]
demonstrated computational improvements to overcome such is-
sues. They also suggested online calculation of 𝑡-values in a single
pass, speeding up the calculations compared to more naive methods.
Another common concern with the evaluation of masked imple-
mentations is the typical 𝑡-test threshold of 4.5. This value assumes
a single independent 𝑡-test. This threshold value is inadequate for
large numbers of sample points, as the possibility of false positives
(i.e. classification of leakage at sample points as significant when
there is no actual leakage) increases due to the increased number of
tests. Ding et al. [22] discussed this further and proposes a method
to increase the 𝑡-test threshold according to the degree of freedom
of the 𝑡-test [57] and number of samples.

2.3 Masking Techniques and Higher-Order

Side-Channel Attacks

To protect ciphers against side-channel attacks, a technique called
masking [13, 43] has been proposed. With masking, a sensitive
intermediate value is split into multiple parts by using additional
randomness. The additional random values are referred to asmasks
and the values that the original value is split into are referred to as
shares. Depending on the order of masking, the number of shares
increases. For example, in a 𝑑th order masking scheme there are
𝑑 + 1 shares in use. Only when all of the shares are combined, the
original value can be revealed.

Since masked implementations are secure against traditional
attacks such as DPA and CPA, these attacks have been generalised
to overcome masking by exploiting several leakage points simulta-
neously. Generally, a (𝑑 + 1)th order attack aims at breaking a 𝑑th
order masked implementation. Such attacks first combine leakage
occurring in𝑑+1 intermediate operations and then a classical attack

such as CPA can be applied to recover the key. By increasing the
number of shares, an implementer can increase the work that is
required for an attack exponentially [13].

In particular, Ishai et al. [35] show that a masked implementation
with 𝑑 + 1 shares is secure against side-channel attacks in the 𝑑-
probing model. The 𝑑-probing model considers an adversary that
can only learn up to 𝑑 intermediate values that are produced during
the cryptographic computation. The model is usually considered a
good approximation for modelling higher-order attacks.

Even though masking techniques can be theoretically secure
against wide-range of side-channel attacks, many practical effects,
such as glitches [14, 41] or transitional effects [3] that can void the
countermeasure and still leak the secret information. In such cases,
𝑑th order implementations reveal their secret values at 𝑑th or lower
order analysis. Renauld et al. [53] attribute this effect to breaching
the Independent Leakage Assumption (ILA), which states that all re-
lated shares should be manipulated independently. Even though the
ILA is assumed in theoretical cryptography, in reality this assump-
tion does not hold due to the way that modern computers work.
For example, to increase performance and reduce manufacturing
costs, modern CPUs reuse many of their internal components with-
out resetting or wiping them. Balasch et al. [3] demonstrated that
transitional effects can be destructive to masked implementations
as they halve the effective order of the analysis required when the
leakage is modelled with a Hamming-distance leakage model. In
the Hamming weight model, only a single intermediate value is
considered as a sample at a sample point. In contrast, the Hamming
distance model uses the bit difference between two intermediate
values for a sample.

To measure the effectiveness of an implemented countermeasure
such as masking, one needs to look into the leakage assessment of
cryptographic devices.

2.4 Higher-Order Side-Channel Leakage

Assessment

As discussed before, increasing the number of shares significantly
increases the attack complexity, and information from multiple
samples needs to be combined to reveal leakage of higher-order
implementations.

In contrast to univariate analysis, where each sample point is
analysed independently of other points, higher-order analysis takes
into account the joint leakage of two or more sample points. This is
similar to using multiple probes with respect to the model of Ishai
et al. [35]. A combination function is typically used to combine
mean-centered samples, and leakage assessment is then carried on
the resulting combination. Following Prouff et al. [51], we choose
the ‘product of samples’ combination function, In case of multi-
variate 𝑡-tests, the result of the combination is used as input to a
first-order 𝑡-test and analysed similar to the univariate case [57].

Let us consider a set of 𝑛 side-channel measurements𝑇𝑖 , 0 ≤ 𝑖 <

𝑛, which are known as traces. Each trace contains𝑚 sample points
denoted as 𝑡 (𝑗)

𝑖
, for 0 ≤ 𝑗 < 𝑚 with sample means denoted by 𝜇 (𝑗) ,

Then the mean centered product of a given subset of sample points
J , is given by:

𝐶𝑖 =
∏
𝑗 ∈J

(
𝑡
(𝑗)
𝑖
− 𝜇 (𝑗)

)
. (1)

When |J | = 2 the combinations generated are called bivariate and
when |J | = 3 they are called trivariate.

Usually we need to consider all possible subsets J in a given
trace 𝑇𝑖 = 𝑡

(0)
𝑖

, . . . 𝑡
(𝑚−1)
𝑖

to detect the leakage using 𝑡-test. There-
fore, the complexity increase from using this approach higher-order
leakage assessment is by a factor of

(𝑚
|J |

)
, which is exponential for

small values of |J |.

2.5 Leakage Emulators and Automatic

Countermeasures

Due to the high costs associated with evaluations that use real
devices, implementers of cryptographic code are inclined to use
emulators to determine leakage of a device [11]. The first use of such
an emulator is evidenced within the PINPAS project [21], which
had as the goal to emulate power analysis leakage in Java cards.

The most accurate method to emulate leakage is circuit-level em-
ulation. While accurate, it is also very slow due to the very realistic
reproduction of internal effects. Earlier generations that emulate
leakage for software implementations used the cipher source code
written in an high-level language [54, 65]. However, such imple-
mentations are inadequate for detecting leakage stemming from
breaches of the ILA. In addition, compilation can also introduce
breaches of ILA. Consequently, recent leakage emulators tend to use
machine code as input rather than high-level source code [18, 42, 49].
Papagiannopoulos and Veshchikov [49] developed an automated
methodology for detecting violations of the ILA in AVR assembly.
They investigate the effects of the ILA violations on an AVR micro-
controller, ATMega163. By enforcing the ILA, the authors produce
a first-order secure S-box for the RECTANGLE [68] cipher.

With Coco [30], it is possible to formally verify a masked im-
plementation down to the gate-level when the netlist of the CPU
is available. A major difference between the construction of other
leakage emulators and Coco is that Coco uses a software tool called
Verilator to convert Verilog hardware descriptions of the CPU into
C++. This enables the construction of a detailed emulator and of-
fers fine-grained information about the execution. It collects power
information for each gate and then uses a SAT-solver to find the
leaky gates. While Coco finds the exact gates that are contributing
to the leakage, it does not provide an automated fixing mechanism.

McCann et al. [42] demonstrated an emulator named Elmo that
emulates leakage based on machine instructions. The emulation
uses a statistical model that is profiled using real traces. This makes
it specific for the device it was profiled on. Elmo currently supports
ARM Cortex-M0 and ARM Cortex-M4 processors.

The recently introduced Rosita [61] aims to automate the pro-
cess of producing masked first-order implementations. Rosita uses
leakage information from an improved version of Elmo [42], which
the authors call Elmo*, to emulate the power consumption of the
target device running the software. It then uses TVLA [31] on the
emulated traces to detect instructions that leak information. When
leakage is detected, Rosita performs root cause analysis to identify
the cause of the leakage. Specifically, it performs 𝑡-test analysis on
emulated traces of each of the components of the Elmo* model,
identifying a components that show evidence of leakage. Based on
the root cause, Rosita applies rewrite rules, modifying the cipher

code with the aim of eliminating the leakage. The process repeats
until either no more rules can apply or no leakage is evident.

Similarly, Gao et al. [26] have demonstrated an Instruction Set
Extension (ISE) to RISC-V Instruction Set Architecture (ISA). The
ISE guarantees that internal states that cause leakage are cleared
acting as a barrier instruction when used in sensitive programs.

2.6 Testing for Statistical Equivalence of

Distributions

In Section 3.4 we use a statistical equivalence test during root-cause
analysis to determine which parts of the code contribute to the
leakage; In this section, we describe the statistical method we use
for equivalence testing.

The aim of statistical equivalence tests is to determine how prob-
able it is that two sampled distributions originate from the same
population. Observe that this is the opposite of what Welch’s 𝑡-test
offers. The null hypothesis of an equivalence test is that the two
distributions are different and we expect to reject it in favour of
the alternative hypothesis which states that the distributions are
the same with a given significance level. One such equivalence test
is the Two One Sided 𝑡-test (TOST) [50, 58]. As the name indicates,
TOST uses two one-sided 𝑡-tests to test whether the two distribu-
tions are equivalent. TOST is a parameterised test that requires
a lower bound and upper bound for the mean difference of the
two distributions under test as parameters. Two individual 𝑡-tests
determine whether the mean difference is lower than the upper
bound and whether it is higher than the lower bound with a given
level of significance (𝛼). Passing both 𝑡-tests indicates that the mean
difference is between the lower and upper bounds with the given
significance level.

However, TOST in its original form has a limitation when it
comes to the evaluation of the mean differences of two distributions:
when these mean differences are close or equal to the boundary
values, the TOST concludes that the distributions are not equivalent.
This happens due to the 𝑡-value of the individual 𝑡-tests resulting in
values closer to 0 when the mean differences are close to boundary
values. In the paradigm where TOST is commonly used (e.g. in drug
test trials), the boundaries are regarded as the worst values that
the mean difference can get. However, in equivalence testing for
engineering, we expect a test which accepts boundary values and
also the values which are closer to the boundaries.

To mitigate this limitation, Pardo [50] proposed the following
formulas that compute new boundaries (𝑋𝐻 and 𝑋𝐿) given a target
mean difference (𝜇), where 𝑠 and 𝑛 are standard deviation and
cardinality of the mean differences distribution. 𝑡𝛼 is the one sided
𝑡-test value at a significance value of 𝛼 .

Selecting a critical region with 𝛼 significance level such that 𝑋𝐻

is higher than 𝜇 is given as

𝑋𝐻 = 𝜇 + 𝑡𝛼
𝑠
√
𝑛

(2)

and such that 𝑋𝐿 is lower than 𝜇 is given as

𝑋𝐿 = 𝜇 − 𝑡𝛼
𝑠
√
𝑛
. (3)

Using the confidence interval of 𝑋𝐿 and 𝑋𝐻 instead of having
arbitrarily defined values formean difference boundaries overcomes
the above-stated limitation.

3 ROSITA++ DESIGN

Past solutions that aim to automate leakage detection [21, 42, 49, 59,
65] and correction [61] focus on first-order leakage. As the security
of cipher implementations can be increased by employing more
shares in their masking schemes, there is a need for emulators
and countermeasures that can work with multivariate leakage. In
this section we describe how Rosita++, our solution for this need,
works. We outline the main challenges in performing higher-order
analysis and proceed to describe our approaches for addressing
these challenges.

3.1 Challenges for Higher-Order Analysis

The core extension required for Rosita++ to support higher-order
leakage detection andmitigation is support formultivariate analysis.
Specifically, instead of looking for instructions that show indication
of leakage, we need to look for combinations of instructions that
together show indication of leakage.

Schneider and Moradi [57] suggest a methodology for perform-
ing multivariate analysis. Their approach is to generate artificial,
multivariate traces from the original univariate traces. For that, the
original traces are first preprocessed by calculating the average
value for each sample point and subtracting the average from the
corresponding point in each trace. As Equation 1 shows, Each point
in an artificial trace represents a tuple of points in the original trace,
where the value associated with the artificial point is the product
of the values for the corresponding points in the original trace.

Our approach for performing higher-order analysis is to replace
the use of TVLA in Rositawith the Schneider-Moradi methodology.
However, while seemingly straightforward, the approach raises
significant challenges.

Challenge C1: Statistical confidence with multivariate traces

The artificial 𝑑-variate traces have an artificial sample for each
combination of 𝑑 samples in the original traces. Consequently, the
length of the multivariate traces grows exponentially with the
length of the original traces. For traces of length 𝑛, the multivariate
traces have a length of

(𝑛
𝑑

)
samples.

The de-facto standard statistical test used in TVLA is to reject
the null hypothesis, i.e. report leakage, when the absolute value of
the 𝑡-test is above a threshold of 4.5, achieving a significance level
of 0.00001. This test, however, fails to account for the multiple com-
parisons performed in TVLA, where a statistical test is performed
independently on each sample point. For a small number of points,
the effect of multiple comparisons is negligible. When the trace
length increases, multiple comparisons result in false positives,
showing leakage where no leakage exists.

Challenge C2: Increased data size

Another issue with multivariate analysis is the increase in the vol-
ume of data that needs to be processed compared with first-order
univariate analysis. Three factors contribute to this increase. First,

due to the effects of noise, the number of traces required for statis-
tical analysis grows exponentially with the order of analysis [13].
Secondly, as discussed, the artificial multivariate traces are sig-
nificantly longer than the original traces. Thirdly, to increase the
statistical confidence while handling Challenge C1 without missing
leakage we need to increase the number of traces we process.

Because Rosita++ repeatedly evaluates implementations, there
is a need for efficient methods for handling the increased amount
of data with minimal impact on analysis time.

Challenge C3:Multivariate root-cause analysis

The third challenge we face relates to performing the root-cause
analysis. Rosita performs the analysis using a 𝑡-test on each of the
Elmo* model components. Such an approach can detect univari-
ate leakage. However, detecting multivariate leakage necessitates
evaluating combinations of components. A brute-force approach
that evaluates a 𝑡-test statistics on every combination of compo-
nents is computationally expensive, particularly considering the
increased number of traces, as described in Challenge C2. Thus,
new techniques for root-cause analysis are required.

We now discuss how Rosita++ addresses these challenges.

3.2 Achieving Statistical Confidence

As discussed, Challenge C1 is that, due to the exponential increase
in the number of sample point per trace, the 𝑡-test threshold of 4.5
is no longer appropriate. This mostly affects the traces collected
from the physical experiment where we collect longer traces (10
times more samples) to reduce the effects of noise. To demonstrate
the false positives we collect 500,000 bivariate traces of a three-
share implementation of Xoodoo (further described in Section 4.3)
running on a STM32F030 Discovery evaluation board, where all
inputs are drawn uniformly at random. The experiment setup we
used is described in Section 4.1. We then split these arbitrarily into
two populations, and perform a bivariate 𝑡-test analysis, comparing
these populations with a threshold of 4.5. As Figure 1 shows, despite
the populations being sampled from the same distribution, several
false positives are present.

 0

 1

 2

 3

 4

 5

 0 100000 200000 300000 400000 500000

t-
va

lu
e

Combined samples

Figure 1: A 𝑡-test threshold value of 4.5 for a bivariate analysis

with 1000 samples with all inputs being random.

For engineers, these false positives are typically of low impact.
Experienced engineers can typically identify false positives, e.g. by
observing the context. Alternatively, repeating the test can confirm
true positives.

Automatic tools, such as Rosita++, do not have the experience
or the insight, and must rely on statistical tools for handling false
positives. If Rosita++ is used with long code segments these false
positives will also be present in its leakage analysis. Therefore, in
Rosita++, we adopt the approach of Ding et al. [22], who propose
increasing the threshold to reduce the probability of false positives.
Specifically, Ding et al. provide a formula to calculate the threshold
given the number of samples and a desired significance level 𝛼 .
We apply the formula to the length of the bivariate trace aiming
for a significance level of 0.00001. This ensures that the probabil-
ity of a false positive error is less than .001%, which we consider
negligible. For the traces in Figure 1 we would use a threshold of
6.71, which is clearly above the largest peak in the figure. Hence, at
this threshold, the analysis does not indicate any leakage, which is
expected considering that the two populations are drawn from the
same distribution.

3.3 Handling Large Datasets

Asmentioned, several aspects of multivariate analysis result in a sig-
nificant increase in the size of data that Rosita++ needs to process.
First, for given mean and variance, theWelch 𝑡-value grows linearly
with the square root of the size of the population. Consequently,
when increasing the threshold we need a quadratic increase in the
number of traces to achieve the same detection sensitivity. Second,
the length of the multivariate artificial traces is several orders of
magnitude longer than the original univariate traces. Third, due
to the effects of noise, detecting higher-order leakage is inherently
harder then detecting first-order leakage. The combined effect of
these changes is that the amount of data that Rosita++ needs to
process is several orders of magnitude larger than that of Rosita.
When evaluating the final version of code produced by Rosita++
on real hardware, the same issue gets even more apparent because
we use longer traces as mentioned in Section 3.2.

While we are aware of works that have performed analyses at
scales similar and even larger than our work [16, 17], we could not
find public tools that perform such analyses, or even performance
figures for the analysis. Free tools such as Jlsca1, Scared2, SCALib3
seem to only offer limited capabilities. To address this challenge
we developed analysis tools from the ground up. Our analysis tools
avoid the overhead of storing the artificial traces (i.e. multivariate
combinations) by calculating them on the fly. The tools are multi-
threaded, allowing a significant speed-up, and the data is divided
point-wise between the threads, so that each thread only accesses
a limited subset of the original traces’ samples.

We acknowledge that the approach is fairly straightforward, but
we believe that the contribution is important for practical future
research into bivariate analysis.

3.4 Multivariate Root-Cause Analysis

The third challenge for Rosita++ is performing root-cause anal-
ysis on multivariate traces. The Elmo* linear regression model
consists of 28 term components, each modelling a different micro-
architectural effect. When Rosita performs univariate root-cause

1https://github.com/Riscure/Jlsca
2https://gitlab.com/eshard/scared
3https://github.com/simple-crypto/SCALib

https://github.com/Riscure/Jlsca
https://gitlab.com/eshard/scared
https://github.com/simple-crypto/SCALib

analysis, it calculates the Welch 𝑡-value for each component sep-
arately, where the leaky components are identified by observing
significant 𝑡-values.

While this approach works well for univariate leakage detection,
adapting it to multivariate leakage is not trivial. The main reason is
that, in multivariate analysis, there is no single cause for leakage.

As shown by Equation 1, a multivariate sample point is a com-
bination of many samples in the original trace. In Elmo*, each of
the original samples is calculated from the sum of 28 model compo-
nents. Searching for a combination of 𝑑 samples using a method
similar to the one used for univariate evaluation would require
evaluating 28𝑑 combinations. Even for the bivariate case of 𝑑 = 2,
the process is very inefficient with the large number of traces that
need to be processed due to increase of order [13].

To avoid searching the whole space of pairs of model compo-
nents, Rosita++ uses two new methods for finding the components
that contribute to the leak. The component eliminationmethod tests
whether removing a model component removes the leakage. While
efficient, this approach may sometimes fail. In the case of such a fail-
ure, Rosita++ reverts to aMonte-Carlo method, which tests random
combinations of components looking for evidence of component
leakage. We refrain from using the Monte-Carlo method by default
due to its inefficiency and the instability inherent in a randomised
process. We now describe these two methods in detail.

Component Elimination The basic idea behind the component
elimination method is to identify components that contribute to the
leakage by removing one component at a time from the multivariate
sample combination function (which is shown in Equation 1); we
then evaluate the combination with removed component for ab-
sence of leakage. If the removal of a component leads to the absence
of leakage at a previously leaky point, this means that the removed
component contributed to the leakage. When this process ends,
Rosita++ has a set of components that contribute to the leakage.
Rosita++ can now apply fixes using the approach of Rosita.

More specifically, component elimination consists of the follow-
ing steps. First, each component value of Elmo* is recorded with
the component index, sample index, and the trace index. There
exists 28 different components in Elmo*, the sample index is the
array index of the instruction when the emulated code segment is
unrolled into individual instructions. The trace index is a number
identifying each run of the fixed vs. random test. All of these values
are stored in a 3D matrix that is denoted by 𝑳.

Second, the multivariate leaky points for the implementation
are found by running the 𝑡-test on the final power value of Elmo*
generated while running the code segment in a fixed vs. random
input configuration.

Finally, Algorithm 3.1 is run to find the leaky components at
the leaky points recognised in the previous step. The two utility
functions that are used by Algorithm 3.1 are Normalised Product of
Samples (NPS) and NotLeaky. The first function, NPS returns the
combined traces for a given set of sample points and a given set of
components. In a nutshell, NPS returns the results of Equation 1
for an arbitrary set of components and an arbitrary set of sample
points. As the name suggests, the NotLeaky function differenti-
ates between trace sets which are significantly similar and ones
which are not. NotLeaky requires an additional run of the code

segment with all random input configuration instead of a fixed vs.
random input configuration. This run collects information required
to calculate the mean differences and variances required by TOST.

Algorithm 3.1 Find Leaky Components
𝑳: A 3Dmatrix with component values for Elmo* organised by trace index,

sample index and component index.
S: Set of 𝑑 sample points that participate in the leakage.
C: Set of all components that are in Elmo*.
NPS(𝑳, S, C) : Normalised Product of Samples. Returns the normalised

product of the power samples from reduced models which only
contain a given set of components (C) at some given sample points
(S) from a 3D matrix that holds component samples (𝑳).

NotLeaky(𝒀) : Determine the absence of leakage using TOST.
⊙: Elementwise multiplication operator.
1: function FLC(𝑳, S, C)
2: 𝑟 ← {}
3: for 𝑠 ∈ S do

4: 𝒙 ← NPS(𝑳, S \ 𝑠, C)
5: for 𝑡 ∈ C do

6: 𝑢 ← C \ 𝑡
7: 𝒚 ← NPS(𝑳, 𝑠,𝑢)
8: 𝒛 = 𝒚 ⊙ 𝒙
9: if NotLeaky(𝒛) then
10: 𝑟 ← 𝑟 ∪ {(𝑠, 𝑡) }
11: end if

12: end for

13: end for

14: return 𝑟

15: end function

While the component elimination method is efficient, it may
sometimes fail. For example, if multiple model components leak
the same share, removing any one of these components will not
eliminate the leak. Similarly, TOST may fail to demonstrate the
equivalence of the two distribution even when removing a model
component eliminates the leak.

The Monte-Carlo Method In the Monte-Carlo approach we
run a preset number of random experiments where, in each ex-
periment, we select a random subset of the model components,
and perform the 𝑡-test on hypothetical power traces with only the
selected components. For each component, we keep track of the
number of random experiments it participates in and how many
of those experiments indicate significant leakage. After we repeat
the experiment a preset number of times, we arrive at a subset of
components that contribute significantly more to the leakage.

To select the preset number of random experiments we first
performed an analysis for a code segment from Xoodoo cipher
(shown in Listing 4) only by using Monte Carlo method to detect
and remove leakage. We use the chosen preset number in all our
subsequent experiments. We first gathered 100,000 traces from this
cipher implementation and performed the initial leakage analysis.
Initially, it had 45 total leakage points. Figure 2 shows the reduction
of remaining leaky points as we gradually increase the number of
Monte Carlo experiments starting from 10. Figure 2 shows that in-
creasing number of experiments improves detection of root causes,
but after about 30 experiments the reduction of leakage is nearly

constant4. Therefore, we decided to settle at using 50, slightly more
than 30 for the sake of certainty, as the preset experiment count for
our experiments.

 0

 10

 20

 30

 10 20 30 40 50 60 70 80 90 100

R
em

ai
ni

ng
 L

ea
ky

 P
oi

nt
s

Monte Carlo Experiment Count

95% confidence interval
Average remaining

Figure 2: Effectiveness in removing leakage of Monte Carlo

method for increasing number of experiments

Observe that both component elimitation and the Monte-Carlo
method are independent of the security order. We evaluate both
methods in the second and third order in Section 4.

In our experiments we find that we need to fallback to the Monte-
Carlo method in four out of 16 root-cause detections in Xoodoo, in
70 out of 262 in present, and in one out of 15 in the Boolean-to-
arithmetic conversion algorithm.

3.5 Code Rewrite

After finding the root cause of the leakage, Rosita++ selects the
code-rewrite rule that best match the detected root cause using the
code-rewrite engine of Rosita.

In a nutshell, Rosita reserves the register r7, which it initialises
with a random value. When an unintended interaction is detected,
the code rewrite engine inserts instructions that use r7 to elimi-
nate the interaction. For example, when the detected interaction is
caused by a pipeline register that is updated by two consecutive in-
structions, Rosita inserts the instruction mov r7, r7, to buffer
between the interacting instructions. Similarly, when the leakage is
from an interaction with the memory subsystem, Rosita inserts the
pair of instructions push {r7} followed by pop {r7}, which
wipes the internal state of the memory pipeline. Many other fine-
grained fixes are used to erase internal state set by other instructions
(i.e. instructions related to ALU’s operations).

Observe that we use the same code rewriting engine that was
initially designed for fixing univariate leakage. We find that it is
usable as is to also fix multivariate leakage becasue the output
of our root-cause detection algorithm matches the format of the
original Rosita output. The downside of reusing the code rewriting
engine is that we may miss opportunities for addressing multiple
leaks with a single fix. We leave optimising the code-rewrite engine
to future work.

4 EVALUATION

In this section we evaluate the effectiveness of Rosita++ in elimi-
nating leakage. First, we describe our physical experiment setup.
Second, we present toy Boolean masked examples of second and
4We have noticed no further leakage reduction even for 1000 experiments.

third order where Rosita++ fixes a single leaky point. Third, we
present the evaluation results of Rosita++’s emulation process
and root cause detection. Finally, we demonstrate effectiveness of
Rosita++ on practical code segments implemented with 3-shares.
Due to practical reasons, we limit the discussion to second and
third order. We note that Rosita++ can detect and apply fixes at
any order.

4.1 Experimental Setup

Our experimental hardware setup is depicted in Figure 3. For eval-
uation we use the STM32F030 Discovery evaluation board by ST
Microelectronics, which features an ARM Cortex-M0 based on
STM32F030R8T6 System-on-Chip (SoC), running at 8MHz. To avoid
switching noise, we power the evaluation board with batteries in-
stead of a mains-connected power supply.

To measure the power consumption of the evaluation board, we
introduce a shunt resistor across one of its power terminals. We
measure the voltage drop across the shunt resistor with a PicoScope
6404D oscilloscope, configured at a sampling rate of 78.125MHz
(12.8 ns sample interval) which translates to roughly 9.77 samples
per clock cycle. The voltage is measured with a PicoTechnology TA
046 differential probe connected to the oscilloscope via a Langer
PA 303 preamplifier.

We use two of the I/O pins of the board to trigger the acquisi-
tion. One indicates trace start and the other indicates the end. To
increase signal stability, interrupts are disabled for the duration of
each trace, using __disable_irq() before the start trigger and
__enable_irq() after the end trigger.

To orchestrate the experiment, we used a PC with a serial con-
nection to our device under test. The PC controls all aspects of the
experiment, and in particular it selects the type of the experiment
(i.e. fixed vs. random) and the randomness used. The tested device
is oblivious to the type of experiment and uses the inputs received
from the PC. To reduce the communication overhead the PC uses
bulk transfer to send the inputs for multiple successive experiments,
which the device executes sequentially.

We post-processed the traces to improve signal quality. Firstly,
we aligned the traces statically using a correlation-based alignment,
reducing sample drift. We then used a highpass filter to remove
frequencies below 400KHz. Before filtering, the signal was zero
padded to avoid introduction of transients [63].

4.2 Evaluation of second and third-order

Boolean masked toy example

1 ; nop padding
2 ldrb r4, [r1]
3 push {r7}
4 pop {r7}
5 ; nop padding
6 ldrb r5, [r2]
7 ldrb r6, [r3]
8 ; nop padding

Listing 1: A Toy Example (second order)

Before we evaluate Rosita++ on real-world software examples, we
demonstrate its effectiveness on a toy example, shown in Listing 1.
The code presents a typical operation in second-order protected

Figure 3: Measurement setup

implementation that uses Boolean masking. Specifically, it assumes
that registers r1, r2, and r3 contain the addresses of three shares
that represent a secret value. The code uses three ldrb instructions
to load the masked value into three registers, r4, r5, and r6. We
note that the code is nominally second-order secure, because all
instructions process at most one share of the secret. However, as we
see below, unintended interactions between the load instructions
at Lines 6 and 7 result in second-order leakage.

To avoid first-order leakage through a combination of the three
load instructions, we separated the first load (Line 2) from the rest of
the code. We added the push and pop instructions in Lines 3 and 4
to remove interactions between the first load and the following
two loads. (See Shelton et al. [61] for details.) We further added
sequences of nine nop instructions (concretely, mov r7, r7) to
avoid unintended interaction through the processor’s pipeline and
to achieve a clear temporal separation between the loads. Last, we
add short sequences of nop instructions around the code to create
a temporal separation between the measured code and the triggers.

In Figure 4a we see the results of bivariate leakage analysis on
two million traces collected using our experimental setup. The
figure is a heatmap, where the X and Y axes indicate the samples
that are combines to create the artificial bivariate sample. The
colour of each combined sample indicates the magnitude of the
fixed vs. random 𝑡-test analysis for the combined sample. The figure
is symmetric across its main diagonal.

Examining the figure we find that there are two regions that
show a 𝑡-test value above our threshold of 4.5. These occur at the

 0 50 100 150 200 250 300

Sample Number

 0

 50

 100

 150

 200

 250

 300

Sa
m

pl
e

N
um

be
r

 0

 1

 2

 3

 4

 5

 6

t-
te

st
 v

al
ue

(a) Before applying code fixes. Leakage is visible around coordinates

(50,200) and (200,50). 𝑡-value peak: 6.86.

 0 50 100 150 200 250 300 350 400

Sample Number

 0

 50

 100

 150

 200

 250

 300

 350

 400

Sa
m

pl
e

N
um

be
r

 0

 1

 2

 3

 4

 5

 6

t-
te

st
 v

al
ue

(b) After applying code fixes no leakage is present (𝑡-value peak:

3.15)

Figure 4: Evaluating a toy example.

combinations of samples around 50, which corresponds to Line 2
of Listing 1, and sample 200, which corresponds to Line 7. Running
Rosita++ also shows that the combination of Line 2 and Line 7
leaks. Root-cause analysis shows that Lines 6 and 7 interact both
through the processor pipeline and through the memory bus.

To fix the leakage, Rosita++ first inserts a mov r7, r7 in-
struction between Line 6 and Line 7, and repeats the analysis to
check that the leakage has been eliminated. Finding that there is
still leakage through the memory bus, Rosita++ further adds a

 0
 10

 20
 30

 40
 50

Sample Number 0

 10

 20

 30

 40

 50

Sa
mple

Number 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0

 1

 2

 3

 4

 5

 6

t-
te

st
 v

al
ue

(a) Before applying code fixes. 𝑡-value peak of 6.85 at (42,28,7)

 0
 10

 20
 30

 40
 50

Sample Number 0

 10

 20

 30

 40

 50

Sa
mple

Number 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0

 1

 2

 3

 4

 5

 6

t-
te

st
 v

al
ue

(b) After applying code fixes. 𝑡-value peak of 3.31 at (19,0,6)

Figure 5: Evaluating a toy example.

combination of push and pop instructions, producing the code in
Listing 2. Rosita++ required 200,000 emulated traces to apply fixes
for this implementation. Running the bivariate analysis on the code
shows no evidence of second-order leakage, as shown in Figure 4b.

1 ; nop padding
2 mov r7, r7
3 ldrb r4, [r1]
4 push {r7}
5 pop {r7}
6 ; nop padding

7 ldrb r5, [r2]
8 mov r7, r7
9 push {r7}
10 pop{r7}
11 ldrb r6, [r3]
12 ; nop padding

Listing 2: Fixed Toy Example

We extended the second order Boolean masked implementation
shown in Listing 1 to the third order by introducing another share
to it. The code for this implementation is shown in Listing 3. Similar
to the second order version, we intentionally design the example to
leak operand information from the last two ldr instructions. This
implementation was fixed by Rosita++ with two million emulated
traces. To detect leakage in the physical device we had to collect
30 million traces. Figure 5a shows the detected leakage from a 3rd
order 𝑡-test. A first order 𝑡-test was run on the combined traces that
were combined using Equation 1 with a window of 50 samples. In
contrast, Figure 5b shows the results of the 𝑡-test that was run on
30 million side-channel traces taken from the physical experiment
after applying Rosita++’s fixes.

1 ldr r3, [r1,#0]
2 push {r7}
3 pop {r7}
4 ; nop padding
5 ldr r4, [r1,#4]
6 push {r7}
7 pop {r7}
8 ; nop padding
9 ldr r5, [r1,#16]
10 ldr r6, [r1,#20]
11 ; nop padding

Listing 3: A Toy Example (third order)

Comparing Emulated and Real Traces: To better understand
the relationship between emulated and real traces, we compared
the leakage observed in the traces in terms of signal-to-noise ratio
(SNR). For this experiment we used 20,000 random input traces
coming from the emulation and the real experiments using the
code segment shown in Listing 1; we chose this number because
it is sufficient to find leakage in the emulated traces using TVLA.
We computed SNR for the leaking values that need to be combined
for bivariate analysis: hamming weight (HW) of 4 bytes of 𝑟1 and
HW of 4 bytes of 𝑟2 ⊕ 𝑟3. For the real experiments these values
were between 0.041 and 0.063 for the bytes of 𝑟1 and between 0.012
and 0.014 the bytes of 𝑟2 ⊕ 𝑟3. We could not compute the SNR
directly for the emulated traces since the emulation is deterministic
and therefore, noise-free. We added a sufficient amount of noise to
generate similar SNR to the real experiments. We used Gaussian
Noise with means 0 and standard deviation of 0.25% of the signal
amplitude for the bytes of 𝑟1 and 0.1% for the bytes of 𝑟2⊕𝑟3. We do
not know fromwhere this leakage difference is exactly coming from,
but we suspect that we simply found a slight difference between
the emulated and the real measurements.

We conclude that if we introduce between 0.1% and 0.25% ratio
of noise to the emulated traces then we obtain a similar SNR to the
real traces. Moreover, we can use 25 times less traces than in the

𝑎0,0 = 𝑎0,0 ⊕ (¬𝑎1,0 ∧ 𝑎2,0) ⊕ (𝑎1,0 ∧ 𝑏2,0) ⊕ (𝑏1,0 ∧ 𝑎2,0)
𝑏0,0 = 𝑏0,0 ⊕ (¬𝑏1,0 ∧ 𝑏2,0) ⊕ (𝑏1,0 ∧ 𝑐2,0) ⊕ (𝑐1,0 ∧ 𝑏2,0)
𝑐0,0 = 𝑏0,0 ⊕ (¬𝑐1,0 ∧ 𝑐2,0) ⊕ (𝑐1,0 ∧ 𝑎2,0) ⊕ (𝑎1,0 ∧ 𝑐2,0)

Listing 4: Xoodoo code segment under test

real experiment to detect leakage using TVLA, since we can detect
leakage using emulation with 20,000 traces and we need 500,000 in
the real experiments.

4.3 Evaluated Cryptographic Implementations

We now turn our attention to more realistic examples. Before per-
forming the evaluation we use Rosita to detect and eliminate any
first-order leakage from the code. We further perform a first-order
fixed vs. random TVLA with 2,000,000 traces on the real hardware
to verify that no first-order leakage is detected. For the evaluation,
we use Rosita++ to detect and correct second-order leakage for
500,000 simulated traces. We then collect 2,000,000 power traces
from each of the original and the fixed software, and perform bivari-
ate second-order analysis to identify any leakage. We evaluate two
cryptographic implementations and one cryptographic primitive,
which we describe below.

Xoodoo Xoodoo was proposed by Daemen et al. [19] and a
reference implementation is available from Bertoni et al. [7]. We
converted this code to a three-share implementation based on the
Threshold Implementation (TI) approach [48]. TI schemes were
proposed to prevent the leakage from “glitches” that can occur in
hardware implementations. The concept is accomplishing the goal
of masking through a number of shares with some additional prop-
erties. Specifically, the non-completeness property of TI enforces
that no operation should involve more than two shares.

Xoodoo’s state is 48 bytes in length. The state is divided into
three equal blocks called planes, each consisting of four 32-bit words.
𝑥𝑖, 𝑗 denotes the 𝑗 th 32-bit word of the 𝑖th plane of share 𝑥 , where
𝑥 ∈ {𝑎, 𝑏, 𝑐}. Listing 4 shows the algorithm segment that we
analyse, which forms part of the start of the Xoodoo 𝜒 function. Our
initial C implementation demonstrated first-order leakage caused by
the optimiser merging shares. We therefore manually implemented
the code in assembly, ensuring that shares are not merged.

Present Present is a block cipher based on a substitution
permutation network, which was proposed by Bogdanov et al. in [9].
It has a block size of 64-bit and the key can be 80 or 128 bits long.
The non-linear layer is based on a single 4-bit S-box facilitating
lightweight hardware implementations.

We implemented present with side-channel protection in soft-
ware based on TI with three shares, as described by Sasdrich et al.
[56, Alg. 3.2]. Thus, at least in theory, the implementation should
not leak in the first order. We used the code shown in Listing 5
that implements a part of the present S-box, involving 3 shares
𝑥1, 𝑥2, 𝑥3 and the lookup table𝑇 . The table is an 8-bit to 4-bit lookup
table where the inputs are two 4-bit nibbles. Each table lookup used
to compute 𝑡𝑖 is repeated 16 times to cover the complete 64-bit
shares.

Observe that threshold implementations with three shares pro-
vides provable first-order security, but only limited protection
against the second-order attacks [48]. Therefore, we can expect

𝑡3 = T(𝑥1, 𝑥2)
𝑡2 = T(𝑥3, 𝑥1)
𝑡1 = T(𝑥2, 𝑥3)

Listing 5: Present code segment under test

that diminished second-order leakage may occur for both Xoodoo
and present implementations.
Second-order Boolean-to-arithmetic masking Boolean-to-
arithmetic masking [32] is a cryptographic building block that
converts a Boolean mask to an arithmetic mask. It is often used
in side-channel resistant implementations of cryptographic algo-
rithms that mix Boolean and arithmetic operations (for example,
ChaCha [5]). We implement and evaluate the second-order Boolean-
to-arithmetic masking of Hutter and Tunstall [33, Alg. 2].

In our evaluation this procedure takes as input boolean shares
𝑥 ′ = 𝑥 ⊕ 𝑟1 ⊕ 𝑟2, where 𝑥 , 𝑟1 and 𝑟2 are random in Z232 . For side-
channel protection, the procedure uses three additional masks 𝛾1,
𝛾2, and 𝛼 also random in Z232 . It computes 𝑥 ′′ = 𝑥 + 𝑠1 + 𝑠2, where
𝑥 ′′, 𝑠1, and 𝑠2 are the output arithmetic shares. This implementation
is proven to be second-order secure in [33] and therefore, we do
not expect to see leakage in an implementation protected with
Rosita++.

4.4 Emulation results

 0

 2

 4

 6

 8

 0 100k 200k 300k 400k 500k

Le
ak

ag
e

po
in

ts

Trace counts

Total discovered
Remaining aer fixes

(a) Xoodoo

 0

 50

 100

 150

 200

 0 100k 200k 300k 400k 500k

Le
ak

ag
e

po
in

ts

Trace counts

Total discovered
Remaining aer fixes

(b) Present

 0
 1
 2
 3
 4
 5

 0 100k 200k 300k 400k 500k

Le
ak

ag
e

po
in

ts

Trace counts

Total discovered
Remaining aer fixes

(c) Boolean-to-arithmetic

Figure 6: Discovered and remaining leakage points when

fixed code from previous iteration is used as input to the

next iteration of Rosita++

We used Rosita++ to fix the leakages that were discovered in
the code segments introduced above in Section 4.3. Specifically, we
focus on leakage discovered by a bivariate fixed vs. random 𝑡-test.

To analyse the relationship between the number of traces and
leakage discovery, we ran Rosita++ on the unprotected ciphers,
varying the number of traces from 20,000 to 500,000 at steps of
20,000. In each iteration we used the output of the previous iteration
as the input. Each iteration performed emulation and root-cause
detection. The emulation results are shown in Figure 6. This proves
to be more efficient than running Rosita++ a single time with a
large number emulation traces. The reason for the efficiency of the
iterations based method with gradually increasing trace counts is
that leakage is fixed as it is detected so that large numbers of traces

Implementation Emulation time Root Cause Det. time

Xoodoo 1:35:41 3:12
Present 1:55:19 24:46
Boolean to arithmetic 1:08:19 1:07

Table 1: Time taken for emulation and root-cause detection

Implementation Unprotected Protected Increase

size (cycles) size (cycles)

Xoodoo 56 76 36%
Present 114 330 189%
Boolean to arithmetic 75 97 29%

Table 2: Performance overhead of fixes

Trace set Samples Wall Clock Time

Xoodoo unprotected 1000 4:51
Xoodoo protected 1400 33:50
Present unprotected 1400 28:31
Present protected 3500 7:02:00
Boolean to arithmetic unprotected 1000 4:18
Boolean to arithmetic protected 1200 8:51

Table 3: Bivariate analysis time

are not required for fixing all the leakage points that are detected.
Table 1 shows the emulation and root cause detection time when
fixed code is used from the previous iteration. Table 2 shows the
performance overhead of the code fixes.

We observe that after emulation 500,000 traces for the fixed vs.
random 𝑡-test, there was only one remaining leakage in the Xoodoo
masked implementation. Present and Boolean-to-arithmetic im-
plementations did not have any remaining leakage points. However,
when running the physical experiments we observed that the re-
maining leakage in Xoodoo was not significant.

1 ldrb r2, [r4, #16]
2 lsls r1, r1, #4
3 adds r1, r3, r1
4 ldrb r0, [r1, r2]

Listing 6: Leaky code segment of fixed present

4.5 Physical experiment results

Figure 7 compares the 𝑡-test values of side-channel traces for the
three ciphers before and after Rosita++, as measured on the physi-
cal device. The top row (Figures 7a to 7c) show the leakage of the
original implementations, whereas the bottom row (Figures 7d to 7f)
shows the leakage after applying Rosita++. The three implemen-
tations were protected using 500,000 emulated traces. Collecting
the traces took around 8 hours for present and for Boolean-to-
arithmetic, and around 9:30 hours for Xoodoo, which requires sig-
nificantly more mask bytes, slowing down the communication with
the PC.

As the figures show, for Xoodoo and the Boolean-to-arithmetic
masking conversion, Rosita++ completely eliminates leakage. How-
ever, for present some leakage is not fixed. Further analysis shows
that this leakage is caused by interactions through the address bus.
Listing 6 shows the first leaky segment of the code corresponding to
samples (700, 440) in Figure 7e. We confirmed this leakage through
correlation based testing against actual share values and their com-
binations. The registers used for addressing in the ldrb instruction
at Line 4 carry one share each. Our investigation showed that sam-
ple 440 originates from this point. Additionally, the missing share
is provided by the instruction that corresponds to sample 700. Both
points show high correlation to the share values. Therefore, this
leakage becomes observable as second-order leakage. We confirmed
this leakage pattern by reproducing the same effect in a separate
fixed vs. random experiment which has only two shares that is used
in an ldrb instruction for addresses. It showed significant first
order leakage at 200,000 traces.

Because our tooling does not detect address leakage, this code
cannot be currently corrected. Moreover, we suspect that that the
leakage might be present here due to the used threshold implemen-
tation algorithm and therefore, solving it is out of the scope of this
work.

4.6 Tools for Leakage Analysis

We now present the performance of our second-order analysis tools.
We run the tools on a desktop computer, featuring an Intel Core
i9-10900K CPU and 32GB of memory. We spawn 10 threads and
perform bivariate analysis of four cryptographic implementations.
For each implementation we use our measurement setup to collect
2M traces from the real experiments, which we analyse to draw
the heatmaps shown in Figure 7. The results are shown in Table 3.
The number of threads used can be changed to fit the underlying
hardware, the thread count is dependent on the equal sized splits
that are done along the sample axis. It is given by 𝑆 (𝑆 +1) ÷2where
𝑆 is the number of equal sized splits. For our runs, 𝑆 was set at 4.
Without parallelisation the run time will be 8 times slower if run
in a single thread as 4 out of 10 of the threads do half of the work.

5 CONCLUSIONS

Since the introduction of side-channel attacks, implementation
security of embedded devices has been under the immense scrutiny
and constant threat of being exploited. Even with theoretically
sound measures such as masking, the devices tend to exhibit some
leakages in practice due to unintended interactions in hardware.
Mostly manual evaluation involving a tedious decision process
and applying fixes to such “leaky” implementations have since
been adopted. Some automatic countermeasures have also been
developed, but all of them target univariate leakage.

In this work, we set out to automate the detection and application
of fixes for high order secured implementations through multivari-
ate analysis. We have demonstrated that it is possible to fix almost
all detected leakage for three second-order masked implementa-
tions using our root cause analysis. Furthermore, we have shown
practically that our methodology also is applicable for the third
order analysis. It is a significant improvement over previous auto-
matic countermeasure application methods due to its simplicity.

 0 100 200 300 400 500 600 700 800 900 1000

Sample Number

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

Sa
m

pl
e

N
um

be
r

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

t-
te

st
 v

al
ue

(a) Xoodoo: before applying code fixes,

𝑡-value peak: 70.32

 0 200 400 600 800 1000 1200 1400

Sample Number

 0

 200

 400

 600

 800

 1000

 1200

 1400

Sa
m

pl
e

N
um

be
r

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

t-
te

st
 v

al
ue

(b) Present: before applying code fixes,

𝑡-value peak: 55.13

 0 100 200 300 400 500 600 700 800 900 1000

Sample Number

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

Sa
m

pl
e

N
um

be
r

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

t-
te

st
 v

al
ue

(c) B-to-A: before applying code fixes, 𝑡-

value peak: 9.13

 0 200 400 600 800 1000 1200 1400

Sample Number

 0

 200

 400

 600

 800

 1000

 1200

 1400

Sa
m

pl
e

N
um

be
r

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

t-
te

st
 v

al
ue

(d) Xoodoo: after applying code fixes, 𝑡-

value peak: 6.44

 0 500 1000 1500 2000 2500 3000 3500

Sample Number

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

Sa
m

pl
e

N
um

be
r

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

t-
te

st
 v

al
ue

(e) Present: after applying code fixes,

𝑡-value peak: 12.38

 0 200 400 600 800 1000 1200

Sample Number

 0

 200

 400

 600

 800

 1000

 1200

Sa
m

pl
e

N
um

be
r

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

t-
te

st
 v

al
ue

(f) B-to-A: after applying code fixes, 𝑡-

value peak: 3.91

Figure 7: Evaluation of three cryptographic primitives (B-to-A stands for Bollean to arithmetic)

ACKNOWLEDGEMENTS

We thank the anonymous reviewers for their insightful comments
and recommendations.

This work was supported by ARC Discovery Early Career Re-
searcher Award number DE200101577; ARC Discovery Projects
numbers DP200102364 and DP210102670; the Blavatnik ICRC at Tel-
Aviv University; European Commission through the ERC Starting
Grant 805031 (EPOQUE) of Peter Schwabe; and gifts from Facebook,
Google and Intel.

Parts of this work were carried out while Yuval Yarom was
affiliated with CSIRO’s Data61.

REFERENCES

[1] Jean-Philippe Aumasson, L. Henzen,W.Meier, and R. Phan. 2009. SHA-3 proposal
BLAKE.

[2] Aydin Aysu, Youssef Tobah, Mohit Tiwari, Andreas Gerstlauer, and Michael
Orshansky. 2018. Horizontal side-channel vulnerabilities of post-quantum key
exchange protocols. In HOST. 81–88.

[3] Josep Balasch, Benedikt Gierlichs, Vincent Grosso, Oscar Reparaz, and François-
Xavier Standaert. 2015. On the Cost of Lazy Engineering for Masked Software
Implementations. In CARDIS. 64–81.

[4] Lejla Batina, Shivam Bhasin, Dirmanto Jap, and Stjepan Picek. 2019. CSI NN:
Reverse Engineering of Neural Network Architectures Through Electromagnetic
Side Channel. In USENIX Security Symposium. 515–532.

[5] Daniel Bernstein. 2008. ChaCha, a variant of Salsa20.
[6] Daniel J Bernstein. 2005. Cache-timing attacks on AES. https://cr.yp.to/

antiforgery/cachetiming-20050414.pdf.
[7] Guido Bertoni, Joan Daemen, Seth Hoffert, Michaël Peeters, Gilles Van Assche,

and Ronny Van Keer. [n. d.]. The eXtended Keccak Code Package (XKCP).

https://github.com/XKCP/XKCP
[8] Guido Bertoni, Vittorio Zaccaria, Luca Breveglieri, Matteo Monchiero, and Gi-

anluca Palermo. 2005. AES Power Attack Based on Induced Cache Miss and
Countermeasure. In ITCC. 586–591.

[9] Andrey Bogdanov, Lars R. Knudsen, Gregor Leander, Christof Paar, Axel
Poschmann, Matthew J. B. Robshaw, Yannick Seurin, and C. Vikkelsoe. 2007.
PRESENT: An Ultra-Lightweight Block Cipher. In CHES. 450–466.

[10] Eric Brier, Christophe Clavier, and Francis Olivier. 2004. Correlation Power
Analysis with a Leakage Model. In CHES. 16–29.

[11] Ileana Buhan, Lejla Batina, Yuval Yarom, and Patrick Schaumont. 2021. SoK:
Design Tools for Side-Channel-Aware Implementations. IACR Cryptol. ePrint
Arch. 2021 (2021), 497.

[12] Tony F. Chan, Gene H. Golub, and Randall J. Leveque. 1983. Algorithms for
Computing the Sample Variance: Analysis and Recommendations. The American
Statistician 37, 3 (1983), 242–247. https://doi.org/10.1080/00031305.1983.10483115
arXiv:https://www.tandfonline.com/doi/pdf/10.1080/00031305.1983.10483115

[13] Suresh Chari, Charanjit S. Jutla, Josyula R. Rao, and Pankaj Rohatgi. 1999. To-
wards Sound Approaches to Counteract Power-Analysis Attacks. In CRYPTO.
398–412.

[14] Zhimin Chen, Syed Haider, and Patrick Schaumont. 2009. Side-Channel Leakage
in Masked Circuits Caused by Higher-Order Circuit Effects. In ISA. 327–336.

[15] Zhimin Chen and Yujie Zhou. 2006. Dual-Rail Random Switching Logic: A
Countermeasure to Reduce Side Channel Leakage. In CHES. 242–254.

[16] Thomas De Cnudde, Begül Bilgin, Oscar Reparaz, Ventzislav Nikov, and Svetla
Nikova. 2015. Higher-Order Threshold Implementation of the AES S-Box. In
CARDIS. 259–272.

[17] Thomas De Cnudde, Oscar Reparaz, Begül Bilgin, Svetla Nikova, Ventzislav
Nikov, and Vincent Rijmen. 2016. Masking AES With d+1 Shares in Hardware.
In TIS@CCS. 43.

[18] Yann Le Corre, Johann Großschädl, and Daniel Dinu. 2018. Micro-architectural
Power Simulator for Leakage Assessment of Cryptographic Software on ARM
Cortex-M3 Processors. In COSADE (Lecture Notes in Computer Science, Vol. 10815).
Springer, 82–98.

https://cr.yp.to/antiforgery/cachetiming-20050414.pdf
https://cr.yp.to/antiforgery/cachetiming-20050414.pdf
https://github.com/XKCP/XKCP
https://doi.org/10.1080/00031305.1983.10483115
https://arxiv.org/abs/https://www.tandfonline.com/doi/pdf/10.1080/00031305.1983.10483115

[19] Joan Daemen, Seth Hoffert, Gilles Van Assche, and Ronny Van Keer. 2018. The
design of Xoodoo and Xoofff. IACR Trans. Symmetric Cryptol. 2018, 4 (2018),
1–38.

[20] Joan Daemen, Seth Hoffert, Gilles Van Assche, and Ronny Van Keer. 2018. Xoodoo
cookbook. IACR Cryptol. ePrint Arch. 2018 (2018), 767.

[21] Jerry den Hartog, Jan Verschuren, Erik P. de Vink, Jaap de Vos, and W. Wiersma.
2003. PINPAS: A Tool for Power Analysis of Smartcards. In IFIP SEC. 453–457.

[22] A. Adam Ding, Liwei Zhang, François Durvaux, François-Xavier Standaert, and
Yunsi Fei. 2017. Towards Sound and Optimal Leakage Detection Procedure. In
CARDIS. 105–122.

[23] Niels Ferguson, Stefan Lucks, Bruce Schneier, Doug Whiting, Mihir Bellare,
Tadayoshi Kohno, Jon Callas, and Jesse Walker. 2010. The Skein Hash Function
Family. https://www.schneier.com/academic/skein/

[24] Karine Gandolfi, Christophe Mourtel, and Francis Olivier. 2001. Electromagnetic
Analysis: Concrete Results. In CHES. 251–261.

[25] Si Gao, BenMarshall, Dan Page, and Elisabeth Oswald. 2020. Share-slicing: Friend
or Foe? IACR Trans. Cryptogr. Hardw. Embed. Syst. 2020, 1 (2020), 152–174.

[26] Si Gao, Ben Marshall, Dan Page, and Thinh Hung Pham. 2020. FENL: an ISE
to mitigate analogue micro-architectural leakage. IACR Trans. Cryptogr. Hardw.
Embed. Syst. 2020, 2 (2020), 73–98.

[27] Qian Ge, Yuval Yarom, David Cock, and Gernot Heiser. 2018. A survey of mi-
croarchitectural timing attacks and countermeasures on contemporary hardware.
J. Cryptogr. Eng. 8, 1 (2018), 1–27.

[28] Daniel Genkin, Lev Pachmanov, Itamar Pipman, Eran Tromer, and Yuval Yarom.
2016. ECDSA Key Extraction from Mobile Devices via Nonintrusive Physical
Side Channels. In CCS. 1626–1638.

[29] Daniel Genkin, Adi Shamir, and Eran Tromer. 2014. RSA Key Extraction via
Low-Bandwidth Acoustic Cryptanalysis. In CRYPTO (1). 444–461.

[30] Barbara Gigerl, Vedad Hadzic, Robert Primas, Stefan Mangard, and Roderick
Bloem. 2020. Coco: Co-Design and Co-Verification of Masked Software Imple-
mentations on CPUs. , 1294 pages.

[31] Gilbert Goodwill, Benjamin Jun, Josh Jaffe, and Pankaj Rohatgi. 2011. A Testing
Methodology for Side-Channel Resistance Validation. (2011).

[32] Louis Goubin. 2001. A Sound Method for Switching between Boolean and
Arithmetic Masking. In CHES. 3–15.

[33] Michael Hutter and Michael Tunstall. 2019. Constant-time higher-order Boolean-
to-arithmetic masking. Journal of Cryptographic Engineering 9 (06 2019). https:
//doi.org/10.1007/s13389-018-0191-z

[34] International Organization for Standardization. 2016. Testing methods for the
mitigation of non-invasive attack classes against cryptographic modules. Inter-
national Standard ISO/IEC 17825:2016(E).

[35] Yuval Ishai, Amit Sahai, and David A. Wagner. 2003. Private Circuits: Securing
Hardware against Probing Attacks. In CRYPTO. 463–481.

[36] Paul C. Kocher. 1996. Timing Attacks on Implementations of Diffie-Hellman,
RSA, DSS, and Other Systems. In CRYPTO. 104–113.

[37] Paul C. Kocher, Joshua Jaffe, and Benjamin Jun. 1999. Differential Power Analysis.
In CRYPTO. 388–397.

[38] Juliane Krämer, Dmitry Nedospasov, Alexander Schlösser, and Jean-Pierre Seifert.
2013. Differential Photonic Emission Analysis. In COSADE. 1–16.

[39] Xuejia Lai and James L. Massey. 1991. A Proposal for a New Block Encryption
Standard. In Eurocrypt. 389–404.

[40] Xiaoxuan Lou, Tianwei Zhang, Jun Jiang, and Yinqian Zhang. 2021. A Survey
of Microarchitectural Side-channel Vulnerabilities, Attacks and Defenses in
Cryptography. CoRR abs/2103.14244 (2021).

[41] Stefan Mangard, Thomas Popp, and Berndt M. Gammel. 2005. Side-Channel
Leakage of Masked CMOS Gates. In CT-RSA. 351–365.

[42] David McCann, Elisabeth Oswald, and CarolynWhitnall. 2017. Towards Practical
Tools for Side Channel Aware Software Engineering: ’Grey Box’ Modelling for
Instruction Leakages. In USENIX Security Symposium. 199–216.

[43] Thomas S. Messerges. 2000. Power Analysis Attacks and Countermeasures for
Cryptographic Algorithms. Ph. D. Dissertation. University of Illinois at Chicago,
USA.

[44] Thomas S. Messerges, Ezzy A. Dabbish, and Robert H. Sloan. 1999. Power
Analysis Attacks of Modular Exponentiation in Smartcards. In CHES. 144–157.

[45] Amir Moradi and Oliver Mischke. 2013. Comprehensive Evaluation of AES Dual
Ciphers as a Side-Channel Countermeasure. In ICICS. 245–258.

[46] Amir Moradi, Oliver Mischke, and Christof Paar. 2013. One Attack to Rule Them
All: Collision Timing Attack versus 42 AES ASIC Cores. IEEE Trans. Computers
62, 9 (2013), 1786–1798.

[47] National Institute of Standards and Technology. 2015. Security Requirements
for Cryptographic Modules. Technical Report Federal Information Processing
Standards Publications (FIPS PUBS) FIPS 180-4. U.S. Department of Commerce,
Washington, D.C. https://doi.org/10.6028/NIST.FIPS.180-4

[48] Svetla Nikova, Christian Rechberger, and Vincent Rijmen. 2006. Threshold
Implementations Against Side-Channel Attacks and Glitches. In ICICS. 529–545.

[49] Kostas Papagiannopoulos and Nikita Veshchikov. 2017. Mind the Gap: Towards
Secure 1st-Order Masking in Software. In COSADE. 282–297.

[50] Scott Pardo. 2013. Equivalence and Noninferiority Tests for Quality, Manufacturing
and Test Engineers (1 ed.). CRC Press LLC, Philadelphia, PA.

[51] Emmanuel Prouff, Matthieu Rivain, and Régis Bevan. 2009. Statistical Analysis
of Second Order Differential Power Analysis. IEEE Trans. Computers 58, 6 (2009),
799–811.

[52] Jean-Jacques Quisquater and David Samyde. 2001. ElectroMagnetic Analysis
(EMA): Measures and Counter-Measures for Smart Cards. In E-smart. 200–210.

[53] Mathieu Renauld, François-Xavier Standaert, Nicolas Veyrat-Charvillon, Dina
Kamel, and Denis Flandre. 2011. A Formal Study of Power Variability Issues and
Side-Channel Attacks for Nanoscale Devices. In EUROCRYPT. 109–128.

[54] Oscar Reparaz. 2016. Detecting FlawedMasking Schemes with Leakage Detection
Tests. In FSE. 204–222.

[55] Ronald L. Rivest, M. J. B. Robshaw, R. Sidney, and Y. L. Yin. 1998. The RC6 Block
Cipher. In in First Advanced Encryption Standard (AES) Conference. 16.

[56] Pascal Sasdrich, René Bock, and Amir Moradi. 2018. Threshold Implementation
in Software - Case Study of PRESENT. In COSADE. 227–244.

[57] Tobias Schneider and Amir Moradi. 2015. Leakage Assessment Methodology - A
Clear Roadmap for Side-Channel Evaluations. In CHES. 495–513.

[58] Donald J Schuirmann. 1987. A comparison of the two one-sided tests procedure
and the power approach for assessing the equivalence of average bioavailability.
Journal of pharmacokinetics and biopharmaceutics 15, 6 (1987), 657–680.

[59] Nader Sehatbakhsh, Baki Berkay Yilmaz, Alenka G. Zajic, and Milos Prvulovic.
2020. EMSim: A Microarchitecture-Level Simulation Tool for Modeling Electro-
magnetic Side-Channel Signals. In HPCA. 71–85.

[60] Aria Shahverdi, Mahammad Shirinov, and Dana Dachman-Soled. 2020. Database
Reconstruction from Noisy Volumes: A Cache Side-Channel Attack on SQLite.
CoRR abs/2006.15007 (2020).

[61] Madura A. Shelton, Niels Samwel, Lejla Batina, Francesco Regazzoni, Markus
Wagner, and Yuval Yarom. 2021. Rosita: Towards Automatic Elimination of
Power-Analysis Leakage in Ciphers. In NDSS.

[62] Anatoly Shusterman, Lachlan Kang, Yarden Haskal, Yosef Meltser, Prateek Mittal,
Yossi Oren, and Yuval Yarom. 2019. Robust Website Fingerprinting Through the
Cache Occupancy Channel. In USENIX Security Symposium. 639–656.

[63] Steven W. Smith. 1997. The Scientist and Engineer’s Guide to Digital Signal
Processing. California Technical Publishing, USA.

[64] François-Xavier Standaert. 2018. How (Not) to Use Welch’s T-Test in Side-
Channel Security Evaluations. In CARDIS. 65–79.

[65] Nikita Veshchikov. 2014. SILK: high level of abstraction leakage simulator for
side channel analysis. In PPREW@ACSAC. 3:1–3:11.

[66] Bernard L Welch. 1947. The generalization of student’s’ problem when several
different population variances are involved. Biometrika 34, 1/2 (1947), 28–35.

[67] Mengjia Yan, ChristopherW. Fletcher, and Josep Torrellas. 2020. Cache Telepathy:
Leveraging Shared Resource Attacks to Learn DNN Architectures. In USENIX
Security Symposium. 2003–2020.

[68] Wentao Zhang, Zhenzhen Bao, Dongdai Lin, Vincent Rijmen, Bohan Yang, and
Ingrid Verbauwhede. 2015. RECTANGLE: a bit-slice lightweight block cipher
suitable for multiple platforms. Sci. China Inf. Sci. 58, 12 (2015), 1–15.

https://www.schneier.com/academic/skein/
https://doi.org/10.1007/s13389-018-0191-z
https://doi.org/10.1007/s13389-018-0191-z
https://doi.org/10.6028/NIST.FIPS.180-4

	Abstract
	1 Introduction
	1.1 Our Contribution
	1.2 Organisation of this paper

	2 Background
	2.1 Side-Channel Attacks
	2.2 Side-Channel Leakage Assessment
	2.3 Masking Techniques and Higher-Order Side-Channel Attacks
	2.4 Higher-Order Side-Channel Leakage Assessment
	2.5 Leakage Emulators and Automatic Countermeasures
	2.6 Testing for Statistical Equivalence of Distributions

	3 Rosita++ Design
	3.1 Challenges for Higher-Order Analysis
	3.2 Achieving Statistical Confidence
	3.3 Handling Large Datasets
	3.4 Multivariate Root-Cause Analysis
	3.5 Code Rewrite

	4 Evaluation
	4.1 Experimental Setup
	4.2 Evaluation of second and third-order Boolean masked toy example
	4.3 Evaluated Cryptographic Implementations
	4.4 Emulation results
	4.5 Physical experiment results
	4.6 Tools for Leakage Analysis

	5 Conclusions
	References

