
ammBoost: State Growth Control for AMMs

Nicholas Michel, Mohamed E. Najd, and Ghada Almashaqbeh

University of Connecticut
{nicolas.michel, menajd, ghada}@uconn.edu

Abstract. Automated market makers (AMMs) are a form of decentral-
ized cryptocurrency exchanges that have attracted huge interest lately.
They are considered a prime example of Decentralized Finance (DeFi)
applications, a large category under Web 3.0. Their popularity and high
trading activity have resulted in millions of on-chain transactions lead-
ing to serious scalability issues in terms of throughput and on-chain
state size. Existing scalability solutions, when employed in the context
of AMMs, are either ineffective due to their large overhead, or suffer from
security and centralization issues.
In this paper, we address these challenges by utilizing a new sidechain
architecture as a layer 2 solution, building a system called ammBoost.
Our system reduces the amount of on-chain transactions, boosts through-
put, and supports blockchain pruning. We devise several techniques to
enable layer 2 processing while preserving the correct and secure oper-
ation of AMMs. These include a functionality-split and layer 2 traffic
summarization paradigm, an epoch-based deposit mechanism, and pool
snapshot-based and delayed token-payout trading. We also build a proof-
of-concept of ammBoost for a Uniswap-inspired use case to empirically
evaluate performance. Our experiments show that ammBoost decreases
the gas cost by 96.05% and the chain growth by at least 93.42%, and
that it can support up to 500x of the daily traffic volume observed for
Uniswap in practice.

1 Introduction

Cryptocurrencies and blockchain technology provide an innovative model that
led to new applications and research frontiers, as well as reshaping the Inter-
net and its digital services (under what is called Web 3.0). Decentralized Fi-
nance (DeFi) is a large category under Web 3.0 in which blockchains are used
to transform traditional financial services, which are usually centrally managed,
into fully decentralized ones. Many of these systems operate in an open-access
model, thus removing market entrance barriers for customers, and enabling a
transparent and intermediary-free interaction. Smart contracts strengthen this
model by providing an automated way to negotiate contract terms and enforce
agreements.

Automated market makers (AMMs) are considered a prime example of DeFi
services [71]. They build a platform for automated token trading by establish-
ing liquidity pools for token pairs. An AMM is implemented as a decentralized

application (dApp); a set of smart contracts on top of a smart contract-enabled
blockchain—where Ethereum is the dominant choice so far, that support oper-
ations for trading and liquidity management, such as swaps, mints, burns, and
collects. AMMs are a huge industry with a total monthly trading volume of
$46 - $95 billion (during the first half of 2023), and an estimated total market
cap of nearly $16 billion as of January 2024 [24]. Many popular AMMs are de-
ployed in practice and widely used. Examples include Uniswap [27], Curve [8],
DODO [9], and Sushiswap [22], which during the first half of 2023 commanded
around 62-71%, 6.38-14.01%, 4.04-7.16%, and 0.69-3.67% of the top ten AMMs
market share, respectively [1].

Challenges. At the same time, AMMs are a huge scalability problem. The
popularity and high trading activity of AMMs led to serious efficiency prob-
lems since they produce a massive number of on-chain transactions. On the one
hand, this increases the underlying blockchain size or storage overhead, and on
the second hand, it incurs large (gas) fees. This large workload does not only
amplify state storage cost, but also transaction processing/confirmation delays
due to the low throughput of blockchains (Ethereum’s throughput is around 12
transaction/sec on average [11]).1

Concretely, based on the traffic analysis that we conducted for 2023 (see Ap-
pendix C), Uniswap V3 users produced 20 million transactions on Ethereum in
2023 (transaction sizes range from 400 bytes to 3000 bytes). This translates to
adding around 20.2 GB to the Ethereum blockchain. In its year of deployment
(Nov 2018), Uniswap V1 generated 34,000 transactions, and in 2023, Uniswap’s
various versions on Ethereum generated around 80 million transactions, leading
to 231,7% increase in transaction volume. These numbers indicate that the scal-
ability problem of AMMs is amplified over the years. This does not only impact
the AMM itself, but also other dApps deployed on the underlying blockchain.
Such contention drives users to put in high transaction fees so that miners would
prioritize their transactions.

The challenge is to handle this scalability problem without impacting security
(by, e.g., employing trusted third parties or weakening the security of consensus,
which introduces new threat vectors).

Limitations of prior work. Improving blockchain scalability is an active
research area. Many solutions have been proposed; some of them target layer 1
improving on the consensus itself, such as sharding [42,53,73], while others target
layer 2 allowing for some form of off-chain processing, such as payment chan-
nels and networks [43] and rollups [16, 31]. However, when it comes to AMMs,
applying these solutions impacts performance and security, and may not even
cut the storage cost. In sharding, localized workload division policies are used
to reduce cross-shard transactions. For smart contract-enabled blockchains, this
means that a dApp (so the whole AMM) will be contained in one shard [33,66],

1 A dApp on-chain storage includes the state of the smart contract account of this
dApp, and the transaction history recorded on the blockchain that produced this
state. A misconception about on-chain storage cost is counting only the contract
latest state while ignoring the permanent on-chain storage of these transactions.

2

thus parallel processing among shards is not utilized. Others [60] use static anal-
ysis to shard dApps by splitting them into commuting functional units that can
be executed in any order, and assigning each unit to a shard. This cannot work
for AMMs since their (per pool) operation is sequential. Distributing liquidity
pools among shards has been proposed in [62], but the reliance on locked cross-
shard transactions (to support multi-swaps and arbitraging) may degrade the
AMM performance. All these sharding solutions log all transactions on-chain
(i.e., the shards), so they do not cut the storage cost.2

Layer 2 solutions that allow computations, i.e., beyond just currency transfer
as in payment networks [43], have limitations. Optimistic rollups have long con-
testation periods that may reach one week as in Optimism and Arbitrum [16,49].
Thus, a user cannot act based on the submitted state changes immediately, but
has to wait until the end of the contestation period to ensure that the submitted
results are valid. Moreover, they have security issues—verifiers (who validate the
submitted changes during the contestation period) could be centralized trusted
entities [65], while incentive compatibility of non-trusted verifiers is still an open
question [5, 17, 56] which may lead to adopting incorrect ledger state changes.
Zero-knowledge (ZK)-rollups [21, 38, 39] are costly; proof generation may take
several minutes and it becomes worse when attesting to complex transactions.
They also may have a long transaction confirmation delay that may reach 24
hours as in zkSync Era [31]. This impacts transaction processing and confirma-
tion delays, forcing the users to wait longer for their transactions to be finalized.
Not to mention that many of the used ZK systems require a trusted setup.3

Sidechains [36,46,47,51] are another type of layer 2 solutions that can improve
scalability. Despite their potential, existing efforts mostly focus on two-way peg,
i.e., currency transfer between the sidechain and the mainchain, and all of them
are considered independent sidechains. That is, each chain has its own trans-
actions, miners, and tokens. Such independence and the focus on two-way peg
limit the performance gains that can be achieved, and do not allow for workload
sharing between the chains. Moreover, none of these solutions allow pruning stale
records.4 Other instances in practice resorted to operating the whole AMM on
an independent sidechain, i.e., as a separate system from the underlying smart
contract-enabled blockchain. For example, Polygon [18] operates a fast EVM-
compatible sidechain running along with Ethereum. The whole AMM is run

2 Ledger pruning for sharding has been proposed in [53,67] but in the UTXO model,
i.e., as in Bitcoin; it is not for the account model (as in Ethereum) that represents
smart contract-enabled blockchains on top of which AMMs are deployed.

3 Another instance of layer 2 solutions resorted to employing a centralized settle-
ment party that matches trades and generate ZK proofs to prove settlement correct-
ness [50]. Thus, this solution is a form of ZK-rollups that employs a single settlement
party.

4 In parallel to these academic efforts, many industrial initiatives have explored
the utility of sidechains [2, 6, 30, 55, 61, 70]. Most of them focused on independent
sidechains and two-way peg. Cosmos [6] allows some form of data exchange via pub-
lishing events and commitments on the destination chain. This worsens the storage
problem due to data duplicates, and there is no support for blockchain pruning.

3

on this sidechain and tokens can be transferred to Ethereum using bridges or
atomic swap techniques. Isolating an AMM on an independent sidechain impacts
composability with other dApps running on the mainchain (which is Ethereum
in this case), limits interaction with the mainchain to merely currency trans-
fers, and complicates system design and its security due to the involvement of
bridges. Not to mention that this solution just moves the on-chain storage cost
to the sidechain, which will have scalability issues on its own as the AMM user
population grows.

A new approach. Sidechains seem to have (so far under-utilized) poten-
tial in building an effective layer 2 solution to promote scalability. This has
been observed in [57], who proposed a framework called chainBoost with a new
sidechain architecture that has a mutual-dependence relation with the main-
chain, thus permitting workload sharing and arbitrary data exchange, as well as
blockchain pruning. chainBoost targets resource markers—Web 3.0 systems that
offer decentralized digital services, e.g., Filecoin [12] and Livepeer [15]. chain-
Boost directs all heavy/frequent service-related traffic to the sidechain, which in
turn processes this traffic and produces concise summaries of the state changes
that are used to sync the mainchain. Once these summaries are confirmed on
the mainchain, the temporary blocks containing the actual transactions on the
sidechain are pruned. The empirical results in [57] show substantial performance
gains in terms of blockchain size, transaction confirmation delays, and through-
put. All of these are achieved without compromising security and while keeping
the mainchain as the single truth of the system state.

These advantages motivated us to explore the following: Can we control the
state growth of AMMs, and boost their throughput, in a secure and low-overhead
way, and without isolating the AMM on a separate blockchain, using dependent-
sidechains?

1.1 Our Contributions

We answer this question in the affirmative and propose ammBoost; a secure
storage control and throughput boosting solution for AMMs. In particular, we
make the following contributions.

System design. ammBoost introduces a novel approach for dividing the
AMM functionality into two modules: one that resides on the mainchain (i.e.,
the underlying smart contract-enabled blockchain) and another that is operated
by the sidechain. In particular, ammBoost offloads processing most transactions
(swaps, mints, collects, and burns) to the sidechain, and minimizes the function-
ality remaining on the mainchain. The latter is encapsulated in a base smart
contract called TokenBank, that manages the actual tokens by tracking only the
transaction summaries produced by the sidechain. It also includes all operations
that must happen in real-time on the mainchain, such as flash loans.

ammBoost solves several challenges related to applying dependent sidechains
to AMMs. The chainBoost framework assumes a mutual-dependency relation
between the main and side chains; both operate in the same domain and have
the same transaction format, services, and miner population. This is not the case

4

for ammBoost; the AMM is merely a dApp deployed at the application layer, so it
does not modify how the mainchain protocol works. Thus, the mainchain miners
do not maintain the sidechain as in chainBoost, even they might not be aware
of its existence. However, ammBoost’s sidechain is impacted by the mainchain
since the tokens and the AMM state (and some core functionalities) are on
the mainchain. This means means that ammBoost introduces a unidirectional
dependency relation: the sidechain is impacted by the mainchain but not vice
versa. Furthermore, the sidechain should process all trading activities without a
custody of the actual tokens, and must ensure that only transactions for which
issuing users own tokens on the mainchain are accepted.

We resolve these challenges by introducing several techniques. First, we re-
quire the AMM to have its own miners to maintain the sidechain. So, like any
blockchain, these miners are assumed to have a mining power with an honest
majority, they need to build a Sybil-resistant identity by, e.g., using a proof-of-
stake approach, and they will be rewarded for maintaining the sidechain using,
e.g., the AMM native token. Second, we introduce epoch-based deposits, where a
user has to deposit on the mainchain the anticipated amount of tokens needed to
back up her activities (or issued transactions) during an epoch on the sidechain.
Third, we introduce pool snapshot-based and delayed token-payout trading. That
is, the pool token balances are retrieved from the mainchain at the beginning of
the epoch, which are used to compute trade prices processed on the sidechain.
These balances evolve during the epoch based on the processed transactions
processed. Users can use newly accrued tokens in trading since all balances are
tracked, but they cannot withdraw the actual tokens directly. This is because
the sidechain does not hold actual tokens; token payouts and deposit leftover
refunds happen at the end of the epoch when TokenBank is synced.

Security analysis. We analyze the security of ammBoost showing that it
preserves the correct and secure operation of the AMM.

Implementation and evaluation. We also build a proof-of-concept imple-
mentation for a Uniswap-inspired use case, and conduct experiments to empir-
ically evaluate the performance gains, in terms of blockchain size, confirmation
delay, and throughput, that ammBoost can achieve. Our experiments show that
ammBoost achieves a 96.05% gas cost reduction and 93.42% chain growth reduc-
tion (when compared to a Uniswap version deployed on the Sepolia testnet). Our
experiments demonstrate that ammBoost can support large traffic volumes, on
the order of up to 500x of Uniswap’s daily transaction volume. We also study im-
pact of various configuration parameters on the performance gains of ammBoost.

Although the focus of this work is on controlling the storage overhead and
boosting throughput of AMMs, we believe that ammBoost’s paradigm can enable
more optimizations for AMMs, e.g., integration of privacy-preserving techniques.
Also, ammBoost could be beneficial for other DeFi applications, and dApps in
general, as it introduces a framework for operating application-specific sidechains
interacting with smart contract-enabled blockchains. We leave exploring such
directions as part of our future work.

5

2 Background

We provide an overview of the general functionality of AMMs and the chainBoost
framework that we use in the design of ammBoost.

Automated market makers. AMMs build platforms for token trading pow-
ered by the users themselves. This is done by establishing liquidity pools such
that a pool trades a pair of tokens, say tokens A and B. Users are divided into:
clients which could be sellers and buyers, and liquidity providers (LPs). Provid-
ing liquidity comes from the sellers themselves since buying token A requires
paying the price using token B (and vice versa), and from LPs who deposit
tokens in the pool and collect fees in return.

Constant function market makers (CFMM) is a popular implementation
choice for computing the trading price in AMMs. This formula keeps the ratio
of token reserves, and consequently prices, in the pool as balanced as possible to
reduce price slippage. In particular, the price of token A multiplied by the price
of token B equals a constant. Let the reserves of tokens A and B, i.e., their total
amounts, in the pool be resA and resB , respectively, then the price of token A
is resB/resA and the price of token B is resA/resB . Accordingly, for an order
trading an amount of token A, amtA, the amount of token B, amtB , that this
order receives is computed as: amtB = resB − (resA · resB)/(resA + amtA).

At a basic level, an AMM implementation supports several transaction types:
for trading, there are (exact input and exact output) swaps, and for liquidity
management, there are mints, burns and collects that allow LPs to submit liq-
uidity positions, collect their fees, and withdraw these positions, respectively.
AMMs may provide additional services, such as flash loans [69] allowing clients
to take advantage of arbitrage opportunities across different platforms. Further-
more, more sophisticated liquidity approaches are being adopted, e.g., concen-
trated liquidity [44] that enable defining a price range over which liquidity will
be applied to address issues related to inefficient use of provided funds.

The functionality of an AMM is commonly implemented as a set of smart
contracts on top of a smart contract-enabled blockchain, where Ethereum is
the dominant choice so far. These contracts create and manage the liquidity
pools, and provide the API needed to interact with the AMM. Residing on a
public blockchain led to several financial and security issues [37, 58, 63], e.g.,
front-running attacks, sandwich attacks, miner/maximal extractable value, etc.
Understanding and solving these issues are active research areas. We do not
discuss these issues further since they are not the focus of this work; we target
the storage cost and throughput of AMMs.

The chainBoost framework. chainBoost [57] is a sidechain-based solution
that aims to reduce the blockchain storage footprint and confirmation delays,
and boost transaction throughput. It introduces a new sidechain architecture
that shares the workload with the mainchain, and enables pruning stale records.
As such, this sidechain has a mutual-dependence relation with the mainchain.
Transactions are classified into sidechain and mainchain transactions, where all
service-related operations that can be summarized go to the sidechain, while the

6

Summarize

Summary
Block

Summary
Block

Summary
Block

Summary
Block

Epoch 1 (pruned) Epoch 2 (pruned) Epoch 3

Sync Sync Sync

Sidechain

Mainchain

Mainchain
miners

Epoch
committee

Election

Summarize Summarize

State
variables

State
variables

State
variables

Epoch 4

Summarize

Meta-blocks

Fig. 1: The chainBoost framework.

rest stay on the mainchain. The sidechain works in parallel to the mainchain, and
operates in epochs and rounds (an epoch is ω consecutive rounds and a round
is the period during which a new block is mined). At the end of each epoch, the
mainchain is synced with summaries of the workload processed by the sidechain
in that epoch.

As shown in Figure 1, the sidechain is managed by the mainchain miners,
where for each epoch, a committee is elected to process the sidechain traffic dur-
ing that epoch. The rest of the mainchain miners, who are not on the committee,
do not process the sidechain traffic, thus reducing their load. To speedup agree-
ment, chainBoost employs a practical Byzantine fault tolerance (PBFT)-based
consensus (similar to those in [48,52]) for the sidechain.5

The sidechain is composed of two types of blocks (as shown in the fig-
ure): temporary meta-blocks and permanent summary-blocks. For each sidechain
round, the committee mines a meta-block containing the transactions they pro-
cessed, so that once a transaction appears in a meta-block it is considered final.
In the last round of the epoch, this committee mines a summary-block sum-
marizing all state changes induced by the meta-blocks within that epoch. After
that, it issues a sync-transaction containing the summarized state changes, which
the mainchain miners use to update the relevant state variables on the main-
chain. Once the sync-transaction is confirmed on the mainchain, all meta-blocks
used to produce the respective summary-block are discarded. This significantly
reduces the sidechain size, and subsequently, the mainchain size. At the same
time, having permanent summary-blocks allows anyone can verify the source of
the state changes recorded on the mainchain.

Applicability of dependent-sidechains to AMMs’ setting. Our setting
is different from the one in [57]: First, the mainchain and sidechain miners
run different protocols. In ammBoost, the mainchain miners belong to a smart
contract-enabled blockchain, and the AMM is simply an application deployed on
that blockchain. Thus, the sidechain must have its own miner population, to run

5 Similar to chainBoost, to simplify the presentation, we adopt a leader-based PBFT in
which a leader proposes a block for the committee to agree on (as in [52]). Nonethe-
less, voting-based PBFT (as in [48]) can be used instead.

7

its protocol, and a technique, such as proof-of-stake, to mitigate Sybil attacks.6

Second, in chainBoost the two chains are mutually-dependent, i.e., their security
and valid operation depend on each other. In ammBoost, the dependence is uni-
directional; interruptions on the mainchain impact the sidechain since the base
contract that keeps track of the AMM state resides on the mainchain, but not
vice versa. Sidechain interruptions will indeed lead to invalid state of the base
AMM contract, but this contract resides on the application layer and does not
impact the underlying mainchain or other deployed dApps. Third, in ammBoost,
the actual token reside on the mainchain, while the trading and liquidity-related
activities are handled by the sidechain. Thus, a mechanism is needed to handle
token payouts and deposits to enable accepting and processing only valid trans-
actions. Devising techniques to address these issues resemble the core novelty of
ammBoost system design.

3 Preliminaries

Notation. We use λ to denote the security parameter, and pp to denote the
system public parameters. We use L to denote a ledger (or blockchain), Lmc to
denote the mainchain ledger, and Lsc to denote the sidechain ledger. The former
is the smart contract-enabled blockchain on top of which the AMM base smart
contract is deployed, while the latter is the blockchain of the AMM ecosystem.
Each party maintains a secret key sk and a public key pk. Lastly, we use PPT
as a shorthand for probabilistic polynomial time.

System model. ammBoost involves a base smart contract representing the
AMM on the mainchain, and a sidechain that processes most of the AMM work-
load. Anyone can join/leave the AMM at anytime, and these parties are known
using their public keys. Participants are three types: clients C who are only in-
terested in using the AMM trading services, liquidity providers LP who provide
liquidity for the pools operated by the AMM, and miners M who maintain the
AMM sidechain. We do not place any restrictions on the mainchain beyond be-
ing a secure smart contract-enabled blockchain. ammBoost operates in rounds
and epochs (as defined earlier). The sidechain is managed by a committee elected
from the sidechain miners, where a new committee is elected for each epoch. This
committeee runs a PBFT-based consensus to mine new blocks: temporary meta-
blocks that record transactions, and permanent summary-blocks that summarize
meta-blocks mined in an epoch. The committee also issues sync-transactions to
sync the base AMM smart contract deployed on the mainchain. Accordingly, the
ammBoost framework provides the following functionalities:

SystemSetup(1λ,Lmc) → (pp,L0
sc): Takes as input the the security parameter λ

and the mainchain Lmc. It configures the system public parameters pp, and
deploys a base AMM smart contract on Lmc. It outputs pp and the initial

6 Indeed, a miner can choose to operate on both the mainchain and the sidechain. Still
this miner runs two protocols, one for each chain, rather than one protocol.

8

sidechain ledger state L0
sc (which is the genesis block referencing the main-

chain block containing the base contract).
PartySetup(pp) → (state): Takes as input pp and outputs the initial local state

of the party state, which contains a keypair (sk, pk), and in case of miners,
the current view of Lsc.

CreateTx(txtype, aux) → (tx): Takes the transaction type txtype and any addi-
tional information aux as inputs, and outputs a transaction tx of one of the
following types:
– txDeposit: Allows a user to deposit funds on the mainchain to support

their activities on the sidechain.
– txswap: Allows a client to submit a trade.
– txmint: Allows an LP to provide liquidity to a pool.
– txcollect: Allows an LP to collect fees accrued due to providing liquidity.
– txburn: Allows an LP to withdraw her liquidity.
– txSync: Allows a sidechain committee to sync the AMM base contract

that resides on the mainchain.
VerifyTx(tx) → (0/1): Takes as input a transaction tx, and outputs 1 if tx is valid

based on the syntax/semantics of its type, and 0 otherwise.
VerifyBlock(Lsc,Bbtype) → (0/1): Takes as input the current sidechain ledger state

Lsc, a new block B with type btype = meta or btype = summary. It outputs 1
if B is valid based on the syntax/semantics of the block type, and 0 otherwise.

UpdateState(Lsc, aux, btype) → (L′
sc): Takes as input the current sidechain state

Lsc, and a set of pending transactions aux = {txi} (if btype = meta) or ⊥ (if
btype = summary since the inputs are the last epoch meta-blocks from Lsc).
It reflects the changes induced by aux and outputs a new state L′

sc.
Elect(Lsc) → (C, leader): Takes as input the current state of the sidechain ledger

Lsc, and outputs an epoch committee C and its leader leader.
Prune(Lsc) → (L′

sc): Takes as input the current sidechain state Lsc, and produces
an updated state L′

sc in which all stale meta-blocks are dropped.

Note that UpdateState is the process of mining a new block on the sidechain
based on its consensus protocol.

Security model. We aim to develop a secure state growth control solution that
preserves the valid and secure operation of the underlying AMM. ammBoost
builds a sidechain, which is basically a blockchain, that interacts with the ap-
plication layer of the mainchain through the base AMM smart contract. This
sidechain must be a secure ledger as defined below.

Ledger security. A ledger L is secure if it satisfies the following properties [45]:

Safety: For any two time rounds t1 and t2 such that t1 ≤ t2, and any two honest
parties P1 and P2, the confirmed state of L (which includes all blocks buried
under at least k blocks, where k is the depth parameter) maintained by P1

at t1 is a prefix of the confirmed state of L maintained by party P2 at time
t2 with overwhelming probability.

Liveness: If a valid transaction tx is broadcast at time round t, then with
overwhelming probability it will be recorded on L at time at most t + u,
where u is the liveness parameter.

9

Legend:
Transactions
Sidechain objects / data
Contracts
Mainchain participants ammBoost participants

Epoch
committee

Mainchain
Miners

Sidechain
Miners

Election

Summarize

Summary
Block

Summary
Block

Summary
Block

Summary
Block

Epoch 1 (pruned) Epoch 2 (pruned) Epoch 3

Sync TokenBank

Sidechain

Mainchain

Summarize Summarize

Epoch 4

Summarize

Meta-blocks

Sync TokenBank Sync TokenBank

Token
Bank

Token
Bank

Token
Bank

Payout Txs Payout Txs Payout Txs

Fig. 2: The ammBoost framework (Txs is an abbreviation for transactions).

A ledger must record only valid transactions and blocks, thus its protocol is
parameterized by predicates to verify transaction and block validity. For dApps,
validity is governed by the code of their smart contracts, and miners ensure that
the ledger state changes have been produced by a successful execution of this
code. ammBoost reduces the AMM functionality deployed on the mainchain, and
it processes most of the workload (following the same logic of the AMM) on the
sidechain. Thus, in our security analysis, we show that ammBoost preserves the
security and correct operation (i.e., safety and liveness) of the original AMM.

Adversary model. We assume the mainchain to be secure as defined above.
For the sidechain, we have honest miners who follow the protocol, and malicious
miners controlled by the adversary who may behave arbitrarily. The adversary
can deploy new miners or corrupt existing ones, without going above the thresh-
old of faulty nodes required by the sidechain consensus protocol. The adversary
can see all messages and transactions sent in the system (since we deal with
public permissionless blockchain systems) and can reorder these messages and
delay them. We assume bounded-delay message delivery, so any sent message
(or transaction) will be delivered within ∆ time as in [48, 53, 59]. We assume
slowly-adaptive adversaries [34] that can corrupt miners only at the beginning
of each epoch. Lastly, we deal with PPT adversaries.

4 System Design

ammBoost changes the AMM deployment structure, as shown in Figure 2. The
smart contract on the mainchain is minimal; it mainly tracks the token balances
of the liquidity pools and the users, while most of the transaction processing is
moved to the sidechain. Summaries of the sidechain processed traffic are used to
sync the AMM smart contract on the mainchain. In this section, we present the
design of ammBoost including system setup, architecture and operation, handling
interruptions, and its security.

10

4.1 System Setup

The setup phase, as depicted in Figure 3, mainly specifies the traffic split be-
tween the chains and the summary rules for the sidechain traffic, as well as the
sidechain parameters such as the epoch length and its consensus configuration
(e.g., committee size).7 Also, this phase involves deploying the AMM base smart
contract on the mainchain and creating the sidechain.

Traffic classification and summary rules. AMM transactions and operations
are divided into two groups: pool management and trading-related. Creating and
managing token pools, as well as dispensing tokens to clients and LPs, are done
on the mainchain since these deal with actual tokens. Flashes are also handled by
the mainchain since they require instant token dispensing rather than at the end
of the epoch (which is the case for any operation processed by the sidechain).
The rest of the transactions, including swaps, mints, burns, and collects, are
handled by the sidechain.

In ammBoost, the sidechain does not hold custody of tokens, it just tracks
their balances based on the processed transactions. Thus, during each epoch, the
sidechain produces two structures:

– A payout list containing users’ public keys and the amount/type of tokens
they should receive. This list is simply the updated deposit balance produced
at the end of an epoch.

– A liquidity position list containing the position IDs, the public keys of their
owners, balances, and any additional information needed by the liquidity
management techniques, e.g., price ranges as in concentrated liquidity.

The actual token dispensing and deduction happen at the end of an epoch
when the sidechain summaries are received. The new state of the pool token
balances on the mainchain will be computed based on these lists. Also, the
payout encompasses refunding any leftover in the deposits to their owners as will
be shown shortly. In Section 4.2, we show the summary rules for each transaction
type and how they contribute to the payout and payin lists.

Base smart contract TokenBank. The mainchain part of the AMM is a base
smart contract called TokenBank. At an abstract level, as shown in Figure 4,
this contract supports creating and managing token pools (i.e., tracking their
balances and liquidity positions). It also provides the minimal interface needed
to support users’ activities on the sidechain, which is mainly creating deposits
containing the tokens they want to trade or provide as liquidity. This is needed
since the sidechain does not receive or send actual tokens, it only tracks balance
evolution. Hence, a user deposits the total amount of tokens they would need
during an epoch before this epoch starts, and TokenBank handles the payouts
and payins produced by the sidechain when the epoch ends.

7 The epoch duration impacts syncing frequency. Short epochs mean more sync-
transactions, which incurs more gas cost and may impact throughput—as they are
processed by the mainchain, however users would receive their tokens faster com-
pared to long epochs. We empirically study the impact of this parameter in Section 6.

11

SystemSetup(1λ,Lmc): Takes as input the security parameter λ and the current
mainchain state Lmc, and does the following:

1. Generate the sidechain configuration parameters:

– The epoch length ω.
– All parameters needed for the sidechain consensus protocol.
– Traffic classification rules.
– Summary rules and state variables.

2. Deploy the base contract TokenBank on the mainchain.

Outputs: epoch length ω, sidechain genesis block L0
sc (that references the block in

the updated state L′
mc containing TokenBank), and the address of TokenBank.

Fig. 3: System setup.

// ** State variables **
PoolSets: token-pair pools managed by the AMM.

Deposits: a map of users’ public keys and the type/amount of tokens they
deposited.

Positions: a map of users’ public keys and the liquidity positions they own.

// ** Functions **
createPool(A,B): initializes a pool for the token pair (A, B).

Deposit(type, amnt): allows a user to deposit an amount amnt of token with type
type to be used for the next epoch.

Sync(aux): Sync the mainchain AMM state with the sidechain epoch summaries.
The input aux contains the updated pool balances and liquidity positions, and
the payin/payout lists.

Flash(aux): Receive a flash loan request where aux contains all required inputs,
then calculate the token amount the pool can provide and initiate the callback
process (more details can be found in Section 4.2).

Fig. 4: TokenBank abstract functionality.

As shown in Figure 3, system designers deploy TokenBank on the mainchain.
Once the mainchain block containing this contract is confirmed, the genesis block
of the sidechain L0

sc can be created such that it references this mainchain block.

Sidechain management. The sidechain in ammBoost is managed in a similar
way as in chainBoost. At the beginning of each epoch, a committee from the
sidechain miners is elected, which runs a PBFT consensus protocol to agree on
mining meta/summary blocks and issuing sync-transactions. That is, the com-
mittee leader proposes new blocks or sync-transactions, and collect votes from
the committee members. Once a vote majority is reached, the new block is added
to the sidechain or the sync-transaction is sent to the mainchain. In ammBoost,

12

a sync-transaction is basically a call to the function Sync in TokenBank shown
in Figure 4.

ammBoost differs from chainBoost in the aspect that the sidechain has its
own miner population. In other words, mainchain miners are not responsible
for managing the sidechain, and even may not know that a sidechain exists in
the first place. Executing the TokenBank contract is like executing any other
contract deployed at the application layer of the mainchain. As such, sidechain
miners must possess some mining power to establish Sybil-resistant identities to
be used in the committee election process. Any secure PBFT protocol in which
election is based on the mining power can be used here, e.g., the proof-of-stake
based protocol in [48].

4.2 System Operation—Transaction Processing

As mentioned before, ammBoost operates in epochs and rounds. The sidechain
committee begins the epoch by retrieving the latest state, i.e., pool token bal-
ances, liquidity positions, and user deposits from the mainchain. It then processes
all valid sidechain transactions, including swap, mint, burn, and collect (so users
send these transactions to the sidechain). These are packaged into meta-blocks
such that a meta-block is mined in each round. In the last round of the epoch,
this committee produces a summary-block capturing the payouts for participat-
ing users, and any changes on liquidity positions, where the updated liquidity
pool balances will be computed based on these lists. After that, it invokes the
Sync function in TokenBank that resembles submitting a sync-transaction to up-
date the AMM state on the mainchain, which is the state of TokenBank.

In this section, we describe how the various transactions are processed and
summarized (Figure 5 captures how the sidechain workload is summarized in
ammBoost). Before that, we want to point out that although a user will obtain
her newly claimed tokens at the end of an epoch, once TokenBank is synced, they
can use these tokens immediately during an epoch for trading. This is because
new tokens will be added to the user deposit balance, and those that were used
are deducted from deposit. Thus, the latest deposit state reflects the payout a
user obtains (which includes refunding any deposit leftover).

Swaps. A swap transaction is a trade between the two tokens managed by a
liquidity pool. A client provides an input of tokens and receives an output based
on the price derived from the pool token balances and any user-defined trade
conditions.

In order to execute a swap transaction, a user’s deposit must cover the input
token amount. An exact input swap transaction contains: the type and amount of
input tokens to be traded, the minimum amount of output tokens the trade will
accept (as a protection against slippage), a price limit that the trade should not
exceed, and a deadline which is a round number after which the trade becomes

13

Input: meta-blocks B1
meta, . . . ,B

n
meta from an epoch and Deposits (the latter is the

one retrieved from the mainchain at the beginning of the epoch).

Initialize: summary structures sumPayouts and sumPositions.

for i ∈ {1, . . . , n} and every tx ∈ Bi
meta do

if tx.txtype = txswap then
Deposits[tx.userId].amount[in.type] −= tx.amountin
Deposits[tx.userId].amount[out.type] += tx.amountout
Update fees in sumPositions for all positions used to fill tx
// Liquidity amounts are computed as explained under
//mints and burns.

elseif tx.txtype = txmint then
sumPositions[tx.posId].amountA += tx.amountA
sumPositions[tx.posId].amountB += tx.amountB
sumPositions[tx.posId].priceRange =

(tx.lowerTick, tx.upperTick)
Deposits[tx.userId].amountA −= tx.amountA
Deposits[tx.userId].amountB += tx.amountB

elseif tx.txtype = txburn then
sumPositions[tx.posId].amountA −= tx.amountA
sumPositions[tx.posId].amountB −= tx.amountB
Deposits[tx.userId].amountA += tx.amountA
Deposits[tx.userId].amountB += tx.amountB

elseif tx.txtype = txcollect then
sumPositions[tx.posId].feesA −= tx.amountA
sumPositions[tx.posId].feesB −= tx.amountB
Deposits[tx.userId].amountA += tx.amountA
Deposits[tx.userId].amountB += tx.amountB

Output sumPayouts = Deposits, and sumPositions

Fig. 5: Summary rules (userId is the user ID and posId is the liquidity position
ID). Updated liquidity pool balances are computed by TokenBank (as part of
processing Sync) based on the updated liquidity position and payout lists.

invalid if not executed by that time.8 For an exact output swap, the goal is no
longer to trade the exact amount of input tokens for the maximum amount
of output tokens, but rather to minimize the amount of input tokens required
to trade for the desired exact output. As such, the arguments of the function
naturally change to reflect that, with the minimum output slippage protection
changing to a maximum input slippage protection.

Processing. This is done using the original AMM logic for price balancing and
output calculation. That is, ammBoost does not change the logic based on which
an AMM operates, it just migrates that to the sidechain (this applies to the rest

8 The recipient of the traded tokens is by default the issuer of the swap. This can be
extended to support stating an explicit recipient that could be different from the
issuer.

14

of the transactions as well). For an exact input swap, the sidechain committee
computes the maximum amount of output tokens the user will receive for all
of the input tokens provided. While for an exact output swap, the committee
computes the minimum amount of input tokens needed to purchase the defined
output. In both cases, these computations are based off the updated pool balance
on the sidechain. In other words, as transactions are processed, the committee
updates the pool state that was retrieved at the beginning of the epoch.

Furthermore, the fees for LPs whose liquidity was used in filling a swap will
be computed. To elaborate, when a user submits a swap transaction, they pay a
small additional fee, like 0.3% of their transaction’s input or output value. It is
paid in the token pair of the pool based on its net liquidity such that the token
with the largest amount of net liquidity is used. For example, if a user provides
100 A input tokens in an exact input swap, and token A is the dominant token,
then 0.3 A tokens are used for the LP fee, and 99.7 A tokens are used for the
swap transaction. These fees are split up proportionally amongst the positions
(based on the amount of liquidity they provide) that occupy the price range for
which the swap was executed. ammBoost maintains a per-position fee balance,
which is updated on every swap transaction, again using the same logic used by
the underlying AMM to compute these fees.

Lastly, recall that a user will not get her actual traded tokens until the end
of the epoch. However, she can use these tokens for trading on the sidechain
since the sidechain tracks all balances. So basically, the deposit is a tuple of
two values; one for each token type. When a swap is executed, the input token
amount is deducted from the user’s deposit while the output token amount is
added to this deposit, thus allowing the user to use it immediately.

Summary rules. In the summary-block, the committee summarizes all swap
transactions as follows: for every client, all her swaps are combined into a sin-
gle tuple containing: the client public key, the total payout this user should
receive. The latter encapsulates both a deduction from her deposit and a refund
of any leftover in that deposit. For example, say a user started with a deposit of
(10A, 15B) and issued one swap during an epoch that traded 5 token A for 10
token B. The updated deposit (which will be the payout summary for that user)
would be (5A, 25B), which represents a payout of 10 B tokens, a deduction of 5
A tokens, and a refund of deposit leftover of (5A, 15B). The same logic applies
to the rest of the transactions.

Mints. Mint transactions allow the creation of new liquidity positions or modi-
fying existing ones. An LP broadcasts a mint transaction to the sidechain that
contains: the lower and upper ticks, representing the price range for which the
liquidity is to reside, and the type/amount of the token to be used as liquidity.
The mint will be accepted if the issuer LP’s deposit (either the mainchain or
sidechain one) can cover the provided liquidity amount.

Processing. This is also processed using the same logic used by the AMM.
We resort to a simple approach to track ownership of positions; the sidechain
committee generates a unique identifier (e.g., the hash of the mint transaction
and the LP’s public key) for a new position, and the owner is the public key of

15

the issuer LP. An existing position will receive an increase in its balance (or any
other modifications on its price range) after verifying that the transaction issuer
is indeed the rightful position owner. Mint transactions are initially invoked with
a desired amount of token A and token B as input. The underlying AMM algo-
rithms compute the maximum amount of liquidity (based off the input tokens)
that the pool can take in at the current moment from both token types. These
values represent the share of the pool liquidity now owned by the newly minted
or modified position. The committee then deducts the provided liquidity amount
(from both token types) from the corresponding LP’s deposit balance.

Summary rules. All mint transactions are summarized as a list of liquidity
positions with each position consisting of a tuple containing: the position iden-
tifier, the public key of the owner, the total amount of liquidity provided (or net
change) for each token type under this position, and total amount of accrued
fees. Note that the payin/payout of the LP is also updated when summarizing
mint transactions; all provided liquidity token amounts are deducted from their
deposits as shown in Figure 5.

Burns. A burn transaction allows a partial or complete liquidity withdrawal of
a position. It is issued by an LP and contains: the position ID, the tick price
limits, and the desired amounts of tokens A and B to be burned, and sent to
the sidechain.

Processing. Processing a burn transaction boils down to determining if the
issuer LP owns the position, then calculating the amount of liquidity this LP
owns in a share, and converting that amount of liquidity into an amount of both
tokens managed by the pool (using the original logic of the AMM). This would
lead to updating the position range (upper and lower price ticks), or a deletion of
the position if all its associated liquidity is withdrawn. If a deleted position has
fees owed to it, the owner LP will receive these fees as part of her total payout
computed at the end of the epoch, i.e., will be added to their deposit balance.

Summary rules. Burns are summarized as part of summarizing mint transac-
tions detailed above. Burns adjust the net changes of the pool liquidity balance,
i.e., they decrement this balance. Any fully withdrawn position will be removed
from the TokenBank state. The withdrawn liquidity will be added to the LP’s
deposit balance to be reflected on the payout.

Collects. Collects allow LPs to collect the fees earned by their liquidity po-
sitions. An LP broadcasts a collect transaction containing the identifier of the
position and fee amount to be collected.

Processing. This includes determining if the issuer LP owns the position, and
checking if the amount they want to collect can be covered by their fee balance.
If all is fine, the issuer LP’s deposit is updated to reflect the amount of collected
fees, and the fee balance for that position is adjusted accordingly.

Summary rules. Summarizing collect transactions is also part of summarizing
mints/burns and the LP payout structure. That is, fee balance of the referenced
position is decreased based on the collected amount, and the payout to the issuer
LP is computed based on their updated deposit balance (to which the collected
fee amount has been added).

16

Flashes. Flash transactions allow users to request short-term loans within the
duration of one mainchain block. These are the only transaction type that
ammBoost does not offload to the sidechain; the delay in paying out the ac-
tual tokens (which happens at the end of an epoch) limits the intended use of
flash loans that span a very short period. As such, in ammBoost, flash trans-
actions happen on the mainchain as in the original AMM architecture. Since
flash loans take place in a singular block, they do not impact the pool balances;
the amount of loaned tokens should be returned within one block period or the
loan will be inverted. As a result, they do not invalidate any of the transactions
processed on the sidechain based off the balance snapshot taken at the beginning
of an epoch.

Remark 1. In terms of user experience, clients and LPs should be connected to
both the mainchain and the sidechain, and their wallets should issue transactions
to the destination chain based on the transaction type. For example, deposits
should go the mainchain, while swaps/mints/burns/collects should go to the
sidechain. Another difference is related to receiving the actual tokens, which are
delayed until the end of the epoch in ammBoost. Since a user can use these
immediately for trades within an epoch, the delayed payout has no impact.
However, if a user wants to use these tokens on a different AMM, or wants
to trade these with other token types to participate in another pool managing
different token pairs, then they have to wait until the epoch. Still, overall, the
delay is only one epoch.

4.3 System Operation—Chain Management

In this section, we discuss the syncing process, sidechain pruning, and how
ammBoost recovers from interruptions.

Syncing TokenBank. The sidechain committee leader, after producing a summary-
block containing all the summaries detailed earlier, calls the Sync function in
TokenBank that resembles a sync-transaction submission. The inputs to this
function call include: the list of payouts for all clients and LPs, and the list of
liquidity positions with their updated information.

Authentication. TokenBank must ensure that the the Sync function invoca-
tion is issued by the rightful sidechain committee. We use a modified idea of
quorum certificates (QC) [54,72] combined with threshold signatures. In detail,
to authenticate the Sync call for epoch e+1, the election of committee e+1 must
happen during epoch e. Then, this committee runs a distributed key generation
(DKG) [35] to generate a public verification key vkc for the committee and secret
shares of the signing key (one share per member) with a threshold of 2f+2.9 This
committee initiates an agreement on vkc, and then sends the agreement output
to committee e along with proofs of election of each member who participated

9 A committee size is 3f + 2 and f is the maximum number of faulty nodes as in
PBFT protocols, 2f + 2 votes are needed to reach an agreement.

17

in the agreement.10 Committee e verifies the election proofs, and then verifies
that there is an agreement on vkc. If everything is correct, committee e records
vkc on TokenBank by adding that to the Sync function call inputs they submit
at the end of epoch e. During epoch e+ 1, committee e+ 1 runs an agreement
over the Sync function call inputs and signs using their signing key shares, which
result in one signature over these inputs. The leader then invokes Sync with the
inputs and this signature. In turn, TokenBank verifies the signature using the
recorded vkc before accepting the summaries. By the security of the threshold
signature scheme, this signature will be valid only if at least 2f + 2 committee
members has signed.

Processing. If successfully verified, TokenBank processes the Sync function
call by updating the list of positions based on the summaries, i.e., delete fully
withdrawn positions, create new positions, or adjust existing ones, Then, it up-
dates the pool balance based on the reported payouts and updated position list.
Lastly, it dispenses the payouts to the referenced clients/LPs.

Sidechain pruning. ammBoost uses the block suppression technique from chain-
Boost. Once the transaction encapsulating the Sync function call is confirmed on
the mainchain, all meta-blocks associated to this transaction will be pruned. The
summary-blocks, as mentioned before, are permanent and represent checkpoints
of the sidechain state in each epoch. So they can be used to verify the state of
the AMM reflected by TokenBank state variables.

Handling interruptions. We identify the scenarios that can lead to opera-
tion interruption in ammBoost and how to recover from them. Recall that the
sidechain committees use a PBFT-based consensus that assumes up to f of the
elected miners can be malicious.11 Thus, interruptions that could happen result
from having a malicious or unresponsive leader. This leader may either propose
an invalid meta/summary-blocks or invalid function call to Sync, or not initiate
the agreement in the first place. Another interruption could result from rollbacks
on the mainchain. That is, when the mainchain miners switch their canonical
chain to the one satisfying a particular fork resolution criteria (i.e. the longest
branch, or the heaviest one), causing the most recent blocks to be abandoned.
This is an issue if the abandoned blocks contain Sync transactions.

Detection and recovery from these interruptions are done as in chainBoost [57],
which we review briefly here. A leader that proposes an invalid block or Sync
call can be easily detected by the committee when verifying this proposal. Once
detected, the view-change technique [41] is used to elect a new leader. In the case
of an unresponsive leader, if no agreement is initiated within a timeout period,
a leader change is triggered. As for a leader that proposes invalid Sync inputs,
a leader-change will not help since this happens at the end of an epoch when
it is time for the new committee to take over. Thus, this case, and the rollback

10 In our implementation, this election proof is the output of the verifiable random
function (VRF) used in the election mechanism.

11 This is valid under a committee size that guarantees satisfying this condition with
overwhelming probability, where we adopt the committee size analysis from [57].

18

interruption, are addressed using the mass-syncing technique. The new commit-
tee issues a Sync call covering the summaries they produced in their epoch and
those produced earlier in the impacted epochs.

Remark 2. A sidechain operates as a regular blockchain, thus any transactions
that have not been processed in an epoch will be carried over to the epoch
after. All sidechain miners receive transactions destined to the sidechain, but
only the elected committee mines meta and summary blocks. Thus, when a new
meta-block is mined, the committee and all other sidechain miners remove all
published transactions in that block from their queues.

4.4 Security

Since ammBoost delegates the processing of the AMM transactions to the sidechain,
and introduces pruning and state synchronization, we show that under this new
architecture, the security and correct operation (i.e., safety and liveness) of the
underlying AMM are preserved. In Appendix A, we prove the following theorem:

Theorem 1. ammBoost preserves the safety and liveness of the underlying AMM.

5 Implementation

To assess the performance gains that ammBoost provides for AMMs, we imple-
ment a proof-of-concept and conduct various experiments.12 We chose a Uniswap-
inspired use case to represent the underlying AMM. This section discusses the
implementation details, while the experimental setup and results are discussed
in the next section.

Sidechain implementation. For the sidechain, we use the chainBoost im-
plementation from [3]. This code uses cryptographic sortition-inspired election
mechanism [48] for the committee election, and this committee runs a BLS col-
lective signing (CoSi)-based PBFT-based consensus algorithm [7]. We add the
modifications needed for ammBoost; our sidechain has its own miners, and adopts
the summary rules defined in Section 4. We also modify the syncing process to
be an invocation to the Sync function in TokenBank authenticated using the
threshold signature-based quorum certificate discussed earlier. We use a simpli-
fied version of the golang BLS library [68], and a pre-generated key to sign the
Sync transaction. Furthermore, our sidechain implements two extra functions to
aid in performing the AMM functionality:

– CreateTxSync: creates the Sync call inputs based on the summary-block, in-
cluding the payouts, the updated liquidity positions, and the pool liquidity
balance. This is called by the sidechain committee leader at the end of each
epoch.

12 We will open source our implementation.

19

– SnapshotBank: retrieves users’ deposits at the beginning of an epoch.13

Mainchain details. For the mainchain, we utilize the Ethereum Sepolia
testnet [19] using the hardhat development environment [14]. We implemented
TokenBank in Solidity [20] and deployed it on Sepolia. In our implementation, the
interfacing between the sidechain miners and the mainchain is handled through
functionality provided by the Go-Ethereum project [13]. To allow TokenBank
to authenticate the Sync function call, we implement BLS signature verification
in solidity, where we use the 256-bit Barreto-Naehrig (BN256) curve operations
defined in the Ethereum precompiles [40, 64]. We implement our hash-to-point
functionality as the scalar multiplication of a Keccak256 hash of the Sync entries
and the generator of the G2 curve of BN256.

Use case: Uniswap-inspired AMM. We implement swaps, mints, burns,
and collects using the same logic as in Uniswap (Appendix B). We do not imple-
ment flashes since they represent a very small portion of the traffic, and thus will
not impact the performance gains we report. For simplicity, our use case imple-
mentation manages a single pool. We deployed two standard ERC20 contracts to
provide the token pair traded in this pool and used in both the ammBoost and
baseline experiments. Naturally, to test Uniswap V3 in an isolated environment,
we use the UniswapV3Factory contract to deploy a new liquidity pool which
hosts the two ERC20 tokens. In order to test against the baseline implementa-
tion of Uniswap V3, we wrote and deployed a smart contract to interface with the
various Uniswap contracts as detailed in the Uniswap documentation [26]. This
interface contract routes swaps to the swapRouter contract and mints/burns/-
collects to the NFPM. Additionally, it manages all of the NFT liquidity positions
(through the ERC721Reciever interface) created by the users in our experiments.

Traffic generation. Users generate traffic on both the mainchain and the
sidechain. On the sidechain, the traffic follows the same distribution as in Uniswap
(see Appendix C), i.e., 93.19% of the traffic is txswap, 2.14% is txmint, 2.38% is
txburn and 2.27% is txcollect. Our implementation provides configuration settings
to modify the distribution and volume of the generated transactions to test their
impact on the reported performance metrics.

6 Performance Evaluation

6.1 Experiment Setup

We deploy our system on a computing cluster composed of 8 hypervisors, each
running a 12-Core, 130 GiB RAM, VM, connected with 1 Gbps network link.
This setup is capable of running around 8000 sidechain miners. Unless stated oth-
erwise, an experiment length is 11 epochs, each of which consists of 30 sidechain
rounds (a round lasts 7 sec). Our default meta-block size is 1 MB and a sidechain
committee contains 500 miners. We deploy 100 AMM users, generating traffic

13 ammBoost retrieves pool balances only for newly created pools, their updated bal-
ances can be computed by the sidechain based on the traffic it processes.

20

that arrives at a constant rate of ρ = ⌈ VD×bt
3600×24⌉ where VD = 25 × 106 is the

chosen daily volume of transactions.
In reporting the results, we measure the following metrics:

1. Throughput : Number of transactions processed per second.
2. Sidechain transaction latency : The delay between a transaction submission

and its appearance in a meta-block.14

3. Mainchain transaction latency : The delay between a transaction submission
and its confirmation on Sepolia.

4. Payout latency : The delay between a transaction submission and the com-
pletion of TokenBank syncing in the epoch in which this transaction has been
published on the sidechain. We measure this metric by reporting the sum
of the sidechain transaction latency, the time needed to issue the Sync call,
and the time needed to process the transaction encapsulating the Sync call
on the mainchain.

5. Gas cost : The average number of gas units paid to process core transactions.
6. Main and side chain growth: The growth (in bytes) of both the main and

side chains.

6.2 Comparison with the Baseline

We compare ammBoost against a baseline, which is a deployment of Uniswap
V3 on Sepolia, as mentioned earlier.

On-chain (itemized) per-operation overhead. We evaluate the overhead of
the deposit and the syncing processes in ammBoost, and compare that to the
baseline Uniswap on-chain operations. We set the daily volume VD to be 500K
transactions (10x Uniswap). We use a Gas Profiler [23] to measure the gas cost
of the different components of the Sync transaction. As shown in Table 1, we find
that storing the state of the liquidity positions is the most expensive, as each
consists of 192 bytes (or 6 words), incurring 22,100 gas units per word. The same
gas cost of 22,100 gas unit per word is incurred when storing the liquidity pool
balance. Each payout transaction incurs a constant fee of 15,771 units. A deposit
of two tokens incurs a total cost of 105,392 units. The threshold signature-based
quorum certificate incurs a fixed fee that corresponds to the gas cost of the
BN256 operations needed for verification, and a fee that is proportional to the
length of the summary data structure.

Overall, the gas cost of the Sync call is affected by the number of posi-
tions processed in an epoch, the number of deposits made for an epoch, and
the updated pool liquidity balance; this cost does not scale with the number
of processed transactions, but rather with the number of clients and liquidity
providers. On the other hand, in baseline Uniswap the gas cost is proportional to
the total generated traffic, where the numbers in Table 2 are per one transaction
from each type. For the average latency, a Sync transaction does not depend on

14 To obtain an accurate representation of this metric, and thus process a comparable
amount of traffic, we empty the transaction queues after the end of each run.

21

Table 1: Mainchain latency and itemized gas cost for ammBoost operations
(|sum| is the size of the summaries).

Operation Sync De-

Module Payout Storage Authentication posit

(each) (per Hash To Point Verify (2 tokens)

32 byte) Keccak256 ecMUL Pairing

Avg. gas 15,771 22,100 30 + 6× ⌈ |sum|
256

⌉ 6,000 113,000 105,392

MC. lat. (s) 15.28 54.60

Table 2: Mainchain latency and gas cost for Uniswap.
Operation Swap Mint Burn Collect

Avg. gas 160,601.45 435,609.86 158,473.43 163,743.04

MC. lat. (s) 31.34 42.24 12.72 13.45

Table 3: Operation storage overhead.
ammBoost Payout Position

vkc Signature
Sync component entry entry

Size on Mainchain (B) 352 416 128 64

Size on Sidechain (B) 97 215

Uniswap operation Swap Mint Burn Collect

Size on Mainchain (B) 365.27 565.55 280.21 150.18

any other mainchain transactions, so it is confirmed within one block on aver-
age. However, since a two-token deposit depends on two ERC20 approvals, and
performs 2 transfers, it takes around 4 blocks in our experiments. The same be-
havior is observed in our Uniswap baseline, as a swap requires 1 approval from
the user and a mint requires 2 approvals. Since a two-token deposit depends
on two ERC20 approvals, and performs two transfers, it will take at least four
rounds if the operations are done sequentially. For our Uniswap baseline, as a
swap requires one approval, it takes a minimum of two rounds to be processed;
a mint takes three rounds at least, at it requires two approvals.

We also report the per-operation storage cost. In particular, we report the
cost breakdown for the Sync call on the mainchain and the summary-block size
for ammBoost, and the transaction sizes for baseline Uniswap on the mainchain.
For the Sync call, the sizes of payout and position entries vary greatly between the
summarized changes in a summary-block and the Sync inputs submitted to the
mainchain. This is due to the difference in encoding and binary packing between
the side and main chains. On the mainchain, Ethereum’s application binary
interface (ABI) packing keeps track of the data and all the information needed
to reinterpret it back, while on the sidechain we use simple binary packing.
We also have an extra 6 words (192 bytes) storage overhead on the mainchain

22

Fig. 6: Gas cost and chain growth comparison.

needed for the BLS signature and its public key (namely, vkc) for authenticating
the Sync call. We present our findings in Table 3.

As shown, for Uniswap, we notice that the transactions on Sepolia are smaller
than the ones we observe on Ethereum (Appendix C). This is because these
chains use different Uniswap transaction routers. The calls to the universal router
used on Ethereum end up requiring more arguments, resulting in longer transac-
tions. Uniswap on Sepolia deploys a simpler transaction router. Of note is that
the simple router contract (Uniswap V3 router) and the more complex of the
two (the Universal router) are both available on Ethereum, but the Universal
router is not deployed to Sepolia.

In general, and as will discussed next, Uniswap incurs a larger storage cost
as its transactions are quite large and all are logged on the mainchain. While
for ammBoost, only (the less frequent) Sync call transaction is logged on the
mainchain.

Overall comparison. We report the total gas cost and the mainchain state
growth of the baseline Uniswap and ammBoost. We set the daily volume VD to
be 500K transactions (10x Uniswap) with the default traffic distribution. We
measure the overall mainchain gas cost of relevant operations, and the state
growth of the mainchain.

As shown in Figure 6, even if the sync transactions end up being heavy
on gas as the number of positions and payouts increases, we achieve a 96.05%
gas reduction when compared to Uniswap Sepolia. The high gas cost of the
Sync transaction is offset by it being uncommon (one occurrence per epoch). On
the other hand, the gas cost of swaps, mints, burns, and collects in Uniswap
are high since all are processed on the mainchain (while in ammBoost these
are processed on the sidechain). A similar trend is observed for the mainchain

23

Table 4: Scalability of ammBoost.
Daily volume 50K 500K 5M 25M

Throughput (tx/s) 0.42 3.41 33.04 138.06

Avg. sc latency (s) 7.13 7.13 7.13 231.52

Avg. payout latency (s) 120.71 120.71 120.71 346.49

state growth, where ammBoost provides 93.42% decrease in growth compared
to Uniswap on Sepolia, and 97.60% decrease when compared to Uniswap on
production Ethereum.15

6.3 Impact of Parameter Configuration

We study the impact of parameter configuration on ammBoost’s performance,
including traffic amount and distribution, block size, sidechain round duration,
and number of rounds per epoch.

Scalability. In this experiment, we test the scalability of ammBoost (for a single
pool) to understand its behavior under heavy traffic. We follow the same traffic
distribution as in Uniswap and vary the daily volume VD ∈ {50K, 500K, 5M, 25M}.
We record the impact on throughput and transaction/payout latency as shown
in Table 4.

Throughput-wise, we record a low throughput of 0.42 tx/s to 33.04 tx/s for
a daily volume of 50K to 5M transactions (roughly 1x-100x Uniswap’s daily vol-
ume). This is mainly due to the mainchain blocks not being full as this workload
is way below the capacity that ammBoost can handle. While for traffic that is
500x Uniswap’s daily volume, ammBoost achieves a throughput of 138.06 tx/s.

Latency-wise, we achieve a quasi-instant when the daily volume is between
50K and 5M (transactions that arrive at the beginning of the round get processed
within the same round, while the residual amount of latency is due to transac-
tions generated at the end of the epoch and processed in the next epoch). This
leads to payouts being processed within one epoch (including the time needed
to confirm the Sync transaction on the mainchain). Transaction congestion hap-
pens when the daily volume is 25M, resulting in higher average transaction and
payout latency as the table shows.

Impact of block size. We test the impact of the sidechain block size with the
goal of finding an optimal block size for our system. Thus, we compare different
deployments of ammBoost with different block sizes against Uniswap’s Sepolia
deployment. We run the protocol with the following block sizes {0.5, 1, 1.5, 2}
MB, and we increase the daily volume to 50M transactions. We measure the im-
pact on throughput and transaction/payout latency with the goal of identifying
the block size that maximizes throughput while minimizing latency. Our results
can be found in Table 5.
15 The growth for Uniswap on production Ethereum is calculated by multiplying the

count of each transaction type in our experiment by its size as reported in Ap-
pendix C

24

Table 5: Impact of different sidechain block sizes.
BlockSize (MB) 0.5 1 1.5 2

Throughput (tx/s) 68.97 138.61 207.52 276.43

Avg. sc. latency (s) 4357.00 1603.01 687.98 230.48

Avg. payout latency (s) 4472.63 1719.10 804.05 345.44

Table 6: Impact of different sidechain round durations.
Sc round duration (s) 7 11 16 21

Throughput (tx/s) 138.06 92.18 61.75 46.31

Avg. sc latency (s) 231.52 921.64 1950.92 2975.90

Payout latency (s) 346.49 1087.95 2193.85 3295.11

As expected, increasing the block size improves both throughput and latency,
as more transactions can be packed in a block which reduces queue congestion.
However, larger block sizes mean a larger propagation delay that could be prob-
lematic for short sidechain round duration. Thus, system designers should be
careful when choosing an optimal sidechain block size, balancing between the
block size that can handle the daily volume of transactions while capturing the
intricacies of large network transfers.

Impact of sidechain round duration. Another important factor to study
is the impact of the sidechain round duration. An ideal round duration should
allow for consensus to conclude while maximizing throughput and minimizing
latency. As PBFT agreement takes on average around 6 sec to conclude in our
implementation, we test the following round duration values: 7, 11, 16, and 21
seconds, and report the performance metrics as before (Table 6).

Throughput-wise, we observe that as the block time increases, throughput
decreases and latency increases. This is due to processing the same amount of
transactions while increasing the time needed to produce a block. To choose
an optimal block time, system designers need to take into consideration the
time required for the sidechain consensus and network propagation delays, while
aiming to generate new blocks as fast as possible.

Impact of the number of sidechain rounds per epoch. We test the impact
of the number of sidechain rounds within an epoch. The goal is to find an epoch
length that maximizes throughput, and minimizes transaction/payout latency,
based on the optimal sidechain round duration from the experiment above. Thus,
we pick our epoch to have {5, 10, 20, 30, 60, 96} sidechain rounds, each of which
lasts 7 sec, and report the performance metrics (Table 7).

Having short epochs negatively affects throughput and the sidechain latency.
As a matter of fact, frequent summary-blocks harm performance since this leads
to a larger number of Sync calls that are costly. At the same time, fewer transac-
tions are processed within the epoch, thus affecting both latency and throughput.
Longer epoch duration reduces the sidechain latency and increases throughput.
However, this affects the payout latency adversely since Sync calls now are much

25

Table 7: Impact of number of sidechain rounds per epoch.
Epoch len

5 10 20 30 60 96
(sc rounds)

Throughput
114.27 128.53 135.90 138.06 140.66 141.53

(tx/s)

SC latency (s) 517.94 333.54 255.57 231.52 208.96 199.55

Payout
545.12 337.86 334.81 346.49 434.94 546.04

latency (s)

Table 8: Impact of traffic distribution.
Swap % 60 80

Mint % 20 10 10 10 5 5
Burn % 10 20 10 5 10 5
Collect % 10 10 20 5 5 10

Throughput
145.16 143.76 140.91 143.76 140.23 140.14

(tx/s)

SC latency (s) 162.26 175.35 177.39 202.48 215.06 210.35

Payout
277.99 291.05 293.03 317.23 329.81 324.43

latency (s)

Max sc
31831 31831 31831 31831 31831 31831

growth (B)

fewer and spaced out (so users have to wait longer, as the epoch itself is longer,
to obtain their actual token payouts). Also, this means that these users have to
put larger deposits to cover their (long) epoch activities, which could be unde-
sirable. Based on our results, we achieve the best payout latency when the epoch
lasts for 20 sidechain rounds, which is equivalent to 140 sec.

Impact of traffic distribution. In this experiment, we evaluate different
traffic distributions as follows (all the numbers are percentages): (s,m, b, c) ∈
{(60, 20, 10, 10), (60, 10, 20, 10), (60, 10, 10, 20), (80, 10, 5, 5), (80, 5, 10, 5), (80, 5, 5, 10)},
where (s,m, b, c) stand for swaps, mints, burns, and collects, respectively. As
noted, in these configurations we keep the swap operations dominant to align
with the baseline AMM traffic distribution observed in practice (see Appendix C).
Our results can be found in Table 8.

When varying the traffic distribution, the metrics we report remain similar.
This is because transaction sizes are very close, this yields blocks containing
approximately the same number of transactions, regardless of the transaction
distribution. As for the maximum chain growth, it is bounded by the number
of users participating during an epoch and the number of positions they create.
Thus, it remains invariant even with a variation of transaction distributions since
the number of users is the same.

26

7 Conclusion

We presented ammBoost, a secure state growth controller and throughput booster
for AMMs. It combines a dependent-sidechain architecture with a functionality
split of the AMM. The AMM is divided into two parts: a base smart contract
called TokenBank residing on the mainchain, which manages token pools, users’
deposits and payouts, and any transaction type that must be handled by the
mainchain. And a sidechain part that process most of the workload. ammBoost
introduces several techniques to address challenges resulting from the unidirec-
tional dependency between the mainchain and the sidechain. We analyze the se-
curity of our system and conduct thorough performance evaluation experiments.
The results show the great potential of ammBoost in reducing the on-chain stor-
age footprint of AMMs and boosting their scalability.

Acknowledgments

The work of M.E.N. is supported by NSF under Grant No. CNS-2226932, and
the work of G.A. is supported by the Latest in DeFi Research (TLDR) fellowship
funded by Uniswap Foundation.

References

1. Amms market share. https://www.coingecko.com/research/publications/ce

ntralized-crypto-exchanges-market-share.
2. Btcrelay. http://btcrelay.org/.
3. chainboost source code. https://github.com/CSSL-UConn/chainboost-release.
4. Chainstack. https://chainstack.com/.
5. The cheater checking problem: Why the verifier’s dilemma is harder than you think.

https://medium.com/offchainlabs/the-cheater-checking-problem-why-the

-verifiers-dilemma-is-harder-than-you-think-9c7156505ca1.
6. Cosmos. https://cosmos.network/.
7. cothority/blscosi. https://github.com/dedis/cothority/tree/main/blscosi/b

lscosi.
8. Curve amm. https://curve.fi/.
9. Dodo dex. https://dodoex.io/en.

10. Dune query to retrieve the number of each transaction type per year. https://du
ne.com/queries/3591431/6049916/92e6972f-2f75-42dc-bee9-bcf28fb46afe.

11. Ethereum blockchain explorer. https://etherscan.io/txs.
12. Filecoin. https://filecoin.io/.
13. Go-ethereum docs. https://geth.ethereum.org/docs.
14. The hardhat ethereum development environment. https://hardhat.org/.
15. Livepeer. https://livepeer.com/.
16. Optimism. https://www.optimism.io/.
17. Optimistic rollup is not secure enough than you think — game theoretic approach

for more verifiable rollup. https://medium.com/onther-tech/optimistic-rollu
p-is-not-secure-enough-than-you-think-cb23e6e6f11c.

18. Polygon. https://polygon.technology.

27

19. Sepolia ethereum testnet. https://sepolia.etherscan.io/.
20. Solidity scripting language. https://docs.soliditylang.org/en/v0.7.4/.
21. Starkware solutions. https://starkware.co/.
22. Sushiswap. https://www.sushi.com/swap.
23. Tenderly — full-stack web3 infrastructure. https://tenderly.co/.
24. Top automated market maker (amm) coins today by market cap. https://www.

forbes.com/digital-assets/categories/automated-market-maker-amm/?sh=3

488af897b18.
25. Uniswap documentation. https://docs.uniswap.org/contracts/v3/overview.
26. Uniswap pool interaction guide. https://docs.uniswap.org/contracts/v3/guid

es/providing-liquidity/the-full-contract.
27. Uniswap protocol. https://uniswap.org/.
28. Uniswap reference implementation. https://github.com/Uniswap.
29. Uniswapv3subgraph. https://thegraph.com/hosted-service/subgraph/uniswa

p/uniswap-v3.
30. Xdai. https://www.xdaichain.com/.
31. zksync. https://zksync.io/.
32. Hayden Adams, Noah Zinsmeister, Moody Salem, River Keefer, and Dan Robinson.

Uniswap v3 whitepaper. 2021.
33. Mustafa Al-Bassam, Alberto Sonnino, Shehar Bano, Dave Hrycyszyn, and George

Danezis. Chainspace: A sharded smart contract platform. In NDSS, 2018.
34. Georgia Avarikioti, Eleftherios Kokoris-Kogias, and Roger Wattenhofer. Divide

and scale: Formalization of distributed ledger sharding protocols. arXiv preprint
arXiv:1910.10434, 2019.

35. Renas Bacho and Julian Loss. On the adaptive security of the threshold bls signa-
ture scheme. In ACM CCS, 2022.

36. Adam Back, Matt Corallo, Luke Dashjr, Mark Friedenbach, Gregory Maxwell, An-
drew Miller, Andrew Poelstra, Jorge Timón, and Pieter Wuille. Enabling block-
chain innovations with pegged sidechains. 2014.

37. Massimo Bartoletti, James Hsin-yu Chiang, and Alberto Lluch Lafuente. Maximiz-
ing extractable value from automated market makers. In Financial Cryptography
and Data Security, 2022.

38. Joseph Bonneau, Izaak Meckler, Vanishree Rao, and Evan Shapiro. Coda: Decen-
tralized cryptocurrency at scale. IACR Cryptol. ePrint Arch., 2020.

39. Sean Bowe, Alessandro Chiesa, Matthew Green, Ian Miers, Pratyush Mishra, and
Howard Wu. Zexe: Enabling decentralized private computation. In IEEE S&P,
2020.

40. Vitalik Buterin and Christian Reitwiessner. Eip-197: Eip-197: Precompiled
contracts for optimal ate pairing check on the elliptic curve alt bn128, 2018.
https://eips.ethereum.org/EIPS/eip-197.

41. Miguel Castro, Barbara Liskov, et al. Practical byzantine fault tolerance. In Usenix
OsDI, 1999.

42. George Danezis and Sarah Meiklejohn. Centrally banked cryptocurrencies. In
NDSS, 2016.

43. Christian Decker and Roger Wattenhofer. A fast and scalable payment network
with bitcoin duplex micropayment channels. In Symposium on Self-Stabilizing
Systems, 2015.

44. Robin Fritsch. Concentrated liquidity in automated market makers. In ACM CCS
Workshop on Decentralized Finance and Security, 2021.

45. Juan Garay, Aggelos Kiayias, and Nikos Leonardos. The bitcoin backbone protocol:
Analysis and applications. In EUROCRYPT, 2015.

28

46. Alberto Garoffolo, Dmytro Kaidalov, and Roman Oliynykov. Zendoo: A zk-
snark verifiable cross-chain transfer protocol enabling decoupled and decentralized
sidechains. In IEEE ICDCS, 2020.

47. Peter Gaži, Aggelos Kiayias, and Dionysis Zindros. Proof-of-stake sidechains. In
IEEE S&P, 2019.

48. Yossi Gilad, Rotem Hemo, Silvio Micali, Georgios Vlachos, and Nickolai Zeldovich.
Algorand: Scaling byzantine agreements for cryptocurrencies. In ACM SOSP, 2017.

49. Harry Kalodner, Steven Goldfeder, Xiaoqi Chen, S Matthew Weinberg, and Ed-
ward W Felten. Arbitrum: Scalable, private smart contracts. In USENIX Security,
2018.

50. Rami Khalil, Arthur Gervais, and Guillaume Felley. Tex-a securely scalable trust-
less exchange. Cryptology ePrint Archive, 2019.

51. Aggelos Kiayias and Dionysis Zindros. Proof-of-work sidechains. In International
Conference on Financial Cryptography and Data Security, 2019.

52. Eleftherios Kokoris Kogias, Philipp Jovanovic, Nicolas Gailly, Ismail Khoffi, Linus
Gasser, and Bryan Ford. Enhancing bitcoin security and performance with strong
consistency via collective signing. In Usenix Security, 2016.

53. Eleftherios Kokoris-Kogias, Philipp Jovanovic, Linus Gasser, Nicolas Gailly, Ewa
Syta, and Bryan Ford. Omniledger: A secure, scale-out, decentralized ledger via
sharding. In IEEE S&P, 2018.

54. Jae Kwon. Tendermint: Consensus without mining. Draft v. 0.6, fall, 1(11):1–11,
2014.

55. Sergio Lerner. Drivechains, sidechains, and hybrid 2-way peg designs. 2016. https:
//docs.rsk.co/Drivechains_Sidechains_and_Hybrid_2-way_peg_Designs_R9.

pdf.
56. Jiasun Li. On the security of optimistic blockchain mechanisms. Available at SSRN

4499357, 2023.
57. Zahra Motaqy, Mohamed Najd, and Ghada Almashaqbeh. chainboost: A secure

performance booster for blockchain-based resource markets. In EuroS&P, 2024.
58. Andreas Park. The conceptual flaws of constant product automated market mak-

ing. Available at SSRN 3805750, 2021.
59. Rafael Pass, Lior Seeman, and Abhi Shelat. Analysis of the blockchain protocol in

asynchronous networks. In EUROCRYPT, 2017.
60. George P̂ırlea, Amrit Kumar, and Ilya Sergey. Practical smart contract shard-

ing with ownership and commutativity analysis. In Proceedings of the 42nd ACM
SIGPLAN International Conference on Programming Language Design and Imple-
mentation, pages 1327–1341, 2021.

61. Joseph Poon and Vitalik Buterin. Plasma: Scalable autonomous smart contracts.
White paper, pages 1–47, 2017.

62. Mohsen Pourpouneh, Kurt Nielsen, et al. Automated market makers for cross-chain
defi and sharded blockchains. arXiv preprint arXiv:2309.14290, 2023.

63. Kaihua Qin, Liyi Zhou, and Arthur Gervais. Quantifying blockchain extractable
value: How dark is the forest? In IEEE S&P, 2022.

64. Christian Reitwiessner. Eip-196: Precompiled contracts for addi-
tion and scalar multiplication on the elliptic curve alt bn128, 2017.
https://eips.ethereum.org/EIPS/eip-196.

65. Ionut Rosca, Alexandra-Ina Butnaru, and Emil Simion. Security of ethereum layer
2s. Cryptology ePrint Archive, 2023.

66. Yuechen Tao, Bo Li, Jingjie Jiang, Hok Chu Ng, Cong Wang, and Baochun Li.
On sharding open blockchains with smart contracts. In IEEE 36th International
Conference on Data Engineering (ICDE), 2020.

29

67. Junfeng Tian, Hongwei Xu, and Jin Tian. Slchain: A secure and low-storage pres-
sure sharding blockchain. Concurrency and Computation: Practice and Experience,
36(3):e7918, 2024.

68. Bjorn van der Laan. GitHub - BjornvdLaan/BGRVerify — github.com. https:

//github.com/BjornvdLaan/BGRVerify. [Accessed 21-05-2024].
69. Dabao Wang, Siwei Wu, Ziling Lin, Lei Wu, Xingliang Yuan, Yajin Zhou, Haoyu

Wang, and Kui Ren. Towards a first step to understand flash loan and its applica-
tions in defi ecosystem. In the International Workshop on Security in Blockchain
and Cloud Computing, 2021.

70. Gavin Wood. Polkadot: Vision for a heterogeneous multi-chain framework. White
Paper, 2016.

71. Jiahua Xu, Krzysztof Paruch, Simon Cousaert, and Yebo Feng. Sok: Decentralized
exchanges (dex) with automated market maker (amm) protocols. ACM Computing
Surveys, 55(11):1–50, 2023.

72. Maofan Yin, Dahlia Malkhi, Michael K Reiter, Guy Golan Gueta, and Ittai Abra-
ham. Hotstuff: Bft consensus with linearity and responsiveness. In Proceedings of
the 2019 ACM Symposium on Principles of Distributed Computing, 2019.

73. Mahdi Zamani, Mahnush Movahedi, and Mariana Raykova. Horizontal scaling
blockchain via full sharding. In ACM CCS, 2018.

A Security Analysis

Informally, ammBoost preserves the correct behavior of the AMM since it pro-
cesses the workload using the same logic adopted by the AMM itself. Also, since
the sidechain adopts a secure PBFT consensus protocol, with the assumption
that only up to f miners in any epoch elected committee can be malicious, the
committee only agrees on valid records that conform with the AMM operation
and rules. Furthermore, since the AMM is a dApp deployed on top of a secure
smart contract-enabled blockchain (i.e., the mainchain), ammBoost will not im-
pact the liveness and safety of other applications deployed on this chain or the
security of the mainchain. Thus, we focus on the safety and liveness of the AMM,
i.e., honest miners agree on the confirmed state of the AMM contract, the AMM
state grows over time meaning that its workload is being processed, and that
the produced state changes are valid based on the AMM logic.

In order to prove Theorem 1, we prove two lemmas showing that ammBoost
preserves safety and liveness of the underlying AMM (these proofs are inspired
by those found in [57]).

Lemma 1. ammBoost preserves the safety of the underlying AMM.

Proof. Since ammBoost implements meta-block pruning and mainchain (i.e.,
TokenBank) state syncing, we identify the following threats that may impact
safety in our system:

– Invalid processing of AMM transactions: the sidechain committee does not
follow the AMM logic in processing transactions, or accept transactions from
users who do not own enough deposits on the mainchain, or process these
transactions based off an invalid initial state of the token pool.

30

– Out-of-sync AMM state on the mainchain: A committee leader does not
issue a Sync function call at the end of the epoch, causing the state of the
AMM on the mainchain and the state maintained on the sidechain to be out
of sync. This also could happen due to rollbacks on the mainchain causing
recent Sync calls to be lost.

– Invalid syncing: A sidechain committee agrees on invalid inputs (or syncing
information) for the Sync function call, or an illegitimate committee pretends
to be the elected one and issues such an invalid sync.

– Violating sidechain quality: A sidechain committee mines invalid meta- and
summary-blocks.

We show how ammBoost mitigates these threats, which mainly relies on the
use of a secure PBFT consensus with a secure committee election mechanism, a
secure threshold digital signature scheme, and the leader-change mechanism to
handle the case of malicious/unresponsive committee leader.

Invalid processing of AMM transactions. The sidechain in ammBoost uses the
same logic adopted by the underlying AMM to process all transactions. This is
based off the latest state of the AMM (with respect to user deposits, liquidity
positions, and pool balances from TokenBank on the mainchain). The use of a
secure PPFT protocol, with a committee size that guarantees having at maxi-
mum f malicious parties (among a committee of size 3f +2) with overwhelming
probability as mentioned earlier, guarantees that only valid records that con-
form with these rules will be accepted in meta-blocks. Also, this guarantees that
summary-blocks are also valid based on the summary rules in ammBoost and
these meta-blocks. Meta-blocks do not get pruned until their Sync call transac-
tion is confirmed on the mainchain, so anyone can verify the validity of these
blocks and the validity of the summary-block (as well as the Sync call).

Out-of-sync AMM state on the mainchain. This is mitigated by the mass-
syncing process. An unresponsive leader who does not initiate an agreement
on the Sync function call, or does not submit the result of the agreement to
TokenBank, is easily detected by the new committee as no function call has been
issued and recorded on the mainchain. The new committee then syncs TokenBank
based on the summaries it produces in its epoch and the ones in the previous (one
or multiple) epoch. Same for any rollbacks that may happen on the mainchain,
mass-syncing will include all summaries that has been lost due to the rollback.

Invalid syncing. If a leader issues invalid syncing information, the commit-
tee (which has honest majority) will not endorse these inputs. So simply this
invalid syncing information will be ignored, and mass-syncing (discussed above)
will handle the syncing within the next epoch. Having an illegitimate committee
pretend to be the rightful one to submit (invalid) sync is addressed in ammBoost
using the syncing authentication mechanism discussed in Section 4.2. The com-
mittee of epoch e will not accept the generated committee public verification
key vkc unless there are valid proofs of election showing that the newly claimed
committee is the rightful one (so this relies on the security of the election mech-
anism to be publicly verifiable). Furthermore, an illegitimate committee (or an
attacker) instead may try to forge a signature over the syncing information un-

31

der a valid vkc, which succeeds with negligible probability by the security of the
used threshold digital signature scheme.

Violating sidechain quality. As mentioned earlier, this could happen if the
leader proposes invalid meta- or summary-blocks and the committee agrees on
that. Agreement will not happen since we assume a secure PBFT-based con-
sensus protocol. Also, a malicious leader who may propose invalid blocks will
be detected by the committee when verifying the blocks. In this case, they will
reject the proposal and initiate a leader-change to elect a new leader who will
take over for the rest of the epoch.

Accordingly, ammBoost satisfies the safety of the AMM and will not result
in any correctness or security threats.

Lemma 2. ammBoost preserves the liveness of the underlying AMM.

Proof. The liveness of the sidechain impacts the liveness of the AMM in the sense
that any liveness threats on the sidechain will impact the operation progress of
the AMM. Note that we assume the mainchain to be secure; since the AMM is
a dApp deployed at the application layer of this chain, the mainchain liveness is
not impacted in any case.

We identify the following threats that may arise and violate the liveness of
the AMM under our setting:

– Denial of service (DoS) attacks: The sidechain committee deliberately ignores
and omits transactions coming from particular clients or LPs.

– Violating sidechain liveness: the sidechain committee does not mine meta-
and summary-blocks or does not submit a Sync function call in a timely man-
ner (that could be due to malicious/unresponsive leader or malicious/unre-
sponsive committee that does not reach an agreement).

– Violating the public verifiability of the sidechain: this covers all threats re-
lated to the syncing and pruning of meta-blocks that may impact the public
verifiability of the sidechain (which in turn impacts the public verifiability
of the AMM).

Proving that ammBoost mitigates these threats is the same as in [57]. For
completeness, we review that proof arguments here. DoS is addressed by having
a rotating committee election (a new committee is elected for each new epoch)
such that this committee has an honest majority. A leader that targets particular
users, and so omit their transactions from all proposed meta-blocks, will operate
for one epoch and then a new committee with a new leader will be elected
for the next epoch. Thus, maintaining a situation where all future leaders are
malicious and perform the same DoS is unfeasible. Sidechain liveness is satisfied
due to the use of a secure PBFT consensus and having a large enough committee
that satisfies honest majority (so they will be active during the agreement).
Also, leader-change allows changing a leader who deliberately attempt to stall
the network by not proposing new blocks, and mass-syncing will address the
case of a malicious leader who does not initiate agreement on a summary-block
or Sync function call. Public verifiability is guaranteed by the security of the

32

PBFT consensus; meta-blocks are not pruned until their corresponding Sync
call is confirmed, and summary-blocks are permanent. Also, by having the AMM
base smart contract TokenBank on the mainchain synced correctly based on the
sidechain summaries (as discussed in the proof of Lemma 1), summaries are not
lost. All of these allow anyone to verify the validity of the evolving state of the
AMM. Accordingly, ammBoost preserves the liveness of the AMM.

B Concrete Usecase: Uniswap

Uniswap has three versions: Uniswap V1, released in November 2018, consisted
of the baseline protocol that implemented ERC20 token swaps with Ethereum
and all of the liquidity management methods (mint, burn, collect). Uniswap V2,
released in August 2020, introduced ERC20 to ERC20 swaps, liquidity provi-
sion incentives, and oracles. And Uniswap V3 released in May 2021, introduced
concentrated liquidity, a nonfungible representation of liquidity positions, and
further improvements to the oracle systems. Uniswap adopts the constant prod-
uct formula for computing the trading price described in Section 2. Uniswap
is among the most popular AMMs in practice and commands a large market
share in the AMM industry. In this section, we provide an overview of the set
of contracts that implement the Uniswap functionality on Ethereum, and the
execution trace of the supported transactions.

B.1 Uniswap Supporting Contracts

Based on the Uniswap documentation [25] and its reference implementation [28],
Uniswap is implemented as a set of five contracts: PoolDeployer, PoolFactory,
NonfungiblePositionManager, NonfungibleTokenPositionDescriptor, and SwapRouter.

Pool factory and deployer. The PoolFactory and PoolDeployer contracts are
responsible for setting up new token pools. The pool deployer contract provides
the interface, and the pool factory contract creates the actual pool. Once a pool
is created, clients and LPs can start interacting with the pool.

Nonfungible position manager and token descriptor. These contracts
manage the liquidity positions by handling processes associated with minting,
collecting, and burning/adjustment of liquidity positions. The NonfungiblePositionManager
contract serves as a ”pit stop” for an LP’s input tokens, such that the LP de-
posits input tokens for mint transactions before executing the mint functionality
of a particular pool. This intermediate step allows Uniswap to guarantee that
the input tokens will actually be delivered by the LP, as they are deposited in
the first step, and automatically retrieved from the NonfungiblePositionManager
contract by the pool contract when needed. The LP can later retrieve any tokens
not used by the mint transaction. These two contracts also implement a unique
NFT-based identifier for liquidity positions such that LPs can trade positions
amongst themselves.

33

Swap router. The SwapRouter contract manages the swapping process. It im-
plements functions such as ExactInput and ExactOutput to facilitate specific kinds
of swaps. The SwapRouter also serves as a ”pit stop” for input tokens, requiring
clients to deposit tokens they want to trade before performing swap transactions.

There are additional smart contracts deployed in the Uniswap ecosystem,
e.g., lens contracts which act as an on-chain oracle to record the price and
liquidity history of a given pool. We do not provide further information about
such contracts since we focus on the core functionality of Uniswap in our usecase
implementation.

B.2 Transaction Execution Trace

The core transaction types supported in Uniswap, namely, swaps, mints, burns,
collects, and flashes, are executed as follows.

Swap. Regardless of the type of swap (exact in/out) being executed, clients must
first deposit their input tokens in the SwapRouter contract and approve it to
spend their tokens. The client then calls the relevant function of the SwapRouter
contract (ExactInput or ExactOutput) to submit a swap transaction. If the user
is performing an ExactOutput swap, they should implement an additional set of
conditional transfers to occur after the call to ExactOutput to retrieve unspent
input tokens.

Internally to either function, the pool’s swap function is called (Swappool).
Swappool determines the price of the swap, distributes the liquidity provider fee
across the positions who’s liquidity is used to fill in the swap, and transfers
the output tokens to the client before invoking SwapCallback. The SwapCallback
function is called to retrieve the necessary amount of input tokens from the
NonfungiblePositionManager contract. The client’s contract can now call any ad-
ditional transfers to retrieve unspent input tokens (in the case of ExactOutput).

Mint. The user first creates a smart contract capable of receiving ERC721 to-
kens. This contract must implement the following: a method to receive and store
the nonfungible position tokens, and another method to execute the mint. Alter-
natively. the user may simply forgo the ERC721 receiver contract, allowing their
NFT positions to remain as part of the NFTPM contract. Should a user decide
to do this, they can simply invoke the same relevant functions of the NFTPM
below by using any library which allows interfacing with smart contracts. Mint
execution encompasses the following:

– The LP transfers their input tokens to the
NonfungiblePositionManager contract, and authorizes it to spend their tokens
when executing the mint.

– The LP calls the NonfungiblePositionManager contract’s mint method (MintNFPM),
which creates the NFT position structure, and then calls addLiquidity to cre-
ate the liquidity position.

34

– The addLiquidity function retrieves the relevant pool from the passed tokens
and fee tier. Using the current price ratio, and the desired amount of tokens
to be added as liquidity (passed by the user), an applicable liquidity share
is calculated using the function getLiquidityForAmounts. Then, the pool’s
mint function Mintpool is called, passing the liquidity value computed by
getLiquidityForAmounts.

– Mintpool creates a new LP with the liquidity share provided, and outputs the
exact amount of the token pair required for the position. Then it calls the
MintCallback function, after which the amount of each token to be added to
the pool is returned to the NonfungiblePositionManager contract.

– The MintCallback function does the following: it verifies that the caller is
a valid pool contract, and then transfers the used input tokens from the
NonfungiblePositionManager contract to the pool contract.

– MintNFPM returns the nonfungible position token, as well as the amount of
each token actually added to the pool.

– The LP can retrieve any unspent input tokens from the NonfungiblePositionManager
contract; this is why the LP needs to implement a method to receive and
store an ERC721 token in their contract.

Collect. To execute a collect transaction, the LP calls NonfungiblePositionManager’s
collect method (CollectNFPM), passing the amount of fees they wish to with-
draw along with the nonfungible position token’s ID representing their liquidity
position. The function CollectNFPM verifies that the transaction issuer is indeed
the position owner, and then identifies the target pool based on the token ID.
After that, it retrieves the current token amount owed to the owner from the
position through the fee calculation process. The latter is an optimization intro-
duced in Uniswap V3 to accommodate for concentrated liquidity positions and
to reduce the overall gas usage. Specific details on the calculation process for
fees in Uniswap V3 can be found in its whitepaper [32].

Burn. To burn a position, the following steps take place:

– The LP withdraws all the tokens owned by that position. To do so they first
call decreaseLiquidity a method of the
NonfungiblePositionManager contract. This function retrieves the relevant
pool contract, and calls the pools Burn function.

– The burn function takes the requested amount of tokens to burn, calculates
the actual share of liquidity owned by the position which can be burnt (up
to the requested amount), and decrements the calculated amount from the
positions owned tokens. Finally, it adds the decremented amount to the
liquidity positions owed-tokens metric, such that they can be withdrawn by
invoking collect.

– Once the LP have decreased the liquidity owned by their position to zero,
they can invoke collect to retrieve those funds before calling BurnNFPM .

– BurnNFPM checks that the passed liquidity position does not own any shares
of liquidity and all owed tokens have been collected. Should these checks pass
it deletes the liquidity position and the NFT associated with it.

35

Flash. To execute a flash transaction, the client begins by writing and deploy-
ing a smart contract which overwrites the Flashcallback method of the liquidity
pool. The Flashcallback function is responsible for paying back the loan. As such,
should a client want to perform arbitrage with the loan, they begin by over-
writing Flashcallback, simply adding in solidity code to execute their arbitrage
opportunity. They can then call the flash function of the liquidity pool from
which they would like to execute a flash transaction. Flash itself simply transfers
the requested loan of tokens to the client, where they are used for the arbitrage
opportunity, before being re-transferred to the pool, plus the associated fees, by
Flashcallback. Should the arbitrage prove non-profitable, or the contract fail to pay
back the flash loan for any reason, the entire transaction is concluded, resulting
in the pool never having transferred the loan in the first place. This is possible
due to the entire flash process occurring in a single Ethereum transaction.

Remark 3 (On NFT-based liquidity positions). Uniswap V3 introduced an NFT-
based approach, using an ERC721 wrapper, to track ownership of liquidity po-
sitions. This approach allows for a streamlined process for the verification and
transfer of ownership of a position. This can be also adopted in ammBoost. At
a high level, TokenBank can be extended to support the NFT approach by uti-
lizing the same implementation found in Uniswap. The caveat though is that
creating an NFT will wait until the end of the epoch since it requires mainchain
operation (now in ammBoost positions can be created immediately and synced
back to the mainchain since tracking owenership relies on the LPs’ public keys
and identifiers are generated at random). Thus, any operations on these new
positions has to wait until the next epoch after creating the position NFT.

C Uniswap Traffic Analysis

In order to find the volume of each transaction type, we used the following
query on Dune analytics uniswap v3 ethereum dataset (the following citation is
a direct link to the query used [10]). The query retrieves and counts all of the
transactions happened since 2019, splitting them by year and transaction type.
uniswap v3 ethereum is one of Dune analytics ”decoded projects”, meaning that
it is a dataset formed from the ABI of the smart contracts that operate the
protocol in question. Once a user submits a contract for decoding, Dune uses
the ABI to generate a table of transactions that is query-able by function call
or event. As such, the uniswap v3 ethereum is a set of tables which contain
the decoded smart contracts that constitute the Uniswap V3 protocol. Since we
are interested in transaction volumes, the above query counts all transactions
since 2019 by pulling any row in the tables uniswap v3 ethereum.Pair call burn,
uniswap v3 ethereum.Pair call collect, etc., for which the
call block time is ≥ 01/01/2019.

Traffic distribution or transaction type frequency. We calculate the fre-
quency of each transaction type by computing the number of transactions of that
particular type divided by the total number of transactions from all types. The

36

Table 9: Transaction type breakdown in Uniswap traffic for the year 2023.
Transaction Type Percent of all traffic Volume per 24 hr Average Size (B)

Swap 93.19 % 52,379 1007.83
Mint 2.14 % 1,204 814.49
Burn 2.38 % 1,338 907.07
Collect 2.27 % 1,275 921.80

volume of transactions is gathered by the query above. The frequency shown in
Table 9 is calculated for the year 2023.

Number of trades per 24 hours by transaction type (volume). We calcu-
late this metric by taking the 2023 yearly total transaction count (found by the
query above), and then compute the average daily volume of each transaction
based on the frequency computed above. The results can be found in Table 9.

Transaction sizes. In order to collect the average size of each transaction type,
we implemented a python script to interact with an Ethereum node hosted by
chainstack [4]. We first collected the transaction hashes of a sufficient amount
(approximately 40,000 swaps and 10,000 of all other transaction types) of each
transaction type from the Uniswap V3 subgraph [29] (this can similarly be done
with the dune query provided above, by modifying the select on line 37 to
include the transaction hash). Then, we ran a script to analyze the collected
transactions. This script basically iterates through the json file which contains
our aggregated transaction hashes. For each transaction hash, it performs a
web3.eth.get raw transaction query to retrieve the full raw transaction size. Af-
ter that, it computes the average size for each transaction type (which is basically
sum of total size divided by the number of transactions). The results are also
found in Table 9.

37

