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ABSTRACT
We propose time-memory trade-off algorithms for evaluating look-

up table (LUT) in both the leveled homomorphic encryption (LHE)

and fully homomorphic encryption (FHE) modes in TFHE. For an

arbitrary 𝑛-bit Boolean function, we reduce evaluation time by a

factor of 𝑂 (𝑛) at the expense of an additional memory of "only"

𝑂 (2𝑛) as a trade-off: The total asymptotic memory is also 𝑂 (2𝑛),
which is the same as that of prior works. Our empirical results

demonstrate that a 7.8× speedup in runtime is obtained with a 3.8×
increase in memory usage for 16-bit Boolean functions in the LHE

mode. Additionally, in the FHEmode, we achieve reductions in both

runtime and memory usage by factors of 17.9× and 2.5×, respec-
tively, for 8-bit Boolean functions. The core idea is to decompose

the function 𝑓 into sufficiently small subfunctions and leverage

the precomputed results for these subfunctions, thereby achieving

significant performance improvements at the cost of additional

memory.

CCS CONCEPTS
• Security and privacy→ Public key encryption.
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1 INTRODUCTION
TFHE (Torus Fully Homomorphic Encryption) [7, 9] is one of the

most promising variants of the homomorphic encryption schemes,

notable for its fast bootstrapping and applicability to homomorphi-

cally evaluate arbitrary non-linear functions. A demanding applica-

tion of TFHE is a homomorphic encryption compiler [17, 21], which

enables secure execution of arbitrary program code or Boolean cir-

cuits.

The drawbacks of FHE applications stem from their lower run-

time efficiency compared to non-encrypted computations [12].

Specifically, efficiently evaluating a non-structured non-linear func-

tion 𝑓 in FHE is challenging, where only the look-up table (LUT) of

𝑓 is known to the evaluator. This scenario is common in FHE com-

pilers, where many conditional operations, such as if and switch
operators, are compiled as non-linear functions in TFHE.

Thus far, many prior works have addressed this problem. The

CMux tree [13], a binary decision diagram composed of CMux gates,

is one of the fastest methods for evaluating arbitrary function in the

leveled homomorphic encryption (LHE) mode of TFHE. The method

is further enhanced by the packing techniques [8].

The tree-based method [14] and the chaining method [5], which

leverage programmable bootstrapping, can evaluate arbitrary func-

tions in the fully homomorphic encryption (FHE) mode of TFHE,

where programmable bootstrapping is central to initializing noise.

The new version of WoP-PBS (without padding programmable

bootstrapping) [2] enables fast LUT evaluation in what we call

the hybrid mode of TFHE, where both circuit bootstrapping and

programmable bootstrapping are utilized during computation. If

the structure of the function 𝑓 is known, an efficient homomorphic

circuit can be constructed using the method [3] in the FHE mode

of TFHE.

1.1 Contribution
Despite advancements, runtime remains a significant bottleneck

for applications of TFHE. One approach to address this challenge is

to develop time-memory trade-off algorithms, which aim to reduce

runtime at the expense of additional memory. In this paper, we

provide time-memory trade-off algorithms for evaluating arbitrary

Boolean functions in both the LHE and FHE mode of TFHE.

• For the LHE mode, we propose a time-memory trade-off for

the CMux tree algorithm, which reduces evaluation time by

a factor of 𝑂 (𝑛) at a cost of additional memory of 𝑂 (2𝑛),
where 𝑛 represents the number of input bits to the function.

Note that 𝑂 (2𝑛) space is already necessary to store the LUT

of the function.

• For the FHE mode, we introduce homomorphic evaluation

algorithms that leverage the Disjunctive Normal Form (DNF)

and Conjunctive Normal Form (CNF) representations of a

function 𝑓 . These algorithms have smaller space complexity

than the Binary Decision Diagram (BDD) based approach

in terms of the required number of LWE ciphertexts. We

achieve time-memory trade-offs of these algorithms that are

the same as those in the LHE mode.
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• Implementation details and experimental results for the pro-

posed algorithms are provided for 8-bit and 16-bit Boolean

functions. We demonstrate a time-memory trade-off with

a 7.8× reduction in total runtime and a 3.8× increase in

memory usage for 16-in 1-out Boolean functions.

The technical overview of the proposed algorithm is to decom-

pose the LUT of the Boolean function 𝑓 into sufficiently small tables,

then efficiently evaluate each table and merge them to compute the

result for the entire LUT. The key idea to reduce the time complex-

ity is to share the results of "common LUTs" to reduce the number

of homomorphic operations required. Intuitively, this can be seen

as finding a minimum set of substrings that cover the output vector

of 𝑓 . This can be viewed as another way of simplifying a Boolean

function beforehand using a Karnaugh map.

For example, assume that the output vector y of 𝑓y (𝑥1, 𝑥2, 𝑥3) is
01100110. A minimum set of substrings of length 2 is {01, 10}, and
the set of length 4 is {0110}. One can then evaluate 𝑓 by merging

the evaluation results for 01, 10 and 0110 while traversing reversely

the BDD constructed on the LUT, as illustrated in Figure 1. More

details about the idea are explained in Example 4.1.

𝑥1

0

0

0

0

1

1

1

1

𝑥2

0

0

1

1

0

0

1

1

𝑥3

0

1

0

1

0

1

0

1

y

0

1

1

0

0

1

1

0

01

10

01

10

0110

0110

𝑓

Figure 1: Overview of the proposed algorithm: our algo-
rithm can omit homomorphic operations on gray boxes that
share common sub-tables in the LUT, which are separated
by dashed lines.

The rest of the paper is organized as follows. Section 2 describes

the notation and preliminaries of TFHE. In Section 3, we describe

Boolean functions in TFHE and the CMux tree algorithm. Section 4

presents our time-memory trade-off algorithms. We provide empir-

ical results and analysis in Section 5. Section 6 provides concluding

remarks.

2 PRELIMINARIES
We summarize the symbols that appeared in this paper in Table 1.

The security of TFHE is based on the generalized version of the

LWE problem [6, 16].

2.1 Cryptographic Structures
We briefly introduce LWE-based cryptographic structures used for

homomorphic computations in TFHE. An LWE ciphertext is the

smallest data unit in the TFHE scheme.

Table 1: Notation

Symbol Description

A A set

A𝑛 Set of 𝑛-dimensional vectors consisting of

elements in A

A𝑞 The set A modulo 𝑞

Z Set of integers

R Set of real numbers

B = Z2 Set of binary numbers

R Set of integer coefficient of polynomials

modulo 𝑋𝑁 + 1, where 𝑁 is a power of 2

a A polynomial a ∈ R or a vector a ∈ Z𝑛
𝑎𝑖 The 𝑖-th coefficient or term of a

a[𝑖 : 𝑗] (𝑖 < 𝑗 ) A vector (𝑎𝑖 , 𝑎𝑖+1, . . . , 𝑎 𝑗−1)
a ∥ b A vector (𝑎1, . . . , 𝑎𝑛, 𝑏1, . . . , 𝑏𝑛)
𝑎

$← X 𝑎 is uniformly sampled from X

𝑎 ← 𝜒 𝑎 is sampled from a distribution 𝜒

𝑁T Size of a single T (e.g., T is ciphertext or key)

Definition 2.1 (LWE ciphertext). Given 𝑛, 𝑞 ∈ Z, the LWE cipher-

text of the message 𝑚 ∈ Z is LWE(𝑚) := (a, 𝑏) ∈ Z𝑛+1𝑞 , where

𝑏 = a · s +𝑚 + 𝑒 . Additionally, a $← Z𝑛𝑞 , s← 𝜒 and 𝑒 ← 𝜒 ′, where
𝜒 is a key distribution and 𝜒 ′ is an error distribution.

RLWE is a ring version of LWE on R𝑞 , which encrypts a vector

of a messagem ∈ R𝑞 .

Definition 2.2 (RLWE ciphertext). The RLWE ciphertext of the

messagem ∈ R𝑞 isRLWE(m) := (a, b) ∈ R2𝑞 , where b = a·s+m+e,
a

$← R𝑞 , s← 𝜒 and 𝑒𝑖 ← 𝜒 ′.

The gadget LWE is a vector of LWE ciphertexts, which is used

to construct a GSW ciphertext.

Definition 2.3 (Gadget LWE ciphertext). Given a gadget vector

v = (𝑣1, . . . , 𝑣ℓ ) ∈ Zℓ , the gadget LWE, denoted by Lev is an ℓ-

dimensional vector of LWE ciphertexts defined by

Lev(𝑚) := (LWE(𝑣1 ·𝑚), . . . , LWE(𝑣ℓ ·𝑚)) ∈ Z(𝑛+1)ℓ𝑞 .

GSW is a vector of gadget LWE ciphertexts utilized for multiply-

ing two ciphertexts.

Definition 2.4 (GSW ciphertext). The GSW ciphertext is an (𝑛+1)-
dimensional vector of the gadget LWE ciphertexts defined by

GSW(𝑚) := (Lev(−𝑠1 ·𝑚), . . . , Lev(−𝑠𝑛 ·𝑚), Lev(𝑚)),

where 𝑠𝑖 is the 𝑖-th element of the secret key s.

We can also construct the gadget version of RLWE and the ring

version of GSW, which are generalized as GLev and RGSW (or

GGSW). For more details, see [15, 18].

2.2 Basic Operations
The LWE ciphertext offers homomorphic addition and scalar multi-

plication as follows.
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Definition 2.5 (Addition). Homomorphic addition of LWE(𝑚1)
and LWE(𝑚2) is written as

LWE(𝑚1 +𝑚2) = LWE(𝑚1) + LWE(𝑚2) .

Definition 2.6 (Scalar multiplication). Homomorphic scalar mul-

tiplication between LWE(𝑚) and a plaintext 𝑘 ∈ Z is written by

LWE(𝑘 ·𝑚) = 𝑘 · LWE(𝑚).

To multiply two ciphertexts in TFHE, an operation called the

external product is required.

Definition 2.7 (External Product (XP)). The external product ⊡ is

defined by

GSW(𝑚1) ⊡ LWE(𝑚2) :=
𝑛∑︁
𝑖=1

(𝑎𝑖 ⊙ Lev(−𝑠𝑖 ·𝑚1)) + 𝑏 ⊙ Lev(𝑚1)

= LWE(−a · s ·𝑚1 + 𝑏 ·𝑚1)
= LWE(𝑚1 ·𝑚2),

where LWE(𝑚2) = (a, 𝑏) and ⊙ is the gadget product defined by

𝑎 ⊙ Lev(𝑚) := LWE(𝑎 ·𝑚).

We can also define the XP operation between an RGSW ci-

phertext and an RLWE ciphertext by RGSW(m1) ⊡RLWE(m2) :=
RLWE(m1 ·m2). More details can be found in [15].

2.3 Bootstrapping and Key Switching
In TFHE, bootstrapping is a crucial procedure used to reset the noise

growth in an LWE ciphertext. Furthermore, during this process,

it is possible to evaluate an arbitrary function 𝑓 : Z𝑝 → Z𝑝 . This
capability is known as programmable bootstrapping.

Definition 2.8 (Programmable bootstrapping (PBS)). Given an

LWE ciphertext LWEs (𝑚) under the secret key s, RLWEs′ (𝑓 ) en-
coding the look-up table of 𝑓 under the new secret key s′, and a

bootstrapping key bsk := (GSWs′ (𝑠1), . . . ,GSWs′ (𝑠𝑛)), PBS out-

puts a fresh LWE as follows:

PBS(LWEs (𝑚),RLWEs′ (𝑓 ), bsk) := LWEs′ (𝑓 (𝑚)).

A limitation of PBS is its performance for a large plaintext mod-

ulus 𝑝 . For example, in TFHE-rs, which is the latest TFHE library,

the supported plaintext space is log
2
𝑝 ≤ 7. Since the secret key

changes during PBS, the key switching procedure is invoked with

a PBS execution to adjust the key length.

Definition 2.9 (Key switching (KS)). Given an LWE ciphertext

LWEs (𝑚) under the secret key s and a key switching key ksk :=

(Levs′ (𝑠1), . . . , Levs′ (𝑠𝑛)), KS outputs an LWE:

KS(LWEs (𝑚), ksk) := LWEs′ (𝑚).

In the FHE mode of TFHE, a common framework for a sequence

of homomorphic operations is DP-KS-PBS. This framework begins

with DP (dot product) operations, which include additions and

scalar multiplications, followed by a KS and a (variant of) PBS

operation. For details, refer to [2, 10].

In the LHE mode of TFHE, it is possible to homomorphically

evaluate arbitrary Boolean functions or deterministic automata

using GSW ciphertexts. Circuit bootstrapping is a key component

of the LHE mode, enabling the conversion of LWE to the GSW

ciphertext while initializing the noise.

Definition 2.10 (Circuit bootstrapping (CBS)). Given an LWE ci-

phertext LWEs (𝑚) under the secret key s and a circuit bootstrap-

ping key cbk, where a cbk consists of a bootstrapping key and

multiple key switching keys, CBS outputs a fresh GSW:

CBS(LWEs (𝑚), cbk) := GSWs′ (𝑚) .

Standard CBS consists of ℓ invocations of functional bootstrap-

ping or one PBSmanyLUT [11], followed by 2ℓ invocations of pri-

vate key switching. Details about the CBS can be found in [9, 18].

In what follows, we construct homomorphic circuits utilizing the

aforementioned operations. For simplicity, we may omit terms of

the cryptographic structures when they are implicitly understood.

3 HOMOMORPHICALLY EVALUATING
LOOK-UP TABLE

We aim to evaluate a Boolean function with the form 𝑓 : B𝑛 → B
in TFHE. Among the state-of-the-art algorithms for evaluating

arbitrary Boolean functions in TFHE [2, 3, 5, 13, 14], we focus on

one of themost promisingmethods called theCMux tree [13]. Before
describing the algorithm, we introduce several useful properties of

Boolean functions.

3.1 Decomposing Boolean Function into
Boolean Circuit in TFHE

An 𝑛-in 1-out Boolean function 𝑓 (𝑥1, 𝑥2, . . . , 𝑥𝑛) = 𝑦 can be ex-

pressed in its Algebraic Normal Form (ANF), which is a combination

of variables using the XOR (⊕) and AND (∧) operators.

Definition 3.1 (Algebraic Normal Form (ANF)). The ANF of an

𝑛-in 1-out Boolean function 𝑓 : {0, 1}𝑛 ↦→ {0, 1} is a logical formula

in which each term corresponds to a specific input combination of

𝑛 variables. The ANF is defined by

𝑓 (𝑥1, . . . , 𝑥𝑛) = 𝑎0 ⊕ 𝑎1 ∧ 𝑥1 ⊕ 𝑎2 ∧ 𝑥2 ⊕ . . . ⊕ 𝑎𝑛 ∧ 𝑥𝑛⊕
𝑎𝑛+1 ∧ 𝑥1 ∧ 𝑥2 ⊕ . . . ⊕ 𝑎 𝑛 (𝑛+1)

2

∧ 𝑥𝑛−1 ∧ 𝑥𝑛⊕

. . . ⊕ 𝑎2𝑛−1 ∧ 𝑥1 ∧ 𝑥2 ∧ . . . ∧ 𝑥𝑛,
where 𝑎0, . . . , 𝑎2𝑛−1 ∈ B are the Boolean coefficients and 𝑥1, . . . , 𝑥𝑛
are the Boolean variables.

This ANF can be implemented as a homomorphic Boolean circuit

in the FHE mode of TFHE. In the FHE mode, each variable (𝑥𝑖 or

𝑎𝑖 ) is encrypted and each operation (⊕ or ∧) is homomorphically

evaluated by the gate bootstrapping [9]. This allows us to evaluate a
Boolean function with arbitrary 𝑛 without increasing the amount of

noise in the output ciphertext. However, this approach is expensive

in TFHE because it requires 𝑂 (𝑛2𝑛) executions of the gate boot-
strapping, which is one of the most time-consuming operations in

TFHE.

An alternative way to decompose a Boolean function into a

Boolean circuit is to express 𝑓 as the Binary Decision Diagram

(BDD). In this paper we describe the BDD using the CMux gate [13].

The CMux gate is a 3-in 1-out Boolean function defined by

CMux(𝑎, 𝑏, 𝑐) :=
{
𝑎 (𝑐 = 0),
𝑏 (𝑐 = 1) .
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Definition 3.2 (Binary Decision Diagram (BDD)). The BDD of a

Boolean function 𝑓 : {0, 1}𝑛 ↦→ {0, 1} is a logical circuit described
by

𝑓 (𝑥1, . . . , 𝑥𝑛) = CMux(𝜎1,0, 𝜎1,1, 𝑥1),
𝜎𝑖, 𝑗 = CMux(𝜎𝑖+1,2𝑗 , 𝜎𝑖+1,2𝑗+1, 𝑥𝑖+1) for 0 ≤ 𝑗 ≤ 2

𝑖 − 1,
𝜎𝑛,𝑗 = 𝑦 𝑗 for 0 ≤ 𝑗 ≤ 2

𝑛 − 1.

where 𝑦 𝑗 denotes the output of 𝑓 for the 𝑗-th input x𝑗 , i.e., 𝑦 𝑗 =

𝑓 (x𝑗 ), where x𝑗 = (𝑥1, . . . , 𝑥𝑛) and 𝑗 =
∑
1≤𝑖≤𝑛 2

𝑛−𝑖𝑥𝑖 .

The BDD requires 2
𝑛 − 1 CMux executions in total to evaluate a

function. However, the noise growth during computation is shown

to be still linear with respect to

√
𝑛 in TFHE [7, Lemma 5.5]. Fortu-

nately, the CMux gate can be executed without bootstrapping in

TFHE, allowing us to evaluate 𝑓 more efficiently than ANF in the

LHE mode of TFHE.

3.2 CMux Tree in the LHE Mode of TFHE
In the standard CMux tree, we evaluate 𝑓 (𝑥1, . . . , 𝑥𝑛) in a width-

first (layer-by-layer) order. From Definition 3.2, we first fill the

𝑛-th layer values 𝜎𝑛,𝑗 for 0 ≤ 𝑗 ≤ 2
𝑛 − 1 by reading the entire

output vector, which requires 2
𝑛
LWE ciphertexts. Recursively, the

𝑖-th layer is computed from the (𝑖 + 1)-th layer by 2
𝑖
executions

of CMux: 𝜎𝑖, 𝑗 = CMux(𝜎𝑖+1,2𝑗 , 𝜎𝑖+1,2𝑗+1, 𝑥𝑖+1) for 0 ≤ 𝑗 ≤ 2
𝑖 − 1.

Finally, 𝑓 (𝑥1, . . . , 𝑥𝑛) is obtained in 𝜎0,0.

In the following, we introduce a practical construction of the

CMux tree as implemented in [22], where the number of LWE

ciphertexts required is 𝑂 (𝑛) for an arbitrary 𝑛-in 1-out function 𝑓 .

The pseudo-code of the CMux tree is shown in Algorithm 1. In this

paper we explain the CMux tree without packing techniques, such

as vertical packing and horizontal packing [8] to generalize and

simplify each process. While our algorithm clearly works with the

horizontal packing, some adaptations would likely be required for

the vertical packing. We leave this for future work.

A CMux tree is typically used for the homomorphic evalua-

tion of a function 𝑓 when only a LUT is available for an evalu-

ator. A LUT of 𝑓 is the set that collects all input-output pairs of

𝑓 : {(x𝑗 , 𝑦 𝑗 )}0≤ 𝑗≤2𝑛−1. First, we need to store the inputs for the

index sol: xsol = (𝑥1, 𝑥2, . . . , 𝑥𝑛) and all the outputs of 𝑓 : y =

(𝑦0, 𝑦1, . . . , 𝑦2𝑛−1), where sol =
∑
1≤𝑖≤𝑛 2

𝑛−𝑖𝑥𝑖 . Each𝑥𝑖 is encrypted
as a GSW ciphertext. Each 𝑦𝑖 is required to be encrypted as an LWE

ciphertext when 𝑓 is private. Otherwise, we encode 𝑦𝑖 in a trivial

LWE: (0, 𝑦𝑖 ). Then, we traverse the CMux tree of depth 𝑛 from

two adjacent leaves (depth 𝑛) to the root (depth 0) using a working

memory 𝑉 of length |𝑉 | = 2𝑛 and an auxiliary vector t of length
|t| = 𝑛 + 1. 𝑉𝑑 stores two input LWE ciphertexts 𝑉𝑑,0,𝑉𝑑,1 for a

CMux gate at depth 1 ≤ 𝑑 ≤ 𝑛 − 1, and 𝑉0,0 stores the solution, i.e.,
𝑓 (𝑥1, 𝑥2, . . . , 𝑥𝑛). The variable 𝑡𝑑 ∈ {0, 1, 2} stores a flag value that
represents the state of 𝑉𝑑 . Specifically,

(1) 𝑡𝑑 = 0 indicates that both elements of 𝑉𝑑 are ⊥.
(2) 𝑡𝑑 = 1 indicates that 𝑉𝑑,0 ≠ ⊥ and 𝑉𝑑,1 = ⊥.
(3) 𝑡𝑑 = 2 indicates that neither element of 𝑉𝑑 is ⊥.

Note that we do not need to encrypt t, as its value does not re-

veal any information about 𝑥𝑖 or 𝑦𝑖 . If 𝑡𝑑 = 2, we can execute

a CMux gate by CMux(𝑉𝑑,0,𝑉𝑑,1, 𝑥𝑑 ) and its result is then appro-

priately stored in either 𝑉𝑑−1,0 or 𝑉𝑑−1,1. In TFHE, a CMux gate

Algorithm 1: CMuxTree [13, 22]

Input: 𝑥1, 𝑥2, ..., 𝑥𝑛 , the vector of all the 2𝑛 outputs of the

function 𝑓 : y = (𝑦0, 𝑦1, . . . , 𝑦2𝑛−1)
Output: 𝑓 (𝑥1, 𝑥2, ..., 𝑥𝑛)

1 𝑉 ← {𝑉𝑖, 𝑗 ← ⊥ | 0 ≤ 𝑖 ≤ 𝑛 − 1, 𝑗 ∈ {0, 1}} ⊲ Initialize 𝑉

2 t← {𝑡𝑖 = 0 | 0 ≤ 𝑖 ≤ 𝑛} ⊲ Initialize vector t for flag
3 for 𝑖 ← 0, . . . , 2𝑛−1 − 1 do
4 𝑡𝑛 = 2 ⊲ Depth 𝑛 (leaf) is ready for CMux

5 for 𝑑 ← 𝑛, . . . , 1 do
6 if 𝑡𝑑 = 2 then
7 if 𝑑 = 𝑛 then
8 if 𝑡𝑑−1 = 0 then
9 𝑉𝑑−1,0 ← CMux(𝑦2𝑖 , 𝑦2𝑖+1, 𝑥𝑑 )

10 else
11 𝑉𝑑−1,1 ← CMux(𝑦2𝑖 , 𝑦2𝑖+1, 𝑥𝑑 )
12 else if 𝑡𝑑−1 = 0 then
13 𝑉𝑑−1,0 ← CMux(𝑉𝑑,0,𝑉𝑑,1, 𝑥𝑑 )
14 else
15 𝑉𝑑−1,1 ← CMux(𝑉𝑑,0,𝑉𝑑,1, 𝑥𝑑 )
16 𝑡𝑑−1 = 𝑡𝑑−1 + 1 ⊲ Compute depth 𝑑 − 1
17 𝑡𝑑 = 0 ⊲ Reset depth 𝑑

18 else
19 break ⊲ Goto next leaf

20 return 𝑉0,0 ⊲ Return root value of 𝑉

CMux(𝑎, 𝑏, 𝑐) is homomorphically evaluated by

GSW(𝑐) ⊡ (LWE(𝑏) − LWE(𝑎)) + LWE(𝑎) . (1)

Thus, we need to prepare 𝑛 GSW ciphertexts of 𝑥𝑖 as selectors

for CMux gates. Finally, we obtain LWE(𝑓 (𝑥1, 𝑥2, . . . , 𝑥𝑛)) in 𝑉0,0.
The correctness of the algorithm can be shown by inductively

proving that each step maintains the desired invariant, leading to

the correct evaluation of the function 𝑓 . The minimum plaintext

space is 𝑝 = 3 for the CMux tree, as at least the set of integers

{−1, 0, 1} is necessary to store intermediate values to evaluate Eq. (1)

for binary inputs 𝑎, 𝑏, 𝑐 ∈ {0, 1}.

3.2.1 Computational Complexity.
We describe the time and space complexity of Algorithm 1. In

the LHE mode of TFHE, the external product (XP) in the CMux

gate is the bottleneck in runtime. Therefore, the time complexity

can be evaluated by counting the number of XP operations in the

circuit. We also assume that the 𝑛 GSW ciphertexts of the inputs are

precomputed via circuit bootstrapping, as in [7]. Since we require

2
𝑖−1

XPs from depth 𝑖 to 𝑖 − 1, the total number of XPs in the tree is∑︁
1≤𝑖≤𝑛

2
𝑖−1 = 2

𝑛 − 1. (2)

The space complexity is

𝑛𝑁GSW + (2𝑛 + 2𝑛)𝑁LWE + 𝑛 + 1

when 𝑓 is private. In most typical cases, 𝑓 is a publicly available

function. Thus the formula is rewritten as

𝑛𝑁GSW + 2𝑛𝑁LWE + 2𝑛 + 𝑛 + 1. (3)
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In TFHE, the relation 𝑁GSW ≫ 𝑁LWE holds. Our objective in this

paper is to develop a time-memory trade-off algorithm that reduces

the number of CMux executions in the tree (Eq. (2)) while allowing

for a moderate increase in space complexity (Eq. (3)).

4 TIME-MEMORY TRADE-OFF ALGORITHMS
This section describes our time-memory trade-off algorithms for

evaluating any Boolean function 𝑓 in both the LHE mode and the

FHE mode of TFHE.

4.1 Time-Memory Trade-off CMux Tree in the
LHE Mode of TFHE

To the best of our knowledge, the CMux tree is the fastest method

for homomorphically evaluating arbitrary functions in the LHE

mode of TFHE. In [13], the CMux tree for any public Boolean

function 𝑓 can reduce the number of CMux gates via the Nerode’s

partitioning algorithm. In this paper, to reduce the number of CMux

gates, we introduce a constructive CMux tree algorithm by taking

an alternative approach that increases working memory as a trade-

off. This approach leverages the number of binary patterns at a

depth 𝑑 of the tree, and can effectively reduce the runtime for

evaluating arbitrary public Boolean functions.

The core idea of our algorithm is to decompose the entire func-

tion 𝑓 , whose output vector is y, into sufficiently small subfunc-

tions 𝑓 (𝑏 ) . Each subfunction 𝑓 (𝑏 ) produces an output vector y(𝑏 )
𝑖

of length 𝑏 = 2
𝑖
:

y = (y(𝑏 )
1

, y(𝑏 )
2

, . . . , y(𝑏 )
2
𝑛/𝑏 ) .

A function 𝑓 with an output vector y is denoted by 𝑓y.

Then, each subfunction 𝑓 (𝑏 ) is evaluated based on the inputs

𝑥1, . . . , 𝑥𝑛 beforehand and we utilize the results for the final evalu-

ation of 𝑓 . The number of distinct subfunctions 𝑓 (𝑏 ) decomposed

from 𝑓 is upper bounded by:

min(2𝑏 , 2𝑛/𝑏). (4)

In the CMux tree, there is a relationship between 𝑏 and the depth

𝑑 (0 ≤ 𝑑 ≤ 𝑛) of the tree, where 𝑏 = 2
𝑛−𝑑

. In addition, 𝑓 (2𝑏 )

can be efficiently evaluated using the evaluation results for 𝑓 (𝑏 )

and a CMux gate. These properties indicate that we can reduce

the number of CMux executions significantly in the CMux tree

regardless of the structure of 𝑓 , especially near the bottom of the

tree.

Example 4.1. We aim to evaluate the following 3-bit Boolean

function 𝑓y (𝑥1, 𝑥2, 𝑥3) with 𝑥1 = 1, 𝑥2 = 0 and 𝑥3 = 1,

𝑥1 𝑥2 𝑥3 y

0 0 0 1

0 0 1 1

0 1 0 0

0 1 1 0

1 0 0 1

1 0 1 0

1 1 0 0

1 1 1 1

where the output vector is y = (1, 1, 0, 0, 1, 0, 0, 1). The function can

be decomposed into two subfunctions: 𝑓
(4)
y
1

(𝑥2, 𝑥3) and 𝑓 (4)y
2

(𝑥2, 𝑥3),
where y = y

1
∥ y

2
, y

1
= (1, 1, 0, 0) and y

2
= (1, 0, 0, 1). These sub-

functions are evaluatedwith (𝑥2, 𝑥3): 𝑓 (4)y
1

(0, 1) = 1 and 𝑓
(4)
y
2

(0, 1) =
0.
1
Finally, 𝑓y is evaluated using the following equality:

𝑓y (𝑥1, 0, 1) = CMux(𝑓 (4)y
1

(0, 1), 𝑓 (4)y
2

(0, 1), 𝑥1),
by substituting 𝑥1 = 1.

4.1.1 Algorithm Detail.
The pseudo-code of our time-memory trade-off CMux tree is pre-

sented in Algorithm 2. The algorithm proceeds from bottom to

top as follows. When the depth is 𝑛 − 1 in the CMux tree, 𝑓 is

decomposed into a combination of four subfunctions: 𝑓
(2)
(0,0) (𝑥𝑛) =

0, 𝑓
(2)
(0,1) (𝑥𝑛) = 𝑥𝑛, 𝑓

(2)
(1,0) (𝑥𝑛) = 1 − 𝑥𝑛 and 𝑓

(2)
(1,1) (𝑥𝑛) = 1. These

subfunctions are evaluated by a single variable 𝑥𝑛 . An encrypted

set {0, 𝑥𝑛, 1 − 𝑥𝑛, 1} is sufficient to express the evaluation results

of all subfunctions with 𝑏 = 2. Thus, 2
𝑛−1

CMux executions from

the naive CMux tree are no longer necessary at depth 𝑛 − 1 with
an additional memory of length 4𝑁LWE as a trade-off.

At depth𝑛−2, any 𝑓 (4)y
1
∥y

2

(𝑥𝑛−1, 𝑥𝑛) can be evaluated by 𝑓 (2)y
1

(𝑥𝑛)

and 𝑓
(2)
y
2

(𝑥𝑛):

𝑓
(4)
y
1
∥y

2

(𝑥𝑛−1, 𝑥𝑛) = CMux(𝑓 (2)y
1

(𝑥𝑛), 𝑓 (2)y
2

(𝑥𝑛), 𝑥𝑛−1).

As there are 16 distinct subfunctions with 𝑏 = 4, all subfunctions

𝑓 (4) can be evaluated by at most 16 CMux gates. Additionally, if

y
1
= y

2
, we immediately obtain 𝑓

(4)
y
1
∥y

2

(𝑥𝑛−1, 𝑥𝑛) = 𝑓
(2)
y
1

(𝑥𝑛). Thus,
in total, at most 16 − 4 = 12 executions of CMux gates and 16𝑁LWE
are sufficient to obtain/store all the results, instead of 2

𝑛−2
CMux

executions from the naive CMux tree.

We continue the above procedure until the depth 𝑑 reaches 𝑛 −
ℓ , where ℓ represents a parameter indicating a trade-off level for

1 ≤ ℓ ≤ 𝑛. After that, we switch to Algorithm 1, whose maximal

depth is reduced to 𝑛 − ℓ . Note that each leaf of the reduced tree

refers to the evaluation result of the corresponding subfunction

𝑓 (𝑏 ) (𝑥𝑛−ℓ+1, . . . , 𝑥𝑛−1, 𝑥𝑛) for 𝑏 = 2
ℓ
. Finally, an LWE ciphertext

of 𝑓 (𝑥1, . . . , 𝑥𝑛) is obtained in 𝑉0,0.

4.1.2 Analysis.
We provide analytical results for Algorithm 2 with a trade-off pa-

rameter ℓ . For the time complexity, we again count the number

of XP executions during the computation. The time complexity

required to compute the evaluation results for all subfunctions 𝑓 (𝑏 )

for 𝑏 = 2
1, . . . , 2ℓ is ∑︁

𝑏∈{2𝑖 }2≤𝑖≤ℓ
min(2𝑏 − 2𝑏/2, 2𝑛/𝑏) .

The time complexity of the remaining CMux tree is∑︁
1≤𝑖≤𝑛−ℓ

2
𝑖−1 = 2

𝑛−ℓ − 1.

1
Note that, e.g., when y

1
= y

2
, we do not need to evaluate 𝑓

(4)
y
2
(0, 1) and can reuse

𝑓
(4)
y
1
(0, 1) , which has already been computed, since 𝑓

(4)
y
2
(0, 1) = 𝑓

(4)
y
1
(0, 1) , and this

explains the basic idea behind why our approach can lead to lower time complexity

compared with the naive CMux tree.
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Algorithm 2: Time-memory trade-off of CMuxTree

Input: ℓ ∈ N, 𝑥1, 𝑥2, ..., 𝑥𝑛 , the vector of all the 2𝑛 outputs

of the function 𝑓 : y
Output: 𝑓 (𝑥1, 𝑥2, ..., 𝑥𝑛)

1 𝑉 ← {𝑉𝑖, 𝑗 ← ⊥ | 0 ≤ 𝑖 ≤ 𝑛 − ℓ − 1, 𝑗 ∈ {0, 1}} ⊲ Initialize 𝑉

2 t← {𝑡𝑖 = 0 | 0 ≤ 𝑖 ≤ 𝑛 − ℓ} ⊲ Initialize vector t for a flag
3 𝑓
(2)
(0,0) ← 0 ⊲ Evaluation result of 𝑓 (2) (𝑥𝑛) = 0

4 𝑓
(2)
(0,1) ← 𝑥𝑛 ⊲ 𝑓 (2) (𝑥𝑛) = 𝑥𝑛

5 𝑓
(2)
(1,0) ← 1 − 𝑥𝑛 ⊲ 𝑓 (2) (𝑥𝑛) = 1 − 𝑥𝑛

6 𝑓
(2)
(1,1) ← 1 ⊲ 𝑓 (2) (𝑥𝑛) = 1

7 for 𝑑 ← 𝑛 − 1, . . . , 𝑛 − ℓ + 1 do
8 𝑏 ← 2

𝑛−𝑑

9 foreach subfunction 𝑓
(2𝑏 )
y
1
∥y

2

decomposed from 𝑓 do
10 if y1 = y2 then
11 𝑓

(2𝑏 )
y
1
∥y

2

← 𝑓
(𝑏 )
y
1

12 else
13 𝑓

(2𝑏 )
y
1
∥y

2

← CMux(𝑓 (𝑏 )y
1

, 𝑓
(𝑏 )
y
2

, 𝑥𝑑 )
14 end
15 for 𝑖 ← 0, . . . , 2𝑛−ℓ−1 − 1 do
16 𝑡𝑛−ℓ = 2 ⊲ Depth 𝑛 − ℓ is ready for CMux

17 for 𝑑 ← 𝑛 − ℓ, . . . , 1 do
18 if 𝑡𝑑 = 2 then
19 if 𝑑 = 𝑛 − ℓ then
20 y

1
← y[2ℓ+1𝑖 : 2ℓ (2𝑖 + 1)]

21 y
2
← y[2ℓ (2𝑖 + 1) : 2ℓ+1 (𝑖 + 1)]

22 if 𝑡𝑑−1 = 0 then
23 𝑉𝑑−1,0 ← CMux(𝑓 (2

ℓ )
y
1

, 𝑓
(2ℓ )
y
2

, 𝑥𝑑 )
24 else
25 𝑉𝑑−1,1 ← CMux(𝑓 (2

ℓ )
y
1

, 𝑓
(2ℓ )
y
2

, 𝑥𝑑 )
26 else if 𝑡𝑑−1 = 0 then
27 𝑉𝑑−1,0 ← CMux(𝑉𝑑,0,𝑉𝑑,1, 𝑥𝑑 )
28 else
29 𝑉𝑑−1,1 ← CMux(𝑉𝑑,0,𝑉𝑑,1, 𝑥𝑑 )
30 𝑡𝑑−1 = 𝑡𝑑−1 + 1 ⊲ Compute depth 𝑑 − 1
31 𝑡𝑑 = 0 ⊲ Reset depth 𝑑

32 else
33 break ⊲ Goto next node

34 return 𝑉0,0 ⊲ Return root value of 𝑉

For space complexity, the memory required to store results of all

subfunctions 𝑓 (𝑏 ) for 𝑏 = 2
1, . . . , 2ℓ is∑︁

𝑏∈{2𝑖 }1≤𝑖≤ℓ
min(2𝑏 , 2𝑛/𝑏)𝑁LWE .

The space complexity of the reduced CMux tree is

(𝑛 − 1)𝑁GSW + 2(𝑛 − ℓ)𝑁LWE + 2𝑛 + 𝑛 − ℓ + 1.

If we set ℓ = 𝑂 (log𝑛), we can reduce the time complexity by a

factor of 𝑂 (𝑛) at the cost of an additional space complexity of

𝑂 (2𝑛). This represents a practical time-memory trade-off, as𝑂 (2𝑛)

space is already required for the LUT. Experimentally, we show

that ℓ = log(𝑛/2) works well to evaluate arbitrary 8-bit and 16-bit

Boolean functions.

The noise growth of our algorithm is the same as that of the

original CMux tree, i.e., proportional to

√
𝑛. This is because the

CMux depth of Algorithm 2 is 𝑂 (𝑛), which is the same as that of

Algorithm 1. Algorithm 2 does not leak any information about the

inputs 𝑥1, 𝑥2, . . . , 𝑥𝑛 or the output value 𝑓 (𝑥1, 𝑥2, . . . , 𝑥𝑛), except for
the structure of the function 𝑓 . The required plaintext space is 𝑝 = 3,

which is the same as in Algorithm 1, since {0, 1} is necessary to

store the evaluation results for subfunctions, {−1, 0, 1} is required
to evaluate a CMux gate with a single XP execution.

4.2 DNF and CNF in the FHE Mode of TFHE
There are seminal works on evaluating arbitrary Boolean functions

in the FHE mode of TFHE [2, 3, 14]. Many of these are based on the

BDD, which is similar to the CMux tree. In this study, we introduce

alternative algorithms based on the Disjunctive Normal Form (DNF)

or Conjunctive Normal Form (CNF) of the function 𝑓 and its time-

memory trade-off variants, which has smaller space complexity in

terms of the number of LWE ciphertexts required. First we define

the literal of 𝑥 .

Definition 4.2 (Literal). The literal of a Boolean variable 𝑥 is

defined by

𝑥𝑒 :=

{
𝑥 (𝑒 = 0),
𝑥 (𝑒 = 1) .

A DNF or CNF of a Boolean function 𝑓 can be obtained via

Boole’s expansion theorem, which is often referred to as the Shan-

non expansion.

Theorem 4.3 (Boole’s expansion theorem). Let 𝑓 (𝑥1, 𝑥2, . . . , 𝑥𝑛)
be a Boolean function. Boole’s expansion theorem states that a DNF
of 𝑓 can be expressed as follows:

𝑓 (𝑥1, . . . , 𝑥𝑛) = 𝑥1 ∧ 𝑓 (0, 𝑥2, . . . , 𝑥𝑛) ∨ 𝑥1 ∧ 𝑓 (1, 𝑥2, . . . , 𝑥𝑛)
= · · ·

=
∨

𝑒1,...,𝑒𝑛∈{0,1}
𝑥
𝑒1
1
∧ · · · ∧ 𝑥𝑒𝑛𝑛 ∧ 𝑓 (𝑒1, . . . , 𝑒𝑛), (5)

where ∨ denotes the OR operation and
∨

denotes the disjunction of
logical terms. A CNF of 𝑓 can be expressed as follows:

𝑓 (𝑥1, . . . , 𝑥𝑛) = (𝑥1 ∨ 𝑓 (0, 𝑥2, . . . , 𝑥𝑛)) ∧ (𝑥1 ∧ 𝑓 (1, 𝑥2, . . . , 𝑥𝑛))
= · · ·

=
∧

𝑒1,...,𝑒𝑛∈{0,1}
𝑥
𝑒1
1
∨ · · · ∨ 𝑥𝑒𝑛𝑛 ∨ 𝑓 (𝑒1, . . . , 𝑒𝑛), (6)

where
∧

denotes the conjunction of logical terms. 𝑓 (𝑒1, . . . , 𝑒𝑛) equals
𝑦𝑖 for 𝑖 =

∑
1≤ 𝑗≤𝑛 2

𝑛− 𝑗𝑒 𝑗 .

For the DNF of 𝑓 , Eq. (5) can be homomorphically constructed

in the LHE mode of TFHE by applying an XP operation for ∧ and a

homomorphic addition for ∨. This approach works because at most

one conjunction term (𝑥
𝑒1
1
∧ · · · ∧ 𝑥𝑒𝑛𝑛 ∧ 𝑓 (𝑒1, . . . , 𝑒𝑛)) is equal to 1,

and the computation is performed with 𝑝 = 2. However, for large

𝑛, the decryption may fail due to noise growth. For the CNF of 𝑓 ,

the above approach does not work, and a bootstrapping technique

is required to perform non-linear operations.
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With integer-wise TFHE, both Eq. (5) and Eq. (6) can be realized

as a homomorphic circuit in the FHE mode of TFHE at a reasonable

cost. The idea is to compute one conjunction (disjunction) term and

perform a summation with previous calculations in a single PBS,

which can be seen as an application of the chaining method [5]. The

concrete construction of our algorithm is presented in Algorithm 3.

Algorithm 3: ShannonExp
Input: 𝑥1, 𝑥2, ..., 𝑥𝑛 , the vector of all the 2𝑛 outputs of the

function 𝑓 : y
Output: 𝑓 (𝑥1, 𝑥2, ..., 𝑥𝑛)

1 𝑠 ∈ {0, 1}
⊲ Initialize the first state 𝑠0 depending on DNF or CNF

2 for (𝑒1, . . . , 𝑒𝑛) ∈ {0, 1}𝑛 do
3 𝑡 ← 𝑓 (𝑒1, 𝑒2, . . . , 𝑒𝑛) ⊲ 𝑦𝑖 with 𝑖 =

∑
1≤ 𝑗≤𝑛 2

𝑛− 𝑗𝑒 𝑗
4 for 𝑗 ← 1, . . . , 𝑛 do
5 𝑡 ← 𝑡 + 𝑥𝑘 (𝑒 𝑗 )

𝑗
⊲ Hom. addition

6 𝑠 ← (𝑛 + 1)𝑠 ⊲ Hom. scalar multiplication

7 𝑠 ← 𝑔(𝑠 + 𝑡) ⊲ Programmable bootstrapping with 𝑔

8 return 𝑠 ⊲ Return the last state 𝑠2𝑛

4.2.1 Algorithm Detail.
Algorithm 3 provides a framework for evaluating a function 𝑓 in

either of DNF or CNF representation. We aim to construct a chain

of 2
𝑛
subcircuits C𝑖 (1 ≤ 𝑖 ≤ 2

𝑛
), where the plaintext space is

commonly 𝑝 , such that the inputs of C𝑖 are literals of inputs and
𝑠𝑖−1, where 𝑠𝑖−1 is an output of the previous subcircuit C𝑖−1 (with
𝑠0 = {0, 1}), and C𝑖 outputs 𝑠𝑖 , ensuring that 𝑠2𝑛 = 𝑓 (𝑥1, . . . , 𝑥𝑛). A
subcircuit C𝑖 involves only homomorphic additions, homomorphic

scalar multiplications, and a singe PBS. Such a subcircuit can be

efficiently constructed using the method proposed in [3]. Each

subcircuit is described by

𝑠𝑖 ← 𝑔((𝑛 + 1)𝑠𝑖−1 + 𝑥𝑘 (𝑒1 )
1

+ · · · + 𝑥𝑘 (𝑒𝑛 )𝑛 + 𝑓 (𝑒1, . . . , 𝑒𝑛)),

where 𝑘 (𝑒𝑖 ) is 𝑒𝑖 when DNF is used and 𝑒𝑖 when CNF is used. For

DNF, 𝑠0 = 0 and the non-linear function 𝑔 in Algorithm 3 is defined

as the following 𝑔DNF,

𝑔DNF (𝑥) :=
{

0 (0 ≤ 𝑥 ≤ 𝑛),
1 (𝑛 + 1 ≤ 𝑥 ≤ 2𝑛 + 2).

For CNF, 𝑠0 = 1 and the non-linear function 𝑔 in Algorithm 3 is

defined as the following 𝑔CNF,

𝑔CNF (𝑥) :=
{

0 (0 ≤ 𝑥 ≤ 𝑛 + 1),
1 (𝑛 + 2 ≤ 𝑥 ≤ 2𝑛 + 2).

Since each subcircuit is executed in series, the required space com-

plexity is the space needed to execute a single subcircuit C𝑖 .

4.2.2 Analysis.
The time complexity of Algorithm 3 is 2

𝑛
, which is determined

by the number of PBS executions. In the FHE mode of TFHE, a

bootstrapping key (BKS) and a key switching key (KSK) are required

to execute a PBS. The space complexity is

𝑁BSK + 𝑁KSK + 𝑁RLWE + 3𝑁LWE + 2𝑛 . (7)

An RLWE ciphertext is required to store the LUT of 𝑔. An additional

LWE ciphertext is necessary in the KS-PBS TFHE to store a key-

switched LWE during KS and PBS. The required plaintext space is

𝑝 = 4(𝑛 + 1) + 2 when we use an even 𝑝 , as it is necessary to double

the domain of the non-negacyclic function 𝑔. If we choose an odd 𝑝 ,

the plaintext space can be reduced by tweaking several modules in

TFHE [3, Section 6]. The maximum failure probability of the circuit

is measured just before the execution of a PBS.

4.3 Time-Memory Trade-off Algorithms for
DNF and CNF

In what follows, we explain the time-memory trade-off algorithm of

the DNF variant. The CNF variant can also be obtained in a similar

manner. The pseudo-code is provided in Algorithm 4.

Algorithm 4: Time-memory trade-off of ShannonExp

Input: ℓ ∈ N, 𝑥1, 𝑥2, ..., 𝑥𝑛 , the vector of all the 2𝑛 outputs

of the function 𝑓 : y
Output: 𝑓 (𝑥1, 𝑥2, ..., 𝑥𝑛)

1 𝑠 ∈ {0, 1}
⊲ Initialize the first state 𝑠0 depending on DNF or CNF

2 𝑓
(2)
(0,0) ← 0

3 𝑓
(2)
(0,1) ← 𝑥𝑛

4 𝑓
(2)
(1,0) ← 1 − 𝑥𝑛

5 𝑓
(2)
(1,1) ← 1

6 for 𝑑 ← 𝑛 − 1, . . . , 𝑛 − ℓ + 1 do
7 𝑏 ← 2

𝑛−𝑑

8 foreach subfunction 𝑓
(2𝑏 )
y
1
∥y

2

decomposed from 𝑓 do
9 if y1 = y2 then

10 𝑓
(2𝑏 )
y
1
∥y

2

← 𝑓
(𝑏 )
y
1

11 else
12 𝑓

(2𝑏 )
y
1
∥y

2

← ℎ(𝑓 (𝑏 )y
1

+ 3𝑓 (𝑏 )y
2

+ 2𝑥𝑑 ) ⊲ PBS with ℎ

13 end
14 for (𝑒1, . . . , 𝑒𝑛−ℓ ) ∈ {0, 1}𝑛 do
15 y

1
← y[2ℓ ∑𝑖 2

𝑛−ℓ−𝑖𝑒𝑖 : 2ℓ ((
∑
𝑖 2

𝑛−ℓ−𝑖𝑒𝑖 ) + 1)]
16 𝑡 ← 𝑓

(2ℓ )
y
1

⊲ 𝑓 (𝑒1, . . . , 𝑒𝑛−ℓ , 𝑥𝑛−ℓ+1, . . . 𝑥𝑛)
17 for 𝑗 ← 1, . . . , 𝑛 − ℓ do
18 𝑡 ← 𝑡 + 𝑥𝑘 (𝑒 𝑗 )

𝑗
⊲ Hom. addition

19 𝑠 ← (𝑛 − ℓ + 1)𝑠 ⊲ Hom. scalar multiplication

20 𝑠 ← 𝑔(𝑠 + 𝑡) ⊲ PBS with 𝑔

21 return 𝑠 ⊲ Return the last state 𝑠
2
𝑛−ℓ

4.3.1 Algorithm Detail.
For an integer parameter ℓ , we consider the (𝑛 − ℓ)-level of the
Shannon expansion:

𝑓 (𝑥1, . . . , 𝑥𝑛) =
∨

𝑒1,...,𝑒𝑛−ℓ ∈{0,1}
𝑥
𝑒1
1
∧ · · · ∧ 𝑥𝑒𝑛−ℓ

𝑛−ℓ ∧

𝑓 (𝑒1, . . . , 𝑒𝑛−ℓ , 𝑥𝑛−ℓ+1, . . . , 𝑥𝑛) . (8)
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Eq. (8) has 2
𝑛−ℓ

conjunction terms. If one has all the evaluation

results for 𝑓 (𝑒1, . . . , 𝑒𝑛−ℓ , 𝑥𝑛−ℓ+1, . . . , 𝑥𝑛), Eq. (8) can be efficiently

computed via Algorithm 3. Evaluating 𝑓 (𝑒1, . . . , 𝑒𝑛−ℓ , 𝑥𝑛−ℓ+1, . . . , 𝑥𝑛)
is equivalent to evaluating a subfunction 𝑓 (𝑏 ) (𝑥𝑛−ℓ+1, . . . , 𝑥𝑛) of 𝑓 ,
where both functions share the common output vector y of length

𝑏 = 2
ℓ
. Thus, our strategy is to compute evaluation results for all

subfunctions 𝑓 (𝑏 ) (21 ≤ 𝑏 ≤ 2
ℓ
) in the FHE mode.

A subfunction 𝑓
(2𝑏 )
y
1
∥y

2

(𝑥𝑛−ℓ+1, . . . , 𝑥𝑛) is evaluated by a DNF from

𝑓
(𝑏 )
y
1

(𝑥𝑛−ℓ+2, . . . , 𝑥𝑛) and 𝑓
(𝑏 )
y
2

(𝑥𝑛−ℓ+2, . . . , 𝑥𝑛) as follows:

𝑓
(2𝑏 )
y
1
∥y

2

(𝑥𝑛−ℓ+1, . . . , 𝑥𝑛) = 𝑥𝑛−ℓ+1 ∧ 𝑓
(𝑏 )
y
1

(𝑥𝑛−ℓ+2, . . . , 𝑥𝑛)

∨𝑥𝑛−ℓ+1 ∧ 𝑓
(𝑏 )
y
2

(𝑥𝑛−ℓ+2, . . . , 𝑥𝑛) (9)

In the FHE mode of TFHE, Eq. (9) can be implemented by a single

PBS with the plaintext space 𝑝 = 7 by utilizing the circuit construc-

tion method [3]:

𝑓
(2𝑏 )
y
1
∥y

2

(𝑥𝑛−ℓ+1, . . . , 𝑥𝑛) = ℎ(𝑓 (𝑏 )y
1

+ 3𝑓 (𝑏 )y
2

+ 2𝑥𝑛−ℓ+1), (10)

where a non-linear function ℎ is defined by

ℎ(𝑥) :=
{

0 (𝑥 = 0, 1, 2, 5),
1 (𝑥 = 3, 4, 6) .

Similar to the LHE mode, all subfunctions with length 𝑏 ≤ 2
ℓ
are

evaluated by recursively applying Eq. (10).

If we have a sufficiently large plaintext space, 𝑓
(2ℓ )
y
1

(𝑥𝑛−ℓ+1, . . . , 𝑥𝑛)
can be directly evaluated with a single PBS, and 𝑝 = 2

ℓ−1 + 1 as
follows:

𝑓
(2ℓ )
y
1

(𝑥𝑛−ℓ+1, . . . , 𝑥𝑛) = ℎy
1

( ∑︁
𝑛−ℓ+1≤𝑖≤𝑛

2
𝑛−𝑖𝑥𝑖

)
, (11)

where the LUT of ℎy
1

is defined by the output vector y
1
.

4.3.2 Analysis.
The required number of PBS executions to construct all subfunc-

tions using Eq. (10) is exactly the same as the number of XP execu-

tions in the LHE mode, which is∑︁
𝑏∈{2𝑖 }2≤𝑖≤ℓ

min(2𝑏 − 2𝑏/2, 2𝑛/𝑏) .

If we use Eq. (11), the time complexity is reduced to 2
𝑛−ℓ

. The

time complexity of the remaining DNF circuit is 2
𝑛−ℓ

. For space

complexity, we obtain

𝑁BSK + 𝑁KSK + 𝑁RLWE +
(∑︁
𝑏

min(2𝑏 , 2𝑛/𝑏) + 3
)
𝑁LWE + 2𝑛,

if Eq. (10) is implemented. At least one RLWE ciphertext is required

to store LUTs for PBS operations. Adopting Eq. (11) results in the

same space complexity as Eq. (7), since we can reuse a single RLWE

ciphertext to store the LUTs of ℎy
1

and 𝑔. However, variations from

Algorithm 3 could occur in cryptographic parameters as a result of

changes in the plaintext space 𝑝 .

A practical time-memory trade-off for the circuit is achieved by

setting ℓ = 𝑂 (log𝑛) in both cases. This adjustment reduces time

by a factor of 𝑂 (𝑛) and increases space to 𝑂 (2𝑛). Our experiments

show that applying Eq. (11) with ℓ = 4 to the circuit results in the

maximal speedup for 8-bit Boolean functions.

5 EXPERIMENTS
We implemented these methods by forking the tfhe-rs library [22]
version 0.2.4 (commit cb1a95). All experiments were conducted

on a desktop PC equipped with an AMD Ryzen 9 3900 processor.

The cryptographic parameters we used are listed in Table 2. These

parameters are derived from the tfhe-rs library. The security levels
are obtained from the lattice-estimator2 [1].

5.1 LHE Mode
We compare the performance between Algorithm 1 (CMuxTree)
and Algorithm 2 (CMuxTreeTMTO) for 8-in 1-out Boolean func-

tions. In this experiment, we evaluate randomly generated 100

Boolean functions and measure their mean values. We use a trade-

off parameter ℓ = log(𝑛/2) = 2, which minimizes the runtime.

Additionally, we utilize RLWE and RGSW (GGSW) ciphertexts in-

stead of LWE and GSW ciphertexts, as this version of tfhe-rs
supports fast XP operations using the Fast Fourier Transform for

these types of ciphertexts. For the cryptographic parameters, we

use the TFHE-lib parameter set, which is derived from the tfhe-rs
library. The results are shown in Table 3.

In our environment, a single XP execution consumes approx-

imately 10 microseconds, which accounts for the dominant part

of the total runtime. To calculate the total memory usage, we set

𝑁GGSW = 32, 768 bytes and 𝑁RLWE = 16, 384 bytes. Typically, 8

bytes are necessary for a single plaintext data unit. Consequently,

we achieved a time-memory trade-off with a 2.8 × reduction in total

runtime and 1.4 × increase in memory usage.

We also conducted the same experiment for relatively large 16-bit

Boolean functions.

For this experiment, we used a trade-off parameter ℓ = log(𝑛/2) =
3 and the same parameter set. The results are shown in Table 4.

The number of XP executions is reduced from 2
16

to 2
2+24+28+

2
13
, resulting in a 7.8× speed-up in runtime. The required memory

capacity is increased to approximately 3.8×, which also indicates

that the time-memory trade-off is not a trivial exchange between

time and space complexity. We present a graphical representation of

the time-memory trade-off for 16-bit Boolean functions in Figure 2.

It indicates that ℓ = 3 is a favorable choice for both time and

memory.

5.2 FHE Mode
In the FHE mode, we compare Algorithm 3 (Shannon) and Algo-

rithm 4 (ShannonTMTO) for 8-bit Boolean functions. The cryp-

tographic parameter set we used for Algorithm 3 is TFHE-m6. For
Algorithm 4, we compare the two variants using Eq. (10) (version 1)

and Eq. (11) (version 2). Version 1 uses ℓ = log𝑛 = 3 and TFHE-m6
to compare the performance between Algorithm 3 and Algorithm 4

under the same conditions. Version 2 uses ℓ = 4 and TFHE-m5,
whose plaintext space is smaller than that of Algorithm 3 due to

the larger parameter ℓ . The results are presented in Table 5.

A single PBS execution takes 53 milliseconds with the TFHE-m5
parameter set and 119 milliseconds with the TFHE-m6 parameter

set. These durations are significantly slower than the XP operation

in the LHE mode, making the PBS the bottleneck in the entire

computation. We measured 𝑁BSK = 117megabytes and 𝑁KSK = 134

2
https://github.com/malb/lattice-estimator
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Table 2: Cryptographic parameters

Name Bit Security 𝑝 LWE dim. RLWE dim. ℓPBS log
2
(𝐵PBS) ℓKS log

2
(𝐵KS) 𝜎2 for LWE 𝜎2 for RLWE

TFHE-lib 128 4 830 1024 1 23 5 3 2
−39

2
−103

TFHE-m5 128 16 808 4096 1 22 3 5 2
−39

2
−103

TFHE-m6 128 32 875 8192 1 22 6 3 2
−41

2
−124

Table 3: Results for 8-in 1-out Boolean functions.

Algorithm # of XPs Time [us] Space [KB]

CMuxTree 255 2, 797 526
CMuxTreeTMTO 79 993 756

Table 4: Results for 16-in 1-out Boolean functions.

Algorithm # of XPs Time [ms] Space [MB]

CMuxTree 65, 535 690 1.6
CMuxTreeTMTO 8,443 89 6.0
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Figure 2: Time-Memory Trade-off for 16-in 1-out functions.

Table 5: Results for 8-in 1-out Boolean functions.

Algorithm # of PBSs Time [s] Space [MB]

Shannon 256 30.5 637.6

ShannonTMTO v1 78 9.3 637.7

ShannonTMTO v2 32 1.7 251.7

megabytes for TFHE-m5, 𝑁BSK = 235 megabytes and 𝑁KSK = 403

megabytes for TFHE-m6, respectively.
The time-memory trade-off algorithm using Eq. (10) results in

less than a 1% increase in memory, while the runtime is approxi-

mately 3.3× faster. This is because the space complexity required

for a BSK and a KSK is the dominant part of the total memory usage.

The time-memory trade-off algorithm, which uses Eq. (11) with

ℓ = 4, effectively balances the time complexity required for com-

puting all subfunctions and merging the results, resulting in 17.9×

speedups compared with the original algorithm. Additionally, the

space complexity is reduced to approximately 40%. This reduc-

tion occurs because the required number of dimensions for crypto-

graphic structures decreases as the plaintext space is reduced.

We acknowledge that there are more effective methods for eval-

uating 8-bit Boolean functions in the FHE mode, such as directly

evaluating the entire function with a single 8-bit PBS, using the

tree-PBS [14], the bootstrapped CMux tree [2], or NTRU-based

schemes [4, 20]. The objective of this paper is to demonstrate time-

memory trade-offs for TFHE in the FHE mode. Identifying the

fastest method or exploring time-memory trade-offs for other meth-

ods will be left as future work.

A key advantage of function evaluation in the FHE mode is that

it eliminates the need for costly CBS executions to convert LWE

ciphertexts to GSW ciphertexts
3
. However, the FHE mode incurs

additional costs due to the execution of PBS operations. In practice,

hybrid-mode algorithms, such as WoP-PBS [2], which combine the

benefits of both LHE and FHE modes, can be more effective. Further

exploration into function evaluation using the hybrid-mode TFHE

remains open for future research.

6 CONCLUSION
In this paper, we presented time-memory trade-off algorithms for

evaluating arbitrary Boolean functions in both the LHE and FHE

modes of TFHE. The concrete verification of these trade-offs using

the latest TFHE library was conducted. Future research includes

the development of time-memory trade-off algorithms for evalu-

ating functions in the hybrid-mode TFHE. Further acceleration is

expected by searching more appropriate cryptographic parameters

adapted for our schemes, or by combining our method with existing

state-of-the-art techniques, such as vertical/horizontal packing and

multi-value bootstrapping.
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