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Abstract In this work, we introduce enhanced high-order masking techniques tailored for Dilithium,
the post-quantum signature scheme recently standardized by NIST. We improve the masked gener-
ation of the masking vector y, based on a fast Boolean-to-arithmetic conversion modulo q. We also
describe an optimized gadget for the high-order masked rejection sampling, with a complexity in-
dependent from the size of the modulus q. We prove the security of our gadgets in the classical ISW
t-probing model. Finally, we detail our open-source C implementation of these gadgets integrated
into a fully masked Dilithium implementation, and provide an efficiency comparison with previous
works.

1 Introduction

Dilithium signatures. The Dilithium signature scheme [BDK+21] was recently announced
in 2022 as the primary signature scheme standardized by the National Institute of Standards
and Technologies (NIST) in their post-quantum algorithm competition. Dilithium is a lattice-
based scheme utilizing the “Fiat-Shamir with Aborts” technique developed by Lyubashevsky
[Lyu09] based on rejection sampling, so that the signature does not leak information about the
secret-key. We recall in Fig. 1 the mechanism of Dilithium signatures.

In recent years, many side-channels attacks against Dilithium have been described, see for
example [BDE+18,LZS+21,MUTS22], underscoring the need for robust side-channel countermea-
sures. Below we recall the modern approach for protecting a cryptographic algorithm against
side-channel attacks, namely the masking countermeasure and the ISW probing model with the
NI/SNI definitions.

The masking countermeasure. The goal of the masking countermeasure is to split every
secret-dependent variable x into n shares xi with x = x1⊕· · ·⊕xn, so that an adversary observing
a fraction of the computation does not get information about the secret-key. To put the masking
countermeasure into firm scientific grounds, [ISW03] introduced the t-probing model, in which
an attacker can probe up to t variables. The authors showed that using n = 2t+ 1 shares, any
Boolean circuit C of size |C| can be transformed into an equivalent circuit C̃ that is t-probing
secure, with a complexity quadratic in n. Throughout this paper, we will use the standard NI/SNI
definitions introduced in [BBD+15] that facilitate the writing of security proofs. Namely, one
can focus on proving the NI/SNI security of individual masking gadgets, and the security of the
full algorithm follows by composition.



Since lattice-based cryptography combines Boolean and arithmetic operations, it is usually
more efficient to mask some variables with Boolean masking x = x1 ⊕ · · · ⊕ xn, and some
other variables with arithmetic masking x = x1 + · · · + xn mod q, rather than applying ISW
generically with Boolean masking only. This approach requires frequent conversions between the
two representations. The first high-order conversion between arithmetic and Boolean masking
was described in [CGV14] for a power-of-two modulus q. It was then extended to any modulus
q in [BBE+18]. In [SPOG19], the authors described an efficient 1-bit Boolean to arithmetic
conversion modulo q, which is easily converted into a k-bit Boolean to arithmetic conversion.
In [BCZ18], the authors described a k-bit Boolean to arithmetic modulo 2k conversion, with
complexity O(2n), but independent from k when using k-bit registers; in practice, for small
values of n, the algorithm is significantly faster than alternative algorithms.

KeyGen

1: A← Rk×ℓ
q

2: (s1, s2)← Sℓ
η × Sk

η

3: t := As1 + s2
4: return (pk = (A, t1), sk = (A, t, s1, s2))

Sign(sk,M)

1: z := ⊥
2: while z = ⊥ do
3: y← S̃ℓ

γ1
4: w := Ay
5: (w0,w1) := Decomposeq(w, 2γ2)
6: c := H(M ∥w1)
7: z := y + cs1
8: r̃ := w0 − cs2
9: if ∥z∥∞ ≥ γ1 − β or ∥r̃∥∞ ≥ γ2 − β, then z := ⊥
10: end while
11: return σ = (z, c)

Verify(pk,M, σ = (z, c))

1: w′
1 := HighBits(Az− ct)

2: return J∥z∥∞ < γ1 − βK and Jc = H(M ∥w′
1)K

Figure 1. Simplified template of Dilithium with r̃-version (reference implementation), without
public-key compression.

Masking Dilithium signatures. The high-order masking of lattice-based signatures was ini-
tiated in [BBE+18] with the masking of the GLP scheme [GLP12], a predecessor of Dilithium.
Subsequent efforts to implement high-order masking for Dilithium were initially detailed in
[MGTF19] and later refined in [ABC+23]. In particular, the vector w = Ay (Line 4) should be
masked, while it was left unmasked in [MGTF19], which could potentially lead to the recovery
of the private key. The authors of [ABC+23] also argued that w1 in (w1,w0)← Decomposeq(w)
(Line 5) can be computed in the clear because it is also publicly computed during signature
verification. Conveniently, this implies that the challenge c̃ = H(M∥w1) need not be masked,
thereby eliminating the need to mask the Keccak hash function H. Similarly, for Dilithium sig-
nature with public-key compression, the variable w− cs2 = Az− ct is public after the rejection
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sampling. Therefore, as explained in [ABC+23], one does not need to mask the computation of
the hint vector h. We follow the same approach in this paper.

Therefore, starting from the generation of y at Line 3 in Fig. 1, the variables y, w, w0, z
and r̃ must all be masked. This implies that the following operations must be masked:

– Masked generation of y← S̃ℓ
γ1 (Line 3). Each coefficient y of the masking vector y must be

uniformly distributed in an interval. Following [BBE+18], this operation can be masked by
first generating a random µ-bit Boolean masked coefficient, and then performing a Boolean
to arithmetic conversion modulo q, using for example [SPOG19].

– Masking of Decompose (Line 5). As explained above, only w0 in (w1,w0)← Decomposeq(w)
must be masked. In [ABC+23], the authors described an efficient masking of Decompose,
which was later improved in [CGTZ23].

– Masked rejection sampling (Line 9). The variable z can only be unmasked after successfully
completing the rejection sampling of both z and r̃ to prevent leakage of the secret-key. The
approach in [BBE+18] uses integer comparison, leveraging arithmetic to Boolean masking
for sign bit extraction. The same approach is used in [ABC+23] with an improved algorithm,
with fewer operations than in [BBE+18].

Recently, for the masked generation of the masking vector y, the authors of [CGTZ23] have
described an improved Boolean to arithmetic conversion, with complexity independent from the
Boolean input size and modulus size. Their technique is based on first performing a fast Boolean
to arithmetic conversion modulo 2k using [BCZ18] for a certain parameter k, and then performing
a modulus switching to modulo q; to correct the error introduced in the modulus switching, one
eventually performs a sequence of arithmetic shifts. Their algorithm therefore extends the fast
Boolean to arithmetic conversion of [BCZ18], previously limited to power-of-two moduli (see
Table 1).

Direction Complexity Register size

[CGV14] B → A (mod 2k) O(n2 · k) −
[BBE+18] B → A (mod q) O(n2 · log q) −
[SPOG19] B → A (mod q) O(n2 · µ) −

[BCZ18] B → A (mod 2k) O(2n) −
[CGTZ23] B → A (mod q) O(2n) k = µ+ ⌈log2 q⌉+ ⌈log2 n⌉

This paper B → A (mod q) O(2n) k = µ+ ⌈log2 n⌉

Table 1. Complexities of µ-bit Boolean to arithmetic conversions with n shares.

Our contributions. This paper introduces enhanced high-order masking techniques tailored
for Dilithium, to improve runtime complexity. We make the following contributions:

– We enhance the fast Boolean to arithmetic conversion algorithm of [CGTZ23] for high-order
masking the generation of the masking vector y in Dilithium. While maintaining the same
asymptotic complexity O(2n), our improvement reduces the register size to k = µ+ ⌈log2 n⌉
from the original k = µ + ⌈log2 q⌉ + ⌈log2 n⌉, where µ represents the Boolean input’s bit
size; see Table 1. This adjustment allows us to use 32-bit registers instead of 64-bit ones
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for Dilithium’s parameters. Consequently, on a 32-bit processor, our optimized conversion is
expected to be about twice as fast.

– We introduce a new technique for performing the high-order rejection sampling with com-
plexity independent from the size of the modulus q. The new complexity only depends on
the size β of the interval that must be rejected by the rejection sampling. Our technique is
based on first performing an arithmetic shift of the polynomial coefficient, and then a zero
test, for which we use the fast zero-testing procedure from [CGMZ23], whose complexity is
independent from the size of q.

Finally, we present in Section 5 a complete high-order masked implementation of Dilithium,
with the improved gadgets described above. We provide the practical results of an open source C
implementation and compare the performance improvement provided by our new gadgets with
those from [ABC+23] and [CGTZ23]. We show that our techniques achieve a notable speedup
compared to previous work. Specifically, our new Boolean-to-arithmetic masking algorithm for
generating the masked vector y is faster and easier to implement than that of [CGTZ23], and our
enhanced gadget for rejection sampling surpasses the speed of the gadget presented in [ABC+23]
for a non-bitsliced implementation, which itself represented a significant advancement over the
original method in [BBE+18]. The plain C code is publicly available at

https://github.com/fragerar/tches24_masked_Dilithium

Dilithium vs ML-DSA. The main difference between Dilithium (Version 3.1) [BDK+21]
and the ML-DSA draft standard [NIS23] centers on the seed ρ′ generation for the vector y.
Dilithium uses a 512-bit random string for ρ′ in its randomized signatures, while ML-DSA
adopts a “hedged” approach, generating ρ′ pseudo-randomly using the signer’s private-key, the
message M , and a 256-bit random string rnd, thereby maintaining security even if the RNG is
compromised.

In randomized Dilithium, the coefficients y in y are computationally indistinguishable from
the uniform distribution within ]− γ1, γ1], so we can directly generate each masked coefficient y
uniformly, as in [ABC+23,CGTZ23], bypassing the need to mask the hash function H and the
ExpandMask function. Instead, for our fully masked ML-DSA implementation detailed in Section
5.4, we incorporate masked H and ExpandMask functions to maintain ML-DSA’s “hedged”
feature. We then compare its performances with randomized Dilithium signatures.

2 Notations and security definitions

2.1 Notations

We adopt the same notations as the Dilithium specifications [BDK+21]. Let Zq denote the
ring of integers modulo q. We define the polynomial quotient rings R = Z[X]/(X256 + 1) and
Rq = Zq[X]/(X256+1). The infinity norm of an element z =

∑
z(i)Xi ∈ Rq is denoted by ∥z∥∞

and defined as follows:

∥z∥∞ = max
0≤i<256

|z(i) mod± q|

where for x ∈ Z, we denote by x mod+ q (resp. x mod± q) the positive (resp. centered) repre-
sentative of x modulo q. We denote by S̃η the polynomials of R with coefficients in the range
]− η, η].
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We use bold lower-case letters to represent column vectors with coefficients in R or Rq.
For a vector of polynomials z = (z1, . . . , zk) ∈ Rk

q , the infinity norm is defined as ∥z∥∞ =
max1≤i≤k ∥zi∥∞.

2.2 Security definitions

In the following, we review the Non-Interference (NI) and Strong Non-Interference (SNI) security
notions introduced in [BBD+16]. The main advantage of these notions is that the security
of individual gadgets can be proven NI or SNI, with the probing security of the full circuit
subsequently being deduced through composition.

Definition 1 (t-NI security). Let G be a gadget taking as input n shares (a1, . . . , an) and
outputting n shares (b1, . . . , bn). The gadget G is said to be t-NI secure if for any set of t1 ≤ t
probed variables there exists a subset of input indices I ⊂ [1, n] such that the t1 probed variables
can be perfectly simulated from a|I , with |I| ≤ t1.

Definition 2 (t-SNI security). Let G be a gadget taking as input n shares (a1, . . . , an) and
outputting n shares (b1, . . . , bn). The gadget G is said to be t-SNI secure if for any set of t1
intermediate variables and any subset O ⊂ [1, n] of output indices such that t1 + |O| ≤ t, there
exists a subset of input indices I ⊂ [1, n] such that the t1 intermediate variables and the outputs
b|O can be perfectly simulated from a|I , with |I| ≤ t1.

For masking Dilithium, the masked output of the rejection sampling must eventually be
recombined and computed in the clear. For this we use the extended notion of NI security from
[BBE+18, Definition 7], in which the output b of the gadget is given to the simulator.

Definition 3 (t-NIo security [BBE+18]). Let G be a gadget taking as input (xi)1≤i≤n and
outputting b. The gadget G is said t-NIo secure if for any set of t1 ≤ t intermediate variables,
there exists a subset I of input indices with |I| ≤ t1, such that the t1 intermediate variables can
be perfectly simulated from x|I and b.

3 Improved masked generation of the vector y in Dilithium

3.1 Existing work

In Dilithium, the generation of the masking vector y← S̃ℓ
γ1 must be masked (see Line 3 in Fig.

1). The goal is to obtain arithmetic shares y1, . . . ,yn of y:

y = y1 + . . .+ yn (mod q)

so that the next operations w := Ay (Line 4) and z := y + cs1 (Line 7) are easily masked
arithmetically modulo q. Note that we cannot simply generate y and then the arithmetic shares
yi satisfying the above equation, as the adversary could directly probe y. Instead, we must
generate the arithmetic shares yi without leaking information about y.
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Deterministic vs randomized Dilithium. For Dilithium signatures, Fig. 1 only provides a
simplified template. In particular, in the Dilithium specification [BDK+21], the masking vector
y is generated by expanding a seed ρ′ with y ∈ S̃ℓ

γ1 := ExpandMask(ρ′, κ). In the deterministic
version of Dilithium, the seed ρ′ is generated pseudo-randomly from the user’s private-key and
the message M , with ρ′ = H(K∥H(tr∥M)). In the randomized version of Dilithium, the seed ρ′

is instead sampled as a 512-bit random string. In both cases, the function ExpandMask is used
to deterministically generate the randomness of each coefficient y of y ∈ S̃ℓ

γ1 , from the seed ρ′.
For the randomized version of Dilithium, the distribution of each coefficient y of y is therefore

computationally indistinguishable from uniform in the interval ] − γ1, γ1]. In that case, for the
masked version, we follow the same approach as in [ABC+23,CGTZ23]: we generate each masked
coefficient y directly with the uniform distribution in the interval ] − γ1, γ1], without using the
ExpandMask function. However, for the deterministic version of Dilithium, we must mask the
generation of ρ′ = H(K∥H(tr∥M)). For this, we start from the shares K1, . . . ,Kn of the private-
key element K, and we obtain the Boolean shares ρ′i of the seed ρ′; the function ExpandMask
must also be masked.

Masked generation of y. We recall the approach initiated in [BBE+18] for generating a
masked y, based on Boolean to arithmetic masking. By definition, each coefficient y of the
masking vector y must be generated in the interval ]− γ1, γ1], with γ1 = 217 for Security Level
2. This interval has length 2µ for µ = log2 γ1 + 1 = 18. Therefore, for each coefficient of y, we
first compute the shares ui of a µ-bit Boolean masked x:

x = u1 ⊕ · · · ⊕ un

In the deterministic version of Dilithium, these shares ui are obtained from the masked Expand-
Mask as explained above. For the randomized Dilithium, we generate each µ-bit Boolean share
ui independently at random.

One can then proceed with a Boolean to arithmetic conversion algorithm, which gives arith-
metic shares yi such that x = y1 + · · ·+ yn (mod q). Eventually, to get the uniform distribution
in ] − γ1, γ1] instead of [0, 2γ1[, it suffices to offset the first share y1 by γ1 − 1. The Boolean
to arithmetic conversion algorithm from [SPOG19] has complexity O(µ · n2), therefore the full
procedure has complexity O(µ · n2).

Fast Boolean to arithmetic conversion modulo q. In [CGTZ23], the authors introduced a
fast high-order Boolean to arithmetic conversion modulo q, with complexity independent from
µ and the size of q. The technique is based on modulus switching: one first performs a fast
Boolean to arithmetic conversion modulo 2k using [BCZ18] for a certain parameter k, and then
a modulus switching modulo q; eventually, to get rid of the error introduced by the modulus
switching, one eventually performs a sequence of arithmetic shifts.

As previously, one starts with random µ-bit shares ui, which encode a random µ-bit integer
x = u1⊕· · ·⊕un. In the second step, one applies the conversion of [BCZ18] from a µ-bit Boolean
masking into an arithmetic modulo 2k masking, for a certain parameter k, which gives:

x = x1 + · · ·+ xn (mod 2k)

The advantage of the conversion from [BCZ18] is that its complexity is independent from the
modulus size k, and although its asymptotic complexity is O(2n), it is quite efficient for small
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values of n, at least one order of magnitude more efficient than [SPOG19]. As shown in [CGTZ23],
by performing a modulus switching, one can then obtain arithmetic shares yi

y1 + · · ·+ yn = 2α · x+ e (mod q2α)

for a small error 0 ≤ e < n, where we take α = ⌈log2 n⌉, so that 0 ≤ e < 2α. Eventually, the
error e introduced by the modulus switching is removed by performing an arithmetic shift by α
bits, so that we obtain the arithmetic shares

x = z1 + · · ·+ zn (mod q)

as required. As previously, to get the uniform distribution in ] − γ1, γ1], it suffices to offset the
first share z1 by γ1− 1. The total complexity remains O(2n) and is independent of the modulus
size, as in [BCZ18]. The Boolean to arithmetic conversion algorithm from [CGTZ23] is therefore
an extension of [BCZ18] to arbitrary moduli q.

However, the above conversion algorithm requires a relatively large register size k. As shown
in [CGTZ23], one must use k = µ + ⌈log2 q⌉ + ⌈log2 n⌉ in the initial Boolean to arithmetic
conversion modulo 2k from [BCZ18]. For Dilithium with Security Level 2, with q = 223− 213+1
and µ = 18, this gives k ≥ 41. This implies that within the [BCZ18] conversion algorithm, we
must work with 64-bit registers.

In the next section, we describe a variant of the above Boolean to arithmetic conversion
algorithm with roughly the same number of operations, but with a smaller register size k =
µ + ⌈log2 n⌉. Therefore, the new register size only depends on µ and not on the size of q; see
Table 1 for a summary of Boolean to arithmetic conversions. For the Dilithium parameters, this
enables to work with 32-bit registers instead of 64-bit registers.

3.2 Our new high-order Boolean to arithmetic algorithm modulo q

In the following, we describe our alternative algorithm for performing the high-order Boolean
to arithmetic algorithm modulo q, with the same complexity as the algorithm from [CGTZ23]
recalled above, but with a smaller register size k. As previously, we are given as input a µ-bit
Boolean masking x = u1 ⊕ · · · ⊕ un, and our goal is to obtain an arithmetic masking modulo q
of x. We first perform a Boolean to arithmetic conversion using [BCZ18], which gives:

x = x1 + · · ·+ xn (mod 2k)

for a parameter k := µ + α with α := ⌈log2 n⌉. From the previous equation, we can write
x1+ · · ·+xn = x+ δ · 2k for some δ ∈ Z. This later equation holds over Z, therefore it also holds
modulo 2kq, which provides an arithmetic sharing of z := x+ δ · 2k:

z = x1 + · · ·+ xn = x+ δ · 2k (mod 2kq) (1)

Our goal is now to derive an arithmetic sharing of δ modulo q, from which it is easy to derive
an arithmetic sharing of x modulo q.

We proceed as follows. We first perform a modulus switching to get an arithmetic sharing of
2αδ modulo 2αq, up to some additive error. For this, we apply the following modulus switching
lemma [CGTZ23].
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Lemma 1 (Modulus switching [CGTZ23]). Let p1 and p2 be two positive integers. Let
xi ∈ Zp1 for 1 ≤ i ≤ n and let x = x1 + · · ·+ xn (mod p1). Let y1 := ⌊x1 · p2/p1⌋+n− 1 mod p2
and yi := ⌊xi · p2/p1⌋ mod p2 for 2 ≤ i ≤ n. Then, for some 0 ≤ e ≤ n− 1:

y1 + · · ·+ yn =

⌊
x · p2
p1

⌋
+ e (mod p2) (2)

From the shares xi of z in (1), by applying the above Lemma with p1 := 2kq and p2 := 2αq,
from p2/p1 = 2α−k = 1/2µ, we obtain an arithmetic sharing of ⌊z/2µ⌋ up to some additive error
0 ≤ e < n:

y1 + · · ·+ yn =
⌊ z

2µ

⌋
+ e (mod 2αq)

Moreover, from z = x+δ ·2k and 0 ≤ x < 2µ, we have ⌊z/2µ⌋ = δ ·2k−µ = δ ·2α. Therefore, from
the previous equation we obtain an arithmetic sharing of δ · 2α, up to a small additive error e:

y1 + · · ·+ yn = δ · 2α + e (mod 2αq) (3)

Recall that the error e satisfies 0 ≤ e < n ≤ 2α. Therefore, by performing an arithmetic shift by
α bits, we can get rid of the error e and obtain an arithmetic sharing of δ + ⌊e/2α⌋ = δ modulo
q. For this, we apply the ShiftModβ algorithm from [CGTZ23], which we recall in Appendix A.

Theorem 1 ([CGTZ23]). The ShiftModβ algorithm, taking as input an n-arithmetic sharing
of x modulo q · 2β, outputs an n-arithmetic sharing of ⌊x/2β⌋ modulo q, in time O(β · n2).

Therefore, by applying the ShiftModβ algorithm with β = α on the shares yi from (3), we
obtain as required an arithmetic sharing with shares δi satisfying:

δ1 + · · ·+ δn =

⌊
δ · 2α + e

2α

⌋
= δ (mod q)

Eventually, from (1) we obtain:

x =

n∑
i=1

xi − δ · 2k =

n∑
i=1

xi − 2k ·
n∑

i=1

δi =

n∑
i=1

(
xi − 2k · δi

)
(mod q)

which gives an arithmetic masking of x modulo q, as required. We provide in Alg. 1 below the
formal description of the corresponding algorithm. We use a SNI mask refreshing algorithm
RefreshMasks, see for example [BBD+16].

Algorithm 1 Boolean to Arithmetic conversion (BtoAqDelta)

Input: A modulus q, a µ-bit Boolean masking u1, . . . , un of x such that u1 ⊕ · · · ⊕ un = x
Output: An arithmetic sharing v1, . . . , vn such that v1 + · · ·+ vn = x (mod q)

1: α← ⌈log2 n⌉
2: k ← µ+ α
3: x1, . . . , xn ← BtoAExpµ,2k(u1, . . . , un)
4: for i = 1 to n do yi ← ⌊xi/2µ⌋
5: y1 ← y1 + n− 1
6: (δ1, . . . , δn)← ShiftModα(2

α · q, (y1, . . . , yn))
7: (δ1, . . . , δn)← RefreshMasks(δ1, . . . , δn)
8: for i = 1 to n do vi ← xi − 2k · δi mod q
9: return (v1, . . . , vn)
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Complexity. The number of operations of BtoAExpµ,2k using [BCZ18] is TBtoAExp = 10 · 2n −
6n− 13. Furthermore, the For loops at lines 4 and 8 cost respectively n and 2n operations. The
cost of ShiftModα at Line 6 is α · (2n2 + 10n− 9) operations (see Appendix A). Eventually, the
cost of RefreshMasks is 3n(n − 1)/2. Therefore the overall complexity is TBtoAqDelta = 10 · 2n −
6n−13+n+1+α·(2n2+10n−9)+3n(n−1)/2+2n = 10·2n+3n2−9n/2−12+α·(2n2+10n−9)
and asymptotically the number of operation is O(2n + α · n2) = O(2n + n2 log n) which is still
O(2n) in total. The complexity of BtoAqDelta is therefore very similar to the complexity of
BtoAqExact from [CGTZ23], but with a smaller value of k within the [BCZ18] conversion, that
is k = µ + ⌈log2 n⌉ instead of k = µ + ⌈log2 q⌉ + ⌈log2 n⌉. Recall that 2µ is the length of the
interval ] − γ1, γ1] in which each coefficient y must be generated, with µ = log2 γ1 + 1 = 18 for
Security Level 2. With q = 223 − 213 + 1 and µ = 18, we get k = 18 + ⌈log2 n⌉, and we can
therefore use 32-bit registers instead of 64-bit registers.

Theorem 2. The BtoAqDelta algorithm, given a modulus q and a µ-bit Boolean masking u1, . . . , un
of x, outputs an arithmetic sharing v1, . . . , vn of x modulo q in time O(2n).

Security. The following theorem shows that our new Boolean to arithmetic conversion algorithm
achieves the NI property.

Theorem 3 ((n − 1) − NI of BtoAqDelta). For any set of t1 probed variables, there exists a
subset I ⊂ [1, n], with |I| ≤ t1, of input indexes such that the t1 probed variables can be perfectly
simulated from u|I

Proof. The NI property follows from the composition of the NI gadget ShiftMod with the SNI
gadgets RefreshMasks and BtoAExp.

3.3 Comparison

We provide a comparison of the operation count between the various methods. We assume
that we are working with a 32-bit processor, so for the internal conversion method [BCZ18]
employed by [CGTZ23], we adjust its complexity from TBtoAExp(n) = 10 · 2n − 6n − 13 to
2 · TBtoAExp(n), reflecting the necessity to accommodate 64-bit integers. We see that our new
algorithm outperforms [CGTZ23] for all orders, and is faster than [SPOG19] and [BBE+18] for
small orders. We also provide in Section 5.1 a concrete comparison on Cortex-M4 microcontroller.

B → A mod q
Security order t

2 3 4 5 6 8 10 12

[BBE+18] 18→ mod q 2 841 5 215 8 782 12 897 17 825 30 235 46 012 64 776

[SPOG19] 18→ mod q 804 1 414 2 186 3 120 4 216 6 894 10 220 14 194

[CGTZ23] 18→ mod q 194 396 857 1 587 2 969 11 132 42 240 165 572

Algorithm 1 146 280 596 1 024 1 787 6 161 21 972 83 939

Table 2. Operation count for 18-bit Boolean to arithmetic modulo q conversion algorithms, up
to security order t = 12, with n = t+ 1 shares, for prime q = 223 − 213 + 1.
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4 Improved masked rejection sampling for Dilithium

4.1 Existing work

In Dilithium, the rejection sampling consists in restarting the signature generation if ∥z∥∞ ≥
γ1−β or ∥r̃∥∞ ≥ γ2−β (see Line 9 in Fig. 1); such operation is necessary to prevent any leakage
of the secret-key. For a masked Dilithium implementation, this check must be performed over
masked values of z and r̃. Namely, the shares of z can only be recombined after the complete
rejection sampling of z and r̃; otherwise this may leak some information about the secret-key.

We first recall how such rejection sampling is performed in [BBE+18]. For any coefficient
x of z and r̃, the rejection sampling consists in ensuring that −a < x < a, for a known
bound a. In [BBE+18], for high-order computing the comparison x < a, the authors first
convert the arithmetic sharing of x modulo q to Boolean, with a representation 0 ≤ x < q.
However, one needs a centered representation −(q − 1)/2 < x ≤ (q − 1)/2. This is obtained
by high-order computing x − (q − 1)/2 and x − q on Boolean values, and selecting either x
or x − q depending on the most significant bit of x − (q − 1)/2, which is accomplished by
two additional high-order secure And’s. Eventually, one computes the subtraction x − a over
Boolean values, and output the (high-order masked) most significant bit, which is equal to 1
iff x < a. To ensure |x| < a, the same procedure is applied to −x. The complexity is therefore
TRS = 2 (TABmodq + 3 · TSecAdd + 3 · TSecAnd + 2 · TRefresh + 3n) + TSecAnd.

The authors of [ABC+23] described a more efficient method. To test that |x mod± q| <
a, they first compute an arithmetic sharing of x′ = x + a − 1 mod q, and so one must test
whether 0 ≤ x′ < 2a− 1. For this, they perform an arithmetic to (k+1)-bit Boolean conversion
of x′, with a parameter k = ⌈log2 q⌉. From this Boolean representation, they compute using
addition over Boolean shares a Boolean sharing of x′′ = x′ − 2a mod± 2k+1. One can show that
|x mod± q| < a ⇔ x′′ < 0. To test whether x′′ is negative, it suffices to unmask the (k + 1)-th
bit of x′′. The complexity is therefore TRS = TABmodq + TSecAdd. We summarize in Table 3 below
the corresponding complexities.

[BBE+18] [ABC+23] This paper

Complexity O(n2 · log q) O(n2 · log q) O(n2 · log βn)

Table 3. Complexities of rejection sampling for a single polynomial coefficient, as a function of
the number of shares n, where q is the modulus, and β is the size of the interval that must be
rejected.

4.2 Improved masked rejection sampling based on zero-testing

We introduce our new technique that performs high-order rejection sampling with complexity
independent from the size of the modulus q; the new complexity only depends on the size of the
rejected interval. As depicted in Figure 2, the rejection zones in Dilithium are relatively narrow:
by definition each coefficient z of z lies in the large interval [−γ1 − β, γ1 + β] with γ1 = 217 and
β = 78 for Security Level 2, but rejection is necessitated only within the much smaller ranges of
[γ1−β, γ1+β] and [−γ1−β,−γ1+β]. The same holds for r̃. Our new algorithm can leverage this
small rejection range since it has complexity O(n2 · log βn) instead of O(n2 · log q) for previous
works, with β ≪ q (see Table 3).
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−γ1 + β−γ1 − β γ1 − β γ1 + β

acceptreject reject

Figure 2. Illustration of the rejection sampling intervals for Dilithium.

Reduction to zero-testing. Our approach is as follows. For simplicity we first consider a single
coefficient x. We start with arithmetic shares xi of x = x1+· · ·+xn mod± q such that x ∈ [−b, b].
The objective is to reject x if it falls outside the interval ] − a, a[ for a given threshold a < b,
all while ensuring no additional information about x is disclosed. Our approach is based on the
following lemma, showing that integer comparison can be reduced to zero-testing modulo q. For
a prime modulus q, such zero-testing can be high-order computed with complexity independent
from the size of q, using the ZeroTestMult gadget from [CGMZ23], which we recall in Appendix
B.1.

Lemma 2. Let q be any positive integer. Let a, b ∈ Z with 0 < a < b < q/2 and b− a < 2ρ for
ρ ∈ Z. Let x ∈ [−b, b] ∩ Z. We have:

a ≤ x⇔
⌊
x− a

2ρ

⌋
= 0 (mod q) (4)

Proof. If a ≤ x, then 0 ≤ x − a ≤ b − a < 2ρ and therefore ⌊(x − a)/2ρ⌋ = 0. Conversely, if
⌊(x−a)/2ρ⌋ = 0 (mod q), then ⌊(x−a)/2ρ⌋ = δ·q for some δ ∈ Z, and therefore x−a = 2ρ ·δ·q+r
for some 0 ≤ r < 2ρ. We use a+b < q and moreover q ≤ 2ρ ·(q−1) for q ≥ 2 and ρ ≥ 1. This gives
x−a ≥ −b−a > −2ρ ·q+2ρ, and therefore we get the inequality δ ·2ρq+2ρ > x−a > −2ρq+2ρ,
which implies δ ≥ 0, which implies x ≥ a. ⊓⊔

To perform the rejection sampling from the interval ] − a, a[, it suffices to test if either
a ≤ x or a ≤ −x. The two tests cannot be performed using (4) separately, because in this case
the adversary would learn on which side the coefficient x is out-of-bound, which would leak
information about the secret-key. Instead, we simply high-order multiply the two results modulo
q, so that if the coefficient is out of bound, the resultant product will be zero modulo q. This
shows that the rejection sampling of x can be reduced to the zero-testing of the product below
modulo q.

Corollary 1. Let q be any prime integer. Let a, b ∈ Z with 0 < a < b < q/2 and b− a < 2ρ for
ρ ∈ Z. Let x ∈ [−b, b] ∩ Z. We have:

x ∈ ]− a, a[ ⇔
⌊
x− a

2ρ

⌋
·
⌊
−x− a

2ρ

⌋
̸= 0 (mod q) (5)

Full procedure. The two arithmetic shifts by ρ bits in the above product can be computed
thanks to the ShiftMod algorithm recalled in Appendix A. However, for this one needs to first
obtain an arithmetic masking of x modulo 2ρq instead of modulo q only, where 2ρ is an upper-
bound on the size of the interval [a, b]. This can be achieved through a method akin to the one
described in Section 3.2, which we describe in Appendix B.2. In summary, the rejection sampling
of a single coefficient x proceeds as follows:
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1. We first extend the arithmetic masking of x from modulo q to modulo 2ρq, using a variant of
the technique described in Section 3.2. We describe the corresponding LMSwitch algorithm
in Appendix B.2.

2. We then compute the arithmetic shifts ⌊(x − a)/2ρ⌋ and ⌊(−x − a)/2ρ⌋ modulo q with the
ShiftMod algorithm, recalled in Appendix A.

3. We high-order compute the product of the two above values modulo q, using SecMult; see
[SPOG19] for the corresponding algorithm. We must also use a SNImask refreshing algorithm
[BBD+16].

4. Finally, we perform a zero-testing of the result, with complexity O(n2), using the ZeroTest-
Mult algorithm from [CGMZ23] recalled in Appendix B.1.

The full algorithm is provided in Algorithm 2. We show that the total complexity is O(n2 ·
(ρ+ log n)) for n shares, which is independent from the modulus size. For Dilithium, one must
take a = γ1 − β for the rejection sampling of z, and a = γ2 − β for the rejection sampling of r̃,
with β = 78 for NIST Security Level 2. For the rejection sampling of z, we have b = γ1 + β, and
b = γ2 for the rejection sampling of r̃. Since the parameter ρ must satisfy 2ρ > b− a, one must
take ρ = 8 for the rejection sampling of z, and ρ = 7 for the rejection sampling of r̃.

Algorithm 2 RejectSampling

Input: A modulus q, an arithmetic sharing x1, . . . , xn of x such that x1+ · · ·+xn = x (mod q),
integers a, b, ρ such that a < b < q/4 with b− a < 2ρ, and such that |x| ≤ b.

Output: u ∈ {0, 1}, with u = 1 if |x| ≥ a, and u = 0 otherwise.

1: u1, . . . , un ← LMSwitch(q, ρ, (x1, . . . , xn)) ▷ x = u1 + · · ·+ un (mod 2ρq)
2: (y1, . . . , yn)← (u1 − a mod 2ρq, u2, . . . , un)
3: (y1, . . . , yn)← ShiftModρ(2

ρ · q, (y1, . . . , yn))
4: (y′1, . . . , y

′
n)← ResfreshMasks(−u1 − a mod 2ρq,−u2, . . . ,−un)

5: (y′1, . . . , y
′
n)← ShiftModρ(2

ρ · q, (y′1, . . . , y′n))
6: (z1, · · · , zn)← SecMult((y1, . . . , yn), (y

′
1, . . . , y

′
n))

7: b← ZeroTestMultq(z1, . . . , zn))
8: return b

Complexity. The modulus switching at Line 1 has complexity TLMSwitch = α · (2n2 + 10n −
9) + 4n+ 1+ 3n(n− 1)/2 where α = ⌈log2 n⌉+ 1. The cost of the ShiftMod loops at lines 3 and
5 using [CGTZ23] is ρ · TShiftMod = ρ · (2n2 + 10n − 9) operations. Furthermore, the number of
operations of RefreshMasks and SecMult at line 6 are 3n ·(n−1)/2 and n ·(7n−5)/2 respectively,
and the ZeroTestMult gadget has complexity O(n2). Therefore, asymptotically the number of
operations of Algorithm 2 is O(n2 · (α+ ρ)) = O(n2 · (log n+ ρ)).

Security. The following theorem shows that our rejection sampling algorithm achieves the NIo
property.

Theorem 4 ((n−1)−NIo of RejectSampling). For any set of t1 probed variables, there exists a
subset I ⊂ [1, n], with |I| ≤ t1, of input indexes such that the t1 probed variables can be perfectly
simulated from x|I and the output b.

Proof. The NIo property follows from the composition of the NI gadgets SecMult, ShiftMod, and
LMSwitch, the SNI gadget RefreshMasks, and the NIo gadget ZeroTestMult.
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4.3 Comparison with existing work

In Table 4 we provide a comparison with existing work [BBE+18] and [ABC+23]. We see that
our technique is more efficient for all security orders. We also provide in Section 5.2 a comparison
based on a concrete implementation on laptop computer and Cortex-M4.

Security order t

2 3 4 5 6 7 8 9

[BBE+18] 8 566 15 682 26 141 38 313 52 868 69 136 89 417 111 411

[ABC+23] 2 902 5 354 9 180 13 531 18 756 24 506 31 979 39 977

This paper 834 1 362 2 078 2 832 3 687 4 643 5 943 7 149

Table 4. Operation count for rejection sampling of a single coefficient, with q = 223 − 213 + 1
and ρ = 8, with n = t+ 1 shares.

4.4 On the commitment variable w1 in Dilithium

In previous works considering the masking of Dilithium [ABC+23,CGTZ23], the authors have
argued that the commitment variablew1 generated in (w1,w0)← Decomposeq(w) withw = Ay
need not be masked since it is also publicly computed during signature verification. Conveniently,
this implies that the Keccak hash function H used for computing the challenge c̃ = H(M∥w1)
need not be masked. However, this is only a heuristic assumption, as for aborted signatures, the
knowledge of w1 might reveal additional information to an attacker.

In [CGTZ23], the authors claimed that this assumption has been analyzed rigorously in
[DFPS23] and shown to hold unconditionally by providing an efficient simulator for all tran-
scripts, including aborted ones; however, we argue that the argument from [DFPS23] does not
apply directly to Dilithium. Namely, the authors of [DFPS23] considered a more generic lattice-
based signature scheme where the commitmentw is generated viaw = Ay mod q, where y← D.
Assuming that the distribution D has enough min-entropy, and that the matrix A has more
columns than rows (so that the application w → A · y is highly surjective), the authors can
apply the leftover hash lemma to argue that in failed transcripts, the commitment w can be
simulated by a random vector modulo q. However, for Dilithium one cannot use directly the
same argument, because in Dilithium the cyclotomic ring Rq = Zq[X]/(X256 + 1) is isomorphic
to the product of the rings Zq[X]/(X − ζi) ∼= Zq, over which the leftover hash lemma does
not give a meaningful bound given the small dimension of the matrix A. Therefore, even if
the analysis from [DFPS23] can give us some confidence that in Dilithium revealing w1 from
aborted signatures should be harmless, we do not have a rigorous proof yet. Therefore, to have
a complete proof of security of a fully masked Dilithium with w1 computed in the clear (as we
do in this paper) one should solve the following open problem, which is beyond the scope of this
paper:

Open Problem 1: provide a security proof for Dilithium signatures, where the adversary addi-
tionally learns the commitments w1 from aborted signatures.

Additionally, for efficiency reason, the authors of [ABC+23,CGTZ23] consider an early abort
strategy where if one of the (masked) coefficients of z or r̃ is out of bound, the signature
generation is immediately restarted. However, this implies that the adversary can learn not only
the failed commitment w1, but also the position of some rejected coefficient in z or r̃, which is
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not covered by the analysis in [DFPS23]. The advantage of the early abort approach is that it
is roughly twice faster than performing the bound checking on all coefficients of z and r̃ (see
the next section). Intuitively, learning the position of the rejected coefficient should not help the
adversary. Therefore, we consider the following additional open problem:

Open Problem 2: provide a security proof for Dilithium signatures, where the adversary addition-
ally learns the commitments w1 from aborted signatures, and the position of the out-of-bound
coefficients in z or r̃, if any.

4.5 Rejection sampling of all coefficients

In this section, we consider the two possible strategies for the rejection sampling on z and r̃: the
early-abort strategy as in [ABC+23,CGTZ23], in which rejection sampling of each coefficient is
performed separately, and the signature generation is immediately restarted if one coefficient is
out-of-bound, and the no-early-abort strategy used in [BBE+18], in which rejection sampling
is always performed on all coefficients of z and r̃. We report on the implementation of these
strategies in Section 5.2.

Early-abort strategy. The early-abort strategy is straightforward. We receive as input a

vector of ℓ masked coefficients x(j) = x
(j)
1 + · · · + x

(j)
n (mod q) for 1 ≤ j ≤ ℓ, and we perform

the rejection sampling iteratively. We provide a formal description of the algorithm in Appendix
C.1, and we prove that the algorithm achieves the NIo security definition.

The advantage of the early-abort approach is that it is roughly twice faster than performing
the bound checking on all coefficients of z and r̃. However, as discussed in the previous section,
getting a complete security proof for masked Dilithium will be more challenging, as for a failed
signature transcript, the adversary additionally learns the position of at least one out-of-bound
coefficient.

No-early-abort strategy. In the no-early-abort strategy, the rejection sampling is always
performed on all coefficients, so that the adversary does not learn the position of the out-of-
bound coefficient, if any. In [BBE+18], this is done as followed. The output bit of the rejection
sampling for a single coefficient is kept in masked form, and a high-order secure And is performed
to ensure that all output bits are 1. Therefore, if a coefficient must be rejected, the position of
this coefficient is not revealed to the adversary, since this output bit is unmasked only at the
end.

However, from our rejection sampling technique described in 4.2, we must proceed slightly
differently, because the output bit of the zero-test is obtained in the clear, so one cannot perform
a zero-test independently for each coefficient. Instead, we simply high-order multiply the results
modulo q as in (5), and perform the zero-testing only once at the end. This corresponds to the
following lemma. We describe the corresponding algorithm in Appendix C.2, and prove that it
achieves the NIo security definition.

Lemma 3. Let q be any prime integer. Let aj , bj ∈ Z with 0 < aj < bj < q/2 and bj − aj < 2ρ

for ρ ∈ Z and ρ ≥ 1, for all 1 ≤ j ≤ ℓ. Let x(j) ∈ [−bj , bj ] ∩ Z for 1 ≤ j ≤ ℓ. We have:

ℓ∧
j=1

(
x(j) ∈ ]− aj , aj [

)
⇔

ℓ∏
j=1

(⌊
x(j) − aj

2ρ

⌋
·

⌊
−x(j) − aj

2ρ

⌋)
̸= 0 (mod q)

14



5 Practical implementation

In this section, we describe our implementation of the new gadgets, building upon the publicly
available code from [CGTZ23], to get a fully masked implementation of both Dilithium and
ML-DSA. We clarify that our intention is to demonstrate and validate the proposed techniques,
rather than to assert the security of the code against side-channel attacks as is. It is well known
that one cannot really achieve a truly “leakage-free” execution from generic C code, especially
when employing standard gcc compiler optimizations. Our timing reports for the Cortex M4 are
based solely on this portable C code implementation. While developing a full-fledged low-level
Dilithium implementation on a micro-controller to experimentally verify the absence of micro-
architectural leakages would be a natural next step, this is out of scope of this work. The cycle
counts for Cortex M4 were obtained by running the code on a STM32F401RE MCU embedded on
a STM32 Nucleo-64 developpement board. We compiled with the STM32Cube IDE in its default
configuration. Furthermore, the computer used to get the laptop cycle counts is equipped with
an Intel(R) Core(TM) i7-1065G7 CPU and the code was compiled with O3 and march=native

flags. The plain C code is publicly available at

https://github.com/fragerar/tches24_masked_Dilithium

5.1 Masked generation of the masking vector y

We have implemented our improved masked generation of y from Section 3.2 with the random-
ized version of Dilithium, targeting the widely-used Cortex-M4 platform, for two main reasons.
Firstly, the risk of side-channel attacks is more pronounced on micro-controllers than on desktop
or laptop computers. Secondly, our new gadget can work with 32-bit registers instead of 64-bit as
the gadget from [CGTZ23]. Our new gadget is therefore particularly beneficial for 32-bit archi-
tectures like the Cortex-M4, where 64-bit operations are inherently less efficient than on modern
computers with native 64-bit processing capabilities. We provide a comparison with [CGTZ23],
which according to Table 2 is already significantly faster than [SPOG19] and [BBE+18] for small
orders. The performance advantages of our method are evident in Table 5, where it demonstrates
up to double the efficiency compared to the BtoAqExact algorithm from [CGTZ23].

B → A mod q
Security order t

1 2 3 4 5 6 7 8 9

[CGTZ23] BtoAqExact 6039 13110 24750 44967 81185 148296 276330 524856 1013893

BtoAqDelta 3682 7894 17645 31334 55232 99055 191557 353748 669662

Table 5. Cycle counts on Cortex-M4 for 18-bit Boolean to arithmetic modulo q conversion
algorithms, up to security order t = 9, with n = t+ 1 shares, for prime q = 223 − 213 + 1.

5.2 Masked rejection sampling

We have implemented our improved masked rejection sampling on both a laptop and a Cortex-
M4 micro-controller. In Table 6, for the laptop implementation, we compare the single-coefficient
performance of our new gadget with the masked rejection sampling gadget from [ABC+23]; we
see that our new gadget is roughly 40% faster.
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Security order t

1 2 3 4 5 6 7 8 9

[ABC+23] 1702 3604 6142 8585 11133 14414 18013 22512 27786

This paper 1208 2071 2942 4220 5669 7684 9867 12621 14383

Table 6. Cycle counts on laptop for rejection sampling of a single coefficient, with q = 223−213+1
and ρ = 8, with n = t+ 1 shares.

This performance benefit extends to the full rejection sampling procedure. In Table 7, we
report on the evaluation of both the no-early-abort and early-abort strategies (cf. Section 4.5)
for our gadgets, alongside those from [ABC+23]. Although the early-abort strategy is anticipated
to double efficiency (a milestone nearly met by [ABC+23] with a 46% time reduction), our im-
plementation achieves a smaller efficiency gain (34% time reduction). This is attributed to the
requirement for a zero-test gadget for each coefficient to assess early-abort possibility. Neverthe-
less, our early-abort strategy implementation outperforms [ABC+23] by 41%. Comparatively,
our gadget employing the more conservative no-early-abort strategy matches the efficiency of
[ABC+23]’s early-abort strategy.

Security order t

1 2 3 4 5 6 7 8

No-early-abort
[ABC+23] 3172 7070 11289 17795 24701 32294 40528 53119

This paper 2376 3771 5698 8531 11471 15130 19238 24934

Early-abort
[ABC+23] 1800 3804 6389 9549 13244 16648 20938 27112

This paper 1420 2231 3232 4817 7209 8550 10717 13975

Table 7. Cycle counts on laptop for the rejection sampling of all coefficients in z and r̃ (in
thousands of cycles).

In addition to the laptop implementation, we report on the performance of our technique
on Cortex M4 in Table 8. Our method offers a more pronounced improvement over [ABC+23]
compared to the laptop results, at least for a non-bitsliced implementation. Namely, in their own
implementation, the authors of [ABC+23] use the very efficient bitsliced implementation from
[BC22], whereas our algorithms are not compatible with bitslicing. For a more comprehensive
comparison, these evaluations should ideally be conducted using optimized ARM assembly code
rather than portable C code.

Security order t

1 2 3 4 5 6 7 8 9

[ABC+23] 46206 118065 205641 335730 481501 653039 840302 1080287 1336004

This paper 20728 40542 65533 100704 139311 184026 235005 303972 369945

Table 8. Cycle counts on Cortex-M4 for rejection sampling of a single coefficient, with q =
223 − 213 + 1 and ρ = 8, with n = t+ 1 shares.
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5.3 Fully masked Dilithium signature scheme

Desktop implementation. Table 9 provides a detailed breakdown of the various components
involved in the signature process, for fully-masked randomized Dilithium signatures. It shows
that although the rejection sampling procedure remains a significant factor, especially for lower
orders, its impact is lessened compared to previous works [ABC+23,CGTZ23]. The primary
bottleneck has shifted to the Decompose procedure, for which we simply reused the code from
[CGTZ23].

Security order t

0 1 2 3 4 5 6

NTTs - 135 214 282 346 369 476

Sample y - 900 1480 2959 4608 7170 11921

Compute Ay - 217 296 391 479 613 667

Decompose - 7922 18700 30409 47479 62969 84578

z = y + c · s1 - 158 223 291 362 446 508

Reject - 6235 9913 14424 21440 28601 38115

w − c · s2 - 85 118 159 193 237 273

Dilithium2 483 15812(×33) 31124(×64) 49124(×102) 75138(×156) 100676(×208) 136825(×283)

Table 9. Cycle counts on laptop for the full randomized Dilithium (Level 2) with penalty factor,
including the main operations within Dilithium, using the early-abort strategy. Average over 500
executions of the signature at each order (in thousands of cycles).

Comparison with [CGTZ23]. In Table 10, we provide a comparison with [CGTZ23], for a
laptop implementation. We see that for security orders t ≥ 2, the new implementation is roughly
25% faster.

Security order t

0 1 2 3 4 5 6

Dilithium2 [CGTZ23] 483 16636(×34) 41932(×87) 67644(×140) 98257(×203) 137418(×285) 171057(×354)
Dilithium2 483 15812(×33) 31124(×64) 49124(×102) 75138(×156) 100676(×208) 136825(×283)

Table 10. Cycle counts on laptop for the full randomized Dilithium (Level 2) with penalty
factor, in [CGTZ23] and in this paper. Average over 500 executions of the signature at each
order (in thousands of cycles).

Implementation on Cortex M4. In Table 11, we provide the runtime of one main loop
iteration of fully-masked randomized Dilithium on Cortex-M4. Since the MCU we used for the
experiments is quite limited in terms of memory (less than 100kB) and since the reference code of
Dilithium is not memory optimized1, the high-order masked signature would not fit in memory
without further optimizations. Thus we provide an estimation of the total runtime by running

1 According to the pqm4 library, the unmasked reference implementation is already using more than half the
memory of our MCU.
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every (main) component independently at every order and then summing their runtime. The
values in the table correspond to one iteration of the rejection loop, this means that they must
be multiplied by a factor of 4.25 to estimate the average total execution time of the signature.
The total runtime for the unmasked signature has been obtained by running the full signature
and then dividing by 4.25.

Security order t

0 1 2 3 4 5 6

Sample y - 4424 8977 19183 33393 58152 103232

Compute Ay - 3343 5014 6686 8357 10029 11700

Decompose - 48108 126401 221987 362367 520006 705363

Reject - 40843 79748 128631 197879 273420 361180

Dilithium2 (one iter.) ≈ 7400 ≈ 96718 ≈ 220140 ≈ 376487 ≈ 601996 ≈ 861607 ≈ 1181475

Table 11. Cycle counts estimation on Cortex-M4 for one iteration of the main loop of Dilithium
(security level 2, in thousands of cycles). The last line should be multiplied by a factor of 4.25
to get an estimation of the total runtime of the signature.

5.4 Implementation of ML-DSA

In this section, we describe our fully masked implementation of ML-DSA. The primary distinc-
tion between Dilithium (Version 3.1) [BDK+21] and the ML-DSA draft standard [NIS23] lies in
the derivation of the seed ρ′ for generating the vector y. In Dilithium’s randomized signatures,
ρ′ is obtained directly as a 512-bit random string. In contrast, ML-DSA employs a “hedged”
mechanism for ρ′’s generation, deriving it pseudo-randomly from the signer’s private-key, the
message M , and a random 256-bit string rnd. For ML-DSA’s deterministic variant, rnd is re-
placed with a fixed 256-bit string. These procedural variations between Dilithium and ML-DSA
are detailed in Table 12.

Deterministic Randomized

Dilithium ρ′ = H(K ∥µ) ρ′ ← {0, 1}512

ML-DSA
rnd← {0}256 rnd← {0, 1}256

ρ′ = H(K ∥ rnd ∥µ) ρ′ = H(K ∥ rnd ∥µ)

Table 12. Generation of ρ′ from µ = H(tr∥M) in Dilithium vs ML-DSA, for deterministic vs
randomized signatures. The vector y is then generated as y← ExpandMask(ρ′, κ).

From a security perspective, the difference between ML-DSA and Dilithium is that for ran-
domized signatures, ML-DSA remains secure even if the output of the random number generator
is fixed or predictable to the adversary (thanks to the “hedged” procedure), whereas Dilithium
would be insecure in that case. However, a drawback of ML-DSA compared to Dilithium is that
the sampling of y cannot be pre-computed off-line anymore.

As discussed in Section 3.1, in the randomized variant of Dilithium, each coefficient y within
the vector y is computationally indistinguishable from the uniform distribution in the interval
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] − γ1, γ1]. In masking Dilithium, we adopted the strategy utilized in [ABC+23,CGTZ23] by
directly generating each masked coefficient y uniformly within the same interval, bypassing the
ExpandMask function. In principle one could proceed similarly for ML-DSA, since in ML-DSA
the coefficients y are also computationally indistinguishable from uniform in ]−γ1, γ1]. However,
such a method would negate the “hedged” characteristic of y’s generation in ML-DSA, which
upholds its security even under RNG compromise by an adversary.

Therefore, for both deterministic and randomized versions of ML-DSA, we adopt a similar
approach to deterministic Dilithium by masking the generation of ρ′ = H(K∥H(tr∥M)) and ob-
tain Boolean shares ρ′i of the seed ρ′; the ExpandMask function is also masked in this process. We
utilized the masked Keccak implementation from [CGMZ22] for this purpose. Experimental re-
sults showcased in Table 13 aim to evaluate the performance impact of employing a masked hash
function. As anticipated, the performance hit is significant.2 Table 14 presents the performance
metrics of our fully masked ML-DSA implementation, showing a 29% increase in execution time
relative to randomized Dilithium at order 2.3

Security order t

1 2 3 4 5 6 7 8

Randomized Dilithium 211 321 662 1148 1761 2826 5230 9074

Randomized ML-DSA 984 2782 5081 9140 13676 19696 26023 36024

Table 13. Cycle counts on laptop for the generation of the y vector in randomized Dilithium
and ML-DSA, with n = t+ 1 shares (in thousands of cycles).

Security order t

0 1 2 3 4 5 6

NTTs - 144 212 288 342 379 506

Sample y - 4426 11765 22422 37449 58319 85859

Compute Ay - 261 288 404 467 641 702

Decompose - 7736 17969 31183 45084 65397 87996

z = y + c · s1 - 154 215 301 354 464 529

Reject - 6192 9746 14977 21375 30098 39375

w − c · s2 - 84 117 164 192 256 283

ML-DSA 483 19195(×40) 40601(×84) 70160(×145) 105877(×219) 156399(×324) 216357(×448)

Table 14. Cycle counts on laptop for the full randomized ML-DSA with penalty factor, including
the main operations within ML-DSA, using the early-abort strategy. Average over 500 executions
of the signature at each order (in thousands of cycles).

2 Note that the larger figures for the sampling of y in Table 9 compared to the first line of Table 13 are attributable
to the signature procedure necessitating roughly 4 repetitions on average.

3 Our ML-DSA version builds upon the masked Dilithium implementation, incorporating masked Keccak for
generating y as outlined in Table 12. While we do not claim a fully compliant ML-DSA implementation, the
performance metrics are expected to be closely comparable.
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Finally, to preserve the “hedged” feature in the randomized ML-DSA but with unmasked
H and ExpandMask, one possibility (left as future work) would be to keep the standard ρ′ =
H(K ∥ rnd ∥µ) and y ← ExpandMask(ρ′, κ) procedure of ML-DSA, but initially unmasked. Re-
call that in ExpandMask, each coefficient y is generated by first computing y′ ∈ {0, . . . , 2γ1 − 1}
and then y = γ1 − y′. Therefore, to get high-order security, one could generate as in Section 3.1
n random Boolean shares ui and apply the Boolean to arithmetic conversion to the shares of
y′′ = (y′⊕ u1)⊕ u2⊕ · · · ⊕un, and eventually compute y = γ1− y′′ over the arithmetic shares of
y′′. This approach would retain the “hedged” protection against a 0-probe adversary controlling
the RNG, while also being provably secure against up to n− 1 probes, and offering performance
on par with fully masked randomized Dilithium (as detailed in Table 9).

6 Conclusion

We have described advanced high-order masking techniques for the Dilithium signature scheme,
with better computational efficiency. This includes a refined Boolean-to-arithmetic conversion
algorithm, and a novel rejection sampling method with complexity independent of the modulus
size. Our new gadgets are proven secure in the classical ISW probing model. Finally, we have
also described a fully masked implementation of both Dilithium and ML-DSA incorporating
these new gadgets.
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ABC+23. Melissa Azouaoui, Olivier Bronchain, Gaëtan Cassiers, Clément Hoffmann, Yulia Kuzovkova, Joost
Renes, Tobias Schneider, Markus Schönauer, François-Xavier Standaert, and Christine van Vreden-
daal. Protecting dilithium against leakage revisited sensitivity analysis and improved implementations.
IACR Trans. Cryptogr. Hardw. Embed. Syst., 2023(4):58–79, 2023. https://eprint.iacr.org/2022/
1406.
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CGTZ23. Jean-Sébastien Coron, François Gérard, Matthias Trannoy, and Rina Zeitoun. Improved gadgets for
the high-order masking of dilithium. IACR Trans. Cryptogr. Hardw. Embed. Syst., 2023(4):110–145,
2023. https://eprint.iacr.org/2023/896.
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q, without leaking information about x. The algorithm relies on the 1-bit Boolean to arithmetic
masking algorithm from [SPOG19]. More precisely, the ShiftMod gadget high-order computes
the shift: ⌊x

2

⌋
=

x− (x mod 2)

2
(mod q)

For this, one first performs a 1-bit Boolean to arithmetic modulo 2q conversion of the bit
(x mod 2), using the 1bitB2A gadget from [SPOG19]. By subtracting the result to x, one can
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obtain an arithmetic sharing of x− (x mod 2) where all shares modulo 2q are even, so one can
divide by 2 all shares independently and obtain an arithmetic sharing of ⌊x/2⌋ modulo q; see
Alg. 3 below. By iterating the above ShiftMod algorithm β times, one obtains the ShiftModβ
algorithm (see Alg. 4).

Algorithm 3 ShiftMod

Input: A modulus q′ = 2q and x1, . . . , xn ∈ Z2q

Output: a1, . . . , an ∈ Zq such that a1 + · · ·+ an = ⌊(x1 + · · ·+ xn)/2⌋ (mod q)

1: for i = 1 to n do bi ← xi&1
2: (y1, . . . , yn)← 1bitB2A(2q, (b1, . . . , bn))
3: for i = 1 to n do zi ← xi − yi mod 2q
4: for i = 1 to n− 1 do
5: zn ← zn + (zi&1) mod 2q
6: zi ← zi − (zi&1) mod 2q
7: end for
8: for i = 1 to n do ai ← zi ≫ 1
9: return a1, . . . , an

Algorithm 4 ShiftModβ

Input: A modulus q′ = q · 2β, and x1, . . . , xn ∈ Zq2β

Output: a1, . . . , an ∈ Zq such that a1 + · · ·+ an = ⌊(x1 + · · ·+ xn)/2
β⌋ (mod q)

1: for i = 0 to β − 1 do (x1, . . . , xn)← ShiftMod(2β−iq, (x1, . . . , xn))
2: return x1, . . . , xn

From [CGTZ23], the complexity of ShiftModβ is TShiftModβ (n) = β · (2n2+10n−9), assuming
that operations modulo q have unit cost. The authors of [CGTZ23] prove the NI property of
ShiftMod, based on the free-SNI of 1bitB2A from [SPOG19], which is also proven in [CGTZ23].
By composition, we get the NI property of ShiftModβ.

Theorem 5 ([CGTZ23]). The ShiftModβ algorithm achieves the NI property.

B Algorithms for rejection sampling

B.1 Zero-testing algorithm

We recall the ZeroTestMult algorithm from [CGMZ23], based on converting from arithmetic
masking modulo q to multiplicative masking, for a prime modulus q. At the end of the algorithm,
one obtains multiplicative shares ui such that u1 · · ·un ·x = B (mod q) for a known B. Therefore,
if the secret value x is 0, then B = 0, whereas for any x ̸= 0, the variable B is random in Z∗

q . This
enables to distinguish the two cases, without leaking more information about x. The complexity
is O(n2), independent from the size of q. The authors proved that it achieves the NIo property.
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Algorithm 5 ZeroTestMult

Input: x1, . . . , xn ∈ Zq for prime q.
Output: b ∈ {0, 1} with b = 1 if

∑
i xi = 0 (mod q) and b = 0 otherwise

1: (B1, . . . , Bn)← (x1, . . . , xn)
2: for j = 1 to n do
3: uj ← Z∗

q

4: (B1, . . . , Bn)← (uj ·B1 mod q, . . . , uj ·Bn mod q)
5: (B1, . . . , Bn)← LinearRefreshMasks(B1, . . . , Bn)
6: end for
7: B ← B1 + · · ·+Bn mod q
8: if B = 0 then return 1 else return 0

B.2 Arithmetic masking: switching to a larger modulus

Given as input an arithmetic sharing of x = x1 + · · · + xn mod± q, we show how to obtain an
arithmetic sharing of x modulo a larger modulus 2ρq, for any ρ > 0. The technique works under
the condition that |x| < q/4, which is the case in Dilithium. We fix α := ⌈log2 n⌉ + 1, where n
is the number of shares.

For this, as in Section 3.2, we write x1+ · · ·+xn = x+ δ · q for some δ ∈ Z, and we show how
to derive an arithmetic masking of δ modulo 2ρ. As previously, we write the previous equation
as an arithmetic sharing of z := x+ δ · q modulo 2ρq:

z = x1 + · · ·+ xn = x+ δ · q (mod 2ρq) (6)

As in Section 3.2, we apply the “Modulus Switching Lemma” (Lem. 2) with p1 := 2ρq and
p2 := 2ρ+α to the shares xi of z in (6), which gives an arithmetic sharing of ⌊z ·p2/p1⌋ = ⌊z2α/q⌋,
up to some small additive error 0 ≤ e < n. More precisely, from (6) we get arithmetic shares yi
satisfying:

y1 + · · ·+ yn =

⌊
z2α

q

⌋
+ e =

⌊
x2α

q

⌋
+ e+ δ · 2α (mod 2ρ+α)

From |x| < q/4, we have 0 < x + q/4 < q/2 and therefore 0 ≤ ⌊x2α/q⌋ + 2α−2 < 2α−1. Using
0 ≤ e < n ≤ 2α−1, we get 0 ≤ ⌊x · 2α/q⌋+ 2α−2 + e < 2α. Therefore, by applying the ShiftModα
arithmetic shift by α bits on the shares yi, with 2α−2 as an additive factor on y1, we can get rid
of the term ⌊x · 2α/q⌋+ e and obtain an arithmetic sharing of δ modulo 2ρ:

δ1 + · · ·+ δn =

⌊
y1 + · · ·+ yn + 2α−2

2α

⌋
= δ (mod 2ρ)

Eventually, from (6) we obtain an arithmetic masking of x modulo 2ρq, as required:

x =
n∑

i=1

xi − δ · q =
n∑

i=1

(xi − q · δi) (mod 2ρq)
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Algorithm 6 Larger Modulus Switching (LMSwitch)

Input: Amodulus q, a parameter ρ, an arithmetic sharing x1, . . . , xn of x = x1+· · ·+xn mod± q,
with |x| < q/4.

Output: An arithmetic sharing v1, . . . , vn such that v1 + · · ·+ vn = x (mod 2ρq).

1: α← ⌈log2 n⌉+ 1
2: for i = 1 to n do yi ← ⌊xi · 2α/q⌋
3: y1 ← y1 + n− 1 + 2α−2 mod 2ρ+α

4: (δ1, . . . , δn)← ShiftModα(2
ρ+α, (y1, . . . , yn))

5: (δ1, . . . , δn)← RefreshMasks(δ1, . . . , δn)
6: for i = 1 to n do vi ← xi − q · δi mod 2ρq
7: return (v1, . . . , vn)

Complexity. The cost of the ShiftModα at Line 4 using [CGTZ23] is α · TShiftMod = α · (2n2 +
10n−9) operations, with α = ⌈log2 n⌉+1. Furthermore, the For loops at lines 2 and 6 both cost
2n operations, and RefreshMasks costs 3n(n− 1)/2 operations. Therefore the overall complexity
is TLMSwitch = α · (2n2 + 10n − 9) + 4n + 1 + 3n(n − 1)/2 and asymptotically the number of
operations is O(α · n2) = O(n2 log n).

Theorem 6 ((n − 1) − NI of LMSwitch). For any set of t1 probed variables, there exists a
subset I ⊂ [1, n], with |I| ≤ t1, of input indexes such that the t1 probed variables can be perfectly
simulated from x|I

Proof. The NI property follows from the composition of the NI gadget ShiftModα with the SNI
gadget RefreshMasks.

C Strategies for rejection sampling

C.1 Rejection sampling: early-abort

Note that our algorithm also takes as input an independent bound aj for each x(j). This is
because in Dilithium, one must use a different bound for the rejection sampling of z and r̃,
namely aj = γ1 − β for z, and aj = γ2 − β for r̃.

Algorithm 7 Rejection sampling: early-abort

Input: A sequence of ℓ arithmetic shared mod q values {(x(j)1 , . . . , x
(j)
n )}1≤j≤ℓ such that |x(j)| ≤

bj where x(j) = x
(j)
1 + · · ·+ x

(j)
n mod± q, and bounds aj for 1 ≤ j ≤ ℓ.

Output: A bit u such that u = 0 if all coefficients satisfy |x(j)| < aj and u = 1 otherwise.
1: for j = 1 to ℓ do

2: uj ← RejectSampling(q, (x
(j)
1 , . . . , x

(j)
n ), aj , bj , ρ)

3: if uj = 1 then return 1
4: end for
5: return 0
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Lemma 4 (NIo security). Any t probes in the above algorithm can be perfectly simulated from

the knowledge of all x
(j)
|I for 1 ≤ j ≤ ℓ for |I| ≤ t, and the position of the first out-of-bound

coefficient x(j), if any.

Proof. The proof follows from the NIo security of RejectSampling, for which the output uj can
be given to the simulator since we are given the position of the first out-of-bound coefficient
x(j), if any.

C.2 No-early-abort strategy

We describe the rejection sampling algorithm with the no-early-abort strategy. We denote by
RejectSamplingShares the RejectSampling algorithm (see Alg. 2) where the shares z1, . . . , zn are
output directly after Line 6.

Algorithm 8 Rejection sampling: no-early-abort

Input: A sequence of ℓ arithmetic shared mod q values {(x(j)1 , . . . , x
(j)
n )}1≤j≤ℓ such that |x(j)| ≤

bj where x(j) = x
(j)
1 + · · ·+ x

(j)
n mod± q, and bounds aj for 1 ≤ j ≤ ℓ.

Output: A bit u such that u = 0 if all coefficients satisfy |x(j)| < aj and u = 1 otherwise.

1: (u
(0)
1 , . . . , u

(0)
n )← (1, 0, . . . , 0)

2: for j = 1 to ℓ do

3: u
(j)
1 , . . . , u

(j)
n ← RejectSamplingShares(q, (x

(j)
1 , . . . , x

(j)
n ), aj , bj , ρ)

4: u
(j)
1 , . . . , u

(j)
n ← SecMult((u

(j−1)
1 , . . . , u

(j−1)
n ), (u

(j)
1 , . . . , u

(j)
n ))

5: end for
6: return ZeroTestq(u

(ℓ)
1 , . . . , u

(ℓ)
n )

Lemma 5 (NIo security). Any t probes in the above algorithm can be perfectly simulated from

the knowledge of all x
(j)
|I for 1 ≤ j ≤ ℓ for |I| ≤ t, and knowing the output bit b of the rejection

sampling.

Proof. The NIo security follows from the composition of the NIo gadget ZeroTest, the NI security
of RejectSamplingShares and the SNI security of the SecMult.
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