
S!"#"$: Temporal Verification for Cross-Rollup Bridges via
Goal-Driven Reduction
YANJU CHEN, University of California, Santa Barbara
JUSON XIA, Orbiter Finance
BO WEN, Orbiter Finance
KYLE CHARBONNET, Ethereum Foundation
HONGBO WEN, University of California, Santa Barbara
HANZHI LIU, University of California, Santa Barbara
YU FENG, University of California, Santa Barbara

Scalability remains a key challenge for blockchain adoption. Rollups—especially zero-knowledge (ZK) and
optimistic rollups—address this by processing transactions o!-chain while maintaining Ethereum’s security,
thus reducing gas fees and improving speeds. Cross-rollup bridges like Orbiter Finance enable seamless asset
transfers across various Layer 2 (L2) rollups and between L2 and Layer 1 (L1) chains. However, the increasing
reliance on these bridges raises signi"cant security concerns, as evidenced by major hacks like those of Poly
Network and Nomad Bridge, resulting in losses of hundreds of millions of dollars. Traditional security analysis
methods such as static analysis and fuzzing are inadequate for cross-rollup bridges due to their complex
designs involving multiple entities, smart contracts, and zero-knowledge circuits. These systems require
reasoning about temporal sequences of events across di!erent entities, which exceeds the capabilities of
conventional analyzers.

In this paper, we introduce a scalable veri"er to systematically assess the security of cross-rollup bridges.
Our approach features a comprehensive multi-model framework that captures both individual behaviors
and complex interactions using temporal properties. To enhance scalability, we approximate temporal safety
veri"cation through reachability analysis of a graph representation of the contracts, leveraging advanced
program analysis techniques. Additionally, we incorporate a con#ict-driven re"nement loop to eliminate false
positives and improve precision. Our evaluation on mainstream cross-rollup bridges, including Orbiter Finance,
uncovered multiple zero-day vulnerabilities, demonstrating the practical utility of our method. The tool also
exhibited favorable runtime performance, enabling e$cient analysis suitable for real-time or near-real-time
applications.

1 Introduction
As blockchain technology evolves, scalability remains a persistent challenge for mainstream adop-
tion. Rollups—particularly zero-knowledge (ZK) rollups and optimistic rollups—have emerged as
leading solutions to this problem, enabling greater throughput by processing transactions o!-chain
while maintaining the security of the Ethereummainnet. These rollups rely on cryptographic proofs
or game-theoretic mechanisms to batch transactions, drastically reducing gas fees and improving
transaction speeds. To fully harness the bene"ts of these solutions, users need a way to transfer
assets seamlessly across various Layer 2 (L2) rollups and between L2 and Layer 1 (L1) chains.
Cross-rollup bridges, like Orbiter Finance [23], provide a vital infrastructure to facilitate these
transfers. For instance, Orbiter Finance supports multiple rollups including zkSync and Arbitrum,
allowing asset transfers with transaction times as low as 10–20 seconds and minimal fees [23].
However, as the adoption of these bridges grows, so too do concerns around their security.

Authors’ Contact Information: Yanju Chen, yanju@ucsb.edu, University of California, Santa Barbara; Juson Xia, zerokpunk@
orbiter."nance, Orbiter Finance; Bo Wen, wenbo@orbiter."nance, Orbiter Finance; Kyle Charbonnet, kylecharbonnet@
gmail.com, Ethereum Foundation; Hongbo Wen, hongbowen@ucsb.edu, University of California, Santa Barbara; Hanzhi
Liu, hanzhi@cs.ucsb.edu, University of California, Santa Barbara; Yu Feng, yufeng@cs.ucsb.edu, University of California,
Santa Barbara.

, Vol. 1, No. 1, Article . Publication date: November 2024.

2 Yanju Chen, Juson Xia, Bo Wen, Kyle Charbonnet, Hongbo Wen, Hanzhi Liu, and Yu Feng

The critical nature of rollup bridges has made them a prime target for security exploits. In recent
years, high-pro"le hacks and vulnerabilities have exposed the fragility of these systems. For example,
in August 2021, the Poly Network hack resulted in the theft of over $600million due to a vulnerability
in the bridge’s smart contract logic. Similarly, Nomad Bridge was compromised in 2022 due to an
initialization bug, leading to losses exceeding $190 million. These examples illustrate how security
breaches in cross-chain or cross-rollup bridges can have catastrophic "nancial consequences. The
inherent complexity of cross-rollup bridges, which combine cryptographic proofs, smart contracts,
and o!-chain actors, exacerbates the di$culty of ensuring their security. Therefore, it is paramount
to develop robust, systematic methods to analyze and guarantee their security.

Although several approaches—such as static analysis and fuzzing—have been proposed to secure
blockchain bridges, these techniques are ill-suited for cross-rollup bridges. General blockchain
bridges, typically implemented purely in smart contracts, can be e!ectively analyzed using these
methods. However, cross-rollup bridges involve amore intricate design, often incorporatingmultiple
entities and combining smart contract code with zero-knowledge circuits. This hybrid design
introduces a range of complexities that traditional analyzers cannot e!ectively address. For example,
smart contracts may process an unbounded number of transactions, which need to be soundly
handled by the bridge veri"er. Additionally, many functional properties in cross-rollup bridges
require reasoning about temporal sequences of events from di!erent entities, which exceeds the
capabilities of o!-the-shelf safety veri"ers. Static analyzers tend to over-approximate, leading
to numerous false positives, while dynamic fuzzing struggles to cover the vast behavioral space
of these systems, often failing to detect subtle vulnerabilities arising from interactions between
di!erent entities.

In this paper, we introduce a scalable veri"er to systematically assess the security of cross-rollup
bridges. Our approach is distinct in several key aspects. First, we present the "rst comprehensive
multi-model framework that captures both the individual behaviors of standard cross-rollup bridge
entities and their complex interactions using temporal properties. Second, recognizing the scalability
challenges of classical temporal veri"ers, we over-approximate the problem of temporal safety
veri"cation with reachability analysis by analyzing a graph representation of the original contracts.
This enables us to directly leverage state-of-the-art program analysis methods. Finally, our approach
incorporates a con#ict-driven re"nement loop, allowing us to eliminate false alarms and achieve
high precision in our security analysis.

To demonstrate the e!ectiveness of our approach, we evaluated it on several mainstream cross-
rollup bridges, including Orbiter Finance and others. Our analysis revealed multiple zero-day
vulnerabilities, highlighting the practical utility of our method. Furthermore, our tool achieved
favorable performance in terms of runtime, enabling real-time or near-real-time analysis of bridge
systems.

In summary, this paper makes the following contributions:

• We present the "rst multi-model symbolic reasoning framework speci"cally tailored for
cross-rollup bridges.

• We introduce novel abstract semantics to address the computational challenges of analyzing
large-scale systems like cross-rollup bridges.

• We implement a con#ict-driven re"nement loop to ensure high precision and reduce false
positives during security analysis.

• Our evaluation uncovered critical vulnerabilities in widely-used cross-rollup bridges, high-
lighting both the necessity and e!ectiveness of our approach.

, Vol. 1, No. 1, Article . Publication date: November 2024.

S!"#"$: Temporal Verification for Cross-Rollup Bridges via Goal-Driven Reduction 3

2 Background
In this section, we brie#y elaborate some background on blockchains and the rollups built on top
of them. To connect rollups from di!erent blockchains, we then introduce the cross-rollup bridge
and its basic mechanism.

2.1 Blockchain and Rollups
Blockchain and Ethereum. Blockchain functions as a decentralized record-keeping platform

that chronicles and disseminates transaction data amongmultiple users. It is an expand-only chain of
interconnected blocks, managed by a consensus mechanism, where each block contains a collection
of transactions. Among various blockchain systems, Ethereum [29] is the "rst blockchain capable
of storing, managing, and running Turing-complete scripts, termed smart contracts. Ethereum
operates on a comprehensive state system updated via transaction execution. The transactions are
initiated by and received by users through their accounts. Ethereum has two principal types of
accounts: those owned by users and those governed by smart contracts, each associated with a
distinct address. Besides making transactions, users can also develop customized smart contracts
that are programmed to execute transactions autonomously.

Scaling up blockchains with rollup solutions. Rollups are designed to increase the throughput
of blockchains. A typical rollup processes transactions o!-chain and roll (or bundle) them up into
a single transaction, which is later posted to the blockchain. This reduces the load on the main
network while preserving the security and decentralization provided by the underlying blockchain.
There are two prevailing types of rollups. An optimistic rollup assumes transactions are valid

by default and allows challenge to incorrect data through submission of a fraud proof, and a
zero-knowledge (ZK) rollup generates and posts ZK proofs to verify the correctness of o!-chain
transactions.
Rollups are built in a hierarchical way in that they naturally connect with the chain they build

upon, but not with each other. As the total value locked (TVL) of each rollup grows more than
1500% over the past year, it’s of growing demand that a fast and reliable yet a!ordable way can
serve for assets and data transfer between rollups, and that’s what a cross-rollup bridge is for.

2.2 Cross-Rollup Bridges
A cross-rollup bridge is a mechanism that enables the transfer of assets or data between di!erent
rollups (i.e., layer 2 scaling solutions built on blockchains). Rollups are designed to o%oad transaction
processing from the main blockchain (layer 1) by batching transactions and executing them o!-
chain, while still relying on layer 1 for security. Since rollups operate independently, they need a
bridge to facilitate communication and asset movement between them.

A typical work!ow in cross-rollup bridges. Figure 1 shows a high-level overview of a typical
cross-rollup bridge 1 that transfers assets between users from rollups of di!erent chains. As di!erent
chains/rollups post and "nalize transactions in an asynchronous way, the core task of a cross-rollup
bridge is to ensure the integrity of the asset transfer activity, which is covered by its on-chain and
o!-chain components and services. A basic bridge work#ow can be described by the following four
steps:

1The bridge example infrastructure is distilled from Orbiter cross-rollup protocol (https://www.orbiter."nance/). Without
loss of generality, other bridging solutions can "nd similar core structures.

, Vol. 1, No. 1, Article . Publication date: November 2024.

https://www.orbiter.finance/

4 Yanju Chen, Juson Xia, Bo Wen, Kyle Charbonnet, Hongbo Wen, Hanzhi Liu, and Yu Feng

Sender Maker

Address

Address

Receiver Maker

Address

Address

Source
Event Transaction

Manager
Off-Chain

Rollup A
(Source Chain)

Rollup B
(Target Chain)

Transfer

Target
Event

Transfer

1

2

3

4

Single Payment Verification

Fee Management

Blockchain

User
Ro

llu
p A

Ro
llu

p B

User

Maker Dealer Submitter

Market Deposit

Payment Verification

Fee Management

Source Chain

User

Rollup A

Rollup B

User

Maker Dealer Submitter

Target Chain

Event Binding

Market Deposit Event Binding

Service Bridge RoleRollup

Chain (Layer 1) Cross-Rollup Bridge

Rollup User

Fig. 1. A higher-level overview of a typical cross-rollup bridge between multiple blockchains.

(1) Source Initialization When a user launches an asset transfer request, an on-chain maker
from the source chain responds by issuing an asset transfer transaction using the decentral-
ized front-ends provided by a dealer. A chain event is then emitted as evidence of request
initialization.

(2) Target Respondence Once the o!-chain event binding service captures the source event, a
transaction manager invokes the on-chain maker from the target chain for a paired transfer
transaction that deposits the assets to the designated user. As a result, an event is expected
on the target chain as an evidence of respondence to the source chain request.

(3) Payment Veri!cation With both evidence events from the source and target chains, the
o!-chain prover then composes proofs for both transactions and sends them for on-chain
veri"cation. Such a procedure is called payment veri"cation, where the proofs are usually
generated by cryptographic protocols such as zero-knowledge proofs.

(4) Finalization If the payment veri"cation is successful, states of both chains are "nalized by
their submitters, with the guidance of the fee management service that distributes revenue
and bene"ts for dealers and makers; otherwise, transactions and bridge states will be rolled
back.

The work#ow secures the integrity of cross-rollup asset transfer by 1) association and "nalization
of the paired transactions on both chains with event binding mechanism, and 2) joint validation of
both transactions by cryptographic protocols.

Vulnerabilities in cross-rollup bridges. Given the complexity of the async interactions be-
tween multiple on-/o!-chain components and services involved in a typical work#ow of a cross-
rollup bridge, keeping the bridge infrastructure bug-free is critical but non-trivial. For example, our
empirical study of the open-source repos related to the key components and services of Orbiter
Finance reveals that, of all the bug-"xing commits, more than 50% require reference to design
speci"cation; in other words, these bugs involve deep logical issues that cannot be detected by
existing tools tailored for common vulnerabilities.

Figure 2 illustrates an example transfer logic in Orbiter’s cross-rollup protocol, where di!erent
roles (e.g., sender/receiver, makers and transaction manager) have to involve in a sequence of
operations in order (marked as 1 , 2 , 3 and 4) to complete the process, which exposes potential
attack surfaces amid these steps. For example, an attacker can insert a fake maker for carrying out
step 3 . Such a malicious maker can then compromise the entire process by transferring assets on

, Vol. 1, No. 1, Article . Publication date: November 2024.

S!"#"$: Temporal Verification for Cross-Rollup Bridges via Goal-Driven Reduction 5

Sender Maker

Address

Address

Receiver Maker

Address

Address

Source
Event Transaction

Manager
Off-Chain

Rollup A
(Source Chain)

Rollup B
(Target Chain)

Transfer

Target
Event

Transfer

1

2

3

4

Fig. 2. An example transfer logic in Orbiter’s cross-rollup protocol, where di!erent roles are involved in a
complex sequence of operations, exposing potential a"ack surfaces in various steps.

the target chain to unsafe addresses, causing an unrecoverable invalid state on the bridge with
"nancial loss 2.

To detect for such a bug, one needs to reason about behavior of di!erent on-/o!-chain components
from di!erent chains and rollups against logical speci"cation, which existing tools and approaches
would "nd non-trivial to address.

3 Overview
In this section, we begin by specifying our problem scopes and demonstrating a logical bug that we
dubbed as ChallengeEscape that we adapted from a real-world bridge. We then iterate the technical
challenges and limitations while addressing it with existing solutions, which motivate the design of
S!"#"$. We illustrate at the end from a high-level perspective how it takes for S!"#"$ to detect
the ChallengeEscape bug.

3.1 Preliminaries and Problem Scope
We describe a cross-rollup bridge B = (C,O) by its on-chain components (usually smart contracts)
C and o!-chain components O. On-chain components are executed in the virtual environment of
the blockchain (e.g., Ethereum Virtual Machine, EVM) which ensures the consistency of the code
execution and machine states in a decentralized manner.
A bridge may contain bugs as it usually involves interactions between various components

to achieve certain business logic, which is better quanti"able by temporal logic according to an
existing study [24]. Given a temporal speci"cation 𝐿 and an initial state 𝑀0 for the blockchain, we
detect for violation of 𝐿 over the bridge B. As 𝐿 is a temporal property, the violation to 𝐿 usually
corresponds to a sequence of transactions that breaks such property.

3.2 Motivating Example
We illustrate a motivating example of how components in a bridge interact with each other, and
how this allows an attack to construct a sequence of transactions (i.e., an attack) that triggers the
bug and brings damage to the system.

The arbitration procedure in a bridge. For a bridge-related transaction that has been posted
to the chain, a user can challenge its authenticity by submitting a proof that validates otherwise
2A brief description of this bug and its "x can be found in the following o$cial commit: https://github.com/Orbiter-
Finance/OB_ReturnCabin/commit/36c735d.

, Vol. 1, No. 1, Article . Publication date: November 2024.

https://github.com/Orbiter-Finance/OB_ReturnCabin/commit/36c735d
https://github.com/Orbiter-Finance/OB_ReturnCabin/commit/36c735d

6 Yanju Chen, Juson Xia, Bo Wen, Kyle Charbonnet, Hongbo Wen, Hanzhi Liu, and Yu Feng

SDKUser MDC SPV EBC

getTxs(...)

Transactions

createChallenge(...)

OK/Error

getChallenge(...)

ChallengeInfo

genSPVProof(...)

SPVProof

verifyChallenge(…)

verify(…)

OK/Error

getTx(...)

TxInfo

OK/Error

Challenge
Creation

Proof
Verification

Arbitration
Execution

On-ChainOff-Chain

Fig. 3. An example (partial) sequence diagram for a bridge’s arbitration procedure. An user can interact with
the bridge via either an on-chain component (e.g., EOAs, agent contracts) or o!-chain component (e.g., client,
SDK, etc.); SDKs are deployed as o!-chain components, and Maker Deposit Contract (MDC), Simplified
Payment Verification (SPV) and Event Binding Contract (EBC) are all deployed as on-chain components.

and have the transaction undone by the bridge. Such a procedure, also known as the arbitration, is
the core part of reaching consensus between di!erent parties within a bridge.
Figure 3 presents a (partial) sequence diagram illustrating how a typical arbitration procedure

works, which contains at least three phases involving interactions between di!erent parties:
• In the challenge creation phase, when a dispute occurs for a transaction, to start the arbitration
process, a user "rst retrieves the information of the target transaction from the o!-chain
bridge SDK. A special handle that describes the arbitration case, called challenge, is then
created when the user directly interacts with the maker (deployed as the MDC on-chain
component) and tracked within.

• In the proof veri!cation phase, the bridge veri"es the user’s claim in the challenge. In a
restricted time frame after the challenge has been created, the user generates a Simpli!ed
Payment Veri!cation proof (created and secured by cryptographic algorithms, e.g., zero-
knowledge proofs) that encodes the key information of the target transaction, and submits
it to the maker (i.e., the MDC contract). The maker then queries the on-chain veri"cation
service (i.e., the SPV contract) about the correctness of the submitted proof, and retrieves
related information from the event binding service (i.e., the EBC contract) for a cross-checking
of the blockchain states. A "nal decision is then made and returned to the user based on facts
collected.

• In the arbitration execution phase, the arbitration result is then applied to all a!ected parties,
with payments and fees allocated or re-allocated based on the arbitration result.

, Vol. 1, No. 1, Article . Publication date: November 2024.

S!"#"$: Temporal Verification for Cross-Rollup Bridges via Goal-Driven Reduction 7

contract MDC {
 ISPV private _spv;

 function createChallenge (...) external payable {
 ...

// try to clear expired challenge
 if (_challenges[challengeId].challengeTime > 0) {
 (bool cleared,) = this.call{...}(

abi.encodeWithSignature(“clearChallenge(...)”), ...);
 require(cleared == true);
 }

// create new challenge
 require(_challenges[challengeId].challengeTime == 0);
 ...
 _challenges[challengeId] = ChallengeInfo (...);
 emit ChallengeInfoUpdated(
 challengeId, _challenges[challengeId]);
 }

 function clearChallenge (...) public payable {
 ...
 uint64 challengeTime = _challenges[challengeId].challengeTime;
 uint64 abortTime = _challenges[challengeId].abortTime;
 uint64 verifiedTime = _challenges[challengeId].verifiedTime;
 uint64 currentTime = uint64(block.timestamp);
 require(challengeTime > 0); // challenge exists
 require(abortTime == 0 && verifiedTime == 0); // challenge open

require(currentTime – challengeTime >= TIMEOUT); // timeout
 ...
 _challenges[challengeId] = ChallengeInfo (...);
 emit ChallengeInfoUpdated(
 challengeId, _challenges[challengeId]);
 }

 function verifyChallenge (..., bytes calldata _proof) external {
 ...
 (bool success, bool verified) = _spv.call{...}(
 abi.encodeWithSignature(“verify(...)”), _proof);
 if (success) {
 if (verified) { ... }
 else {

...
_challenges[challengeId].abortTime = uint64(block.timestamp);
emit ChallengeInfoUpdated(
challengeId, _challenges[challengeId]);

 }
 } else { ... }
 }
 ...
}

interface IMDC {
 struct ChallengeInfo {
 ...
 // address that creates the challenge
 address challenger;
 // timestamp when challenge is created
 uint64 challengeTime;
 // timestamp when challenge fails
 uint64 abortTime;
 // timestamp when challenge passes
 uint64 verifiedTime;
 }
 ...
}

contract SPV {
 function verify (...) external returns (bool) { ... }
...

}

contract EBC {
 function getTx (...) external returns (TxInfo) { ... }
...

}

contract Client {
 function createChallenge (...) external { ... }
 function verifyChallenge (...) external { ... }
...

}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80

A

B

A

A
C D

1

2

3

Example Specification

Fig. 4. Code snippets (simplified) showing key paths for arbitration process with some of the related temporal
specifications and their natural language description. The code snippets contain a vulnerability that allows
random address to completely block the arbitration process of a given transaction by deliberately failing the
verification of transaction’s challenge.

As the arbitration procedure involves various interactions between multiple parties, which opens
up a wide attack interface for malicious participants, it’s crucial but non-trivial for developers to
get rid of all bugs, especially for logical ones.
Meanwhile, the sequential nature of the business logic re#ected in these procedures makes

temporal speci"cation a best "t for quantifying the behavior of a bridge. We can derive some of the
temporal properties to make sure of the correctness of the arbitration process, for example:

• “A maker must be owned by some admin at all times” , which can be formulated by:

⊋(→𝑁 ↑ M . ↓𝑂 ↑ A . owns(𝑂,𝑁))

with M denoting all makers, A for all admins, and the predicate owns(𝑂,𝑁) describes the
ownership of 𝑂 over𝑁. The temporal operator ⊋ (always) is used here.

• “A user can always challenge a transaction if she hasn’t challenged it before.” , which can be
formulated by:

⊋(→𝑃 ↑ T . →𝑄 ↑ R . →𝑁 ↑ M𝐿 . 𝑅U(𝑆 ↔ ¬𝑅)),
where 𝑅 ↗ successful(𝑄 ,𝑁.createChallenge, 𝑃),

𝑆 ↗ called(𝑄 ,𝑁.createChallenge, ..., 𝑃)
(1)

, Vol. 1, No. 1, Article . Publication date: November 2024.

8 Yanju Chen, Juson Xia, Bo Wen, Kyle Charbonnet, Hongbo Wen, Hanzhi Liu, and Yu Feng

_challenges[challengeId].challengeTime

2

A

D

C

B

1

3

..

A B cleared

C abortTime D verifiedTime

1 createChallenge 2 clearChallenge 3 verifyChallenge

_challenges[challengeId]

goal location

C location

function

locations

{ , } or { }A B A

REDUCE

Specification

#1
#2
#3
#4
#5 ...

1

2

1 3

32
ENUMERATE

(a) bridge source code (b) location dependence graph (c) enumerated sequences

A B C D

1 rw r/ rw rw

2 rw -- rw rw

3 r- -- rw r-

2

A

D

C

B

1

3

..

Bridge Components

Specification

Initial State

Reduction

Enumeration
Safety Property + LDG*

Verification

Tx Sequence

Feedback

Unsafe: Counterexample

Exhausted

Safe

Analysis

Updates

*LDG: Location Dependence Graph

Fig. 5. Framework overview of S!"#"$.

with T denoting all "nalized transactions, R denoting all users, andM denoting all makers.
The predicate successful(·) returns whether a function can be successfully invoked and
returned without reverting, and the predicate called(·) indicates whether a function has been
called before the current time step. A temporal operatorU (until) is used to describe an event
must hold until another happens; in this example, 𝑅 must hold until 𝑆 ↔ ¬𝑅 happens.

The ChallengeEscape vulnerability. The ChallengeEscape vulnerability is adapted from a real-
world bug reported in a bridge 3. It allows malicious attackers to completely block the challenge
creation against a given transaction for any other users in the challenge creation phase; that is, it
violates the speci"cation formulated in Equation 1.

We show how this happens via some of the key code snippets in Figure 4. An attacker can "rst
invoke the createChallenge function (line 4) on the MDC contract that initializes the challenge
information into the storage mapping _challenges (line 15). Following the arbitration procedure
set in Figure 3, the attacker then invokes the verifyChallenge function (line 35) with a faked proof
that eventually fails the veri"cation check. As shown by line 43, when a proof fails the veri"cation,
the abortTime "eld of the challenge is set to the current timestamp rather than 0. This thus causes
the follow-up challenge creation from a di!erent user blocked, because the attempt to clear the
challenge (line 8-9) will always fail due to the fact that clearChallenge function marks a non-zero
value of abortTime as a signal for the challenge remaining open, and thus createChallenge refuses
to create a new challenge for anyone since the call to clearChallenge always fails (line 10).

Technical challenges. To verify the correctness of the arbitration process and detect for the
ChallengeEscape bug with the given temporal speci"cation in Equation 1, a general-purpose
algorithm usually takes two steps to reason about this:

• Reduction: It "rst converts the liveness property in the temporal speci"cation to an equivalent
safety property which should always hold for arbitrary transactions. Such approach is widely
used in temporal veri"cation problems for various domains [12, 13, 24]. Following them, we
can reduce Equation 1 into the following:

⊋(→𝑃 ↑ T . →𝑄 ↑ R . →𝑁 ↑ M𝐿 . (𝑅 ↔ ¬𝑆) ↘ (¬𝑅 ↔ 𝑆)),
which describes a safety property that should always be satis"ed.

• Enumeration & Veri"cation: The reduced safety property is then checked against di!erent
transaction sequences emitted by the target system.

While there are in"nite amount of transaction sequences, veri"cation on real-world systems
is usually infeasible without proper abstractions. This is especially challenging for systems like

3A brief description of the original bug and its "x can be found in the following o$cial commit: https://github.com/Orbiter-
Finance/OB_ReturnCabin/commit/4e2bd54.

, Vol. 1, No. 1, Article . Publication date: November 2024.

https://github.com/Orbiter-Finance/OB_ReturnCabin/commit/4e2bd54
https://github.com/Orbiter-Finance/OB_ReturnCabin/commit/4e2bd54

S!"#"$: Temporal Verification for Cross-Rollup Bridges via Goal-Driven Reduction 9

_challenges[challengeId].challengeTime

2

A

D

C

B

1

3

..

A B cleared

C abortTime D verifiedTime

1 createChallenge 2 clearChallenge 3 verifyChallenge

_challenges[challengeId]

goal location

C location

function

locations

{ , } or { }A B A

REDUCE

Specification
#1
#2
#3
#4
#5 ...

1

2

1 3

32
ENUMERATE

(a) bridge source code (b) location dependence graph (c) enumerated sequences

A B C D

1 rw r/ rw rw

2 rw -- rw rw

3 r- -- rw r-

2

A

D

C

B

1

3

..

Fig. 6. Reduction from büchi automaton to transaction dependence graph for enumeration. (a): the büchi
automaton generated from the bridge system; (b) a transaction dependence graph inferred by analysis
through the dependence relations from the büchi automaton; (c) the transactions generated for verification
by enumerating edge covers for the critical locations.

cross-rollup bridge that involve non-trivial interactions between multiple parties. On the one hand,
it inevitably brings scalability issues for the general-purpose temporal veri"cation approach due
to complex interactions; on the other hand, cryptographic operations in a blockchain’s virtual
machine also create excessive computational overheads that makes it di$cult to reason about
logical bugs.

3.3 Our Approach: Reasoning with S!"#"$
Instead of enumeration over the in"nite search space of transaction sequences, which in most cases
won’t scale, our approach, S!"#"$, performs a smart enumeration that combines 1) a goal-driven
reduction that locates a su"cient subset of the search space, and 2) a con#ict-driven loop that learns
to prune and explore the search space more e$ciently.

As shown in Figure 5, S!"#"$ starts with a goal-driven reduction process that not only reduces
the temporal speci"cation into a safety property, but also produces a transaction dependence graph
(TDG) that describes relations between critical functions (transactions) that could a!ect the truth
value of the reduced speci"cation. Then the enumeration of transaction sequences can be formulated
as an optimal reachability problem over TDG. Enumerated transaction sequences that are proven
safe against the reduced speci"cation will be further analyzed to provide updated preference to the
enumeration.
As an example, we show in Figure 6 the key steps taken by S!"#"$ for detection of the

ChallengeEscape vulnerability.

• S!"#"$ "rst obtains a büchi automaton𝑇 that models the behavior of the bridge B (as shown
in Figure 6(a)), and follows the approach discussed in existing approaches [12, 13, 24] to
convert the temporal speci"cation 𝐿 to a safety property 𝐿 ≃.

• Based on the expressions (especially predicates) within 𝐿 ≃, S!"#"$ analyzes the automaton
𝑇 and identi"es critical locations whose valuation could change the truth value of 𝐿 ≃. In the
ChallengeEscape example, four locations A , B , C and D are identi"ed (as marked out in
Figure 4) since they fall into the expressions consumed by the require operator, which if
failed would revert the transaction, causing the predicates successful and called to fail. The
functions that contain references to those critical locations are thus marked out as critical
functions by 1 , 2 and 3 .

• S!"#"$ then infers a transaction dependence graph (as shown in Figure 6(b)) that describes
the write-before-read relations between the critical functions over the critical locations.

, Vol. 1, No. 1, Article . Publication date: November 2024.

10 Yanju Chen, Juson Xia, Bo Wen, Kyle Charbonnet, Hongbo Wen, Hanzhi Liu, and Yu Feng

• Based on the speci"cation 𝐿 ≃, S!"#"$ then enumerates candidate transaction sequences
that could trigger the value changes of one or more critical locations. In this case, it’s A
and B as the goal is to "nd a transaction sequence that eventually fails the execution of
createChallenge, which reads A and B . The transaction sequences proposed are shown in
Figure 6(c).

• S!"#"$ performs veri"cation over enumerated transaction sequence in order to "nd a model
that satis"es ¬𝐿 ≃. In this example, transaction sequence #1 and #2 are not satis"ed given the
above query. S!"#"$ performs a con#ict analysis over the results and provides feedback to
the enumeration loop for improved preference over the transaction sequence search space.
Finally, S!"#"$ "nds a counter-example when provided with transaction sequence #3, which
is (1 , 3), thus proving that the original bridge is unsafe against the speci"cation 𝐿 .

4 Model and!ery of System Behavior
In this section, we introduce S!"#"$’s built-in language L𝑀 for modeling the system’s behavior
and constructing veri"cation queries. We then describe a vanilla solution for performing safety
veri"cation on top of the programs written in the L𝑀 language, exposing several limitations and
challenges that our proposed veri"cation algorithm addresses. As the veri"cation algorithm is the
core contribution of this paper, we defer a detailed discussion to Section 5.
There are two parts of the L𝑀 language, namely the behavioral modeling language S𝑁 and the

query language S𝑂 .

4.1 Modeling of System Behavior
As a cross-rollup bridge is a system composed by components on and o! chain, veri"cation over
queries that quantify the behavior of such a system requires a domain-speci"c language S𝑁 capable
of modeling those components. We start by a de"nition of the program state that S𝑁 operates on.

De!nition 4.1 (Program State). A program state (or also referred to as execution context) ω =
⇐𝑈, 𝑉, 𝑊 ,𝑋⇒ is a four-tuple of stack 𝑈, memory 𝑉, storage 𝑊 and event pool 𝑋 .

The program state describes a set of abstractions for both on and o! chain components, where
both stack 𝑈, memory 𝑉 and storage 𝑊 are typical internal data structures for program execution, and
the event pool 𝑋 directly inherits from the blockchain state where events emitted during blockchain
and system initialization and execution are stored in. Since an event is a special case of program
execution trace, for o!-chain components, a subset of these traces related to the "nal goal is tracked
as events and store in the event pool.

Syntax of the S𝑁 language. We then show the grammar of a set of key language constructs for
S𝑁 in Figure 7, and elaborate its key designs as follows:

• High-Level Program and Memory Structure A S!"#"$ component is de"ned by the comp
construct, to which an identi"er and a set of statements are provided. From within the
component, functions are then de"ned using the fun construct. Each component has its own
local scope with standalone memory and storage shared by all its functions. Each function
has its own local stack. All components read and write to a shared event pool.

• Expressions and Access Paths S𝑁 supports a set of expressions covering operations from
di!erent components within a bridge system. In particular, to refer to a speci"c location on a
program state, or a speci"c function on a component, S𝑁 introduces a set of access paths that
are compatible across on and o! chain components.

• On and O" Chain Calls For example, invocation of function from other components (i.e.,
external function) is modeled by xcall, and call is used for those functions within the same

, Vol. 1, No. 1, Article . Publication date: November 2024.

S!"#"$: Temporal Verification for Cross-Rollup Bridges via Goal-Driven Reduction 11

𝑃 ::= comp(𝑄, 𝑀⇑) Component
𝑀 ::= Statements:

| 𝑁 ↗ {𝑀⇑} block
| 𝑅 ↗ ⇓𝑆 ⇓𝑁 guarded block
| 𝑇 ↗ def (𝑄, 𝑈, 𝑈,𝑁) function de"nition
| 𝑉 ↗ assign(𝑊 , 𝑆) assignment
| 𝑋 ↗ branch(𝑁,𝑅⇑) branch
| 𝑌 ↗ loop(𝑁, 𝑆,𝑁,𝑁) loop
| 𝑆 expression
| break break
| continue continue
| leave leave
| 𝑂 ↗ query(𝑍) query

𝑆 ::= Expressions:
| 𝑎𝐿 ↗ call(𝑄, 𝑆⇑) internal call
| 𝑎𝑀 ↗ xcall(𝑊 , 𝑆⇑) external call
| 𝑎𝑁 ↗ dcall(𝑊 , 𝑆⇑) delegate call
| 𝑏 ⇐𝑐 ⇒ ↗ [𝑆⇑] list, typed
| 𝑑⇐𝑐 , 𝑐 ⇒ ↗ (𝑆, 𝑆) tuple, typed
| 𝑒 literal
| 𝑐 type
| 𝑊 access path

𝑊 ::= Access Paths:
| 𝑄 identi"er
| 𝑊𝑁 ↗ 𝑊 .𝑄 access by "eld
| 𝑊𝑂 ↗ 𝑊 [𝑆] access by key

Fig. 7. S!"#"$’s behavioral modeling language S𝑁 . 𝑌 denotes typed identifier list, which is a shorthand for
𝑍⇐𝑎 ⇐𝑏, 𝑐⇒⇒.

comp MDC {

 fun createChallenge (...) external {
 branch (_challenges[challengeId].challengeTime > 0) {
 call(this.clearChallenge, ...);
 require(cleared == true);
 } else {}
 require(_challenges[challengeId].challengeTime == 0);
 ...
 _challenges[challengeId] = ChallengeInfo(...);
 emit(ChallengeInfoUpdated(challengeId, _challenges[challengeId]));
 }

 ...
}

comp MDC {

 %% p := successful(createChallenge);
 %% q := called(createChallenge);
 %% assert(always(until(p, and(q, not(p)))));
 fun createChallenge (...) external {
 branch (_challenges[challengeId].challengeTime > 0) {
 call(this.clearChallenge, ...);
 require(cleared == true);
 } else {}
 require(_challenges[challengeId].challengeTime == 0);
 ...
 _challenges[challengeId] = ChallengeInfo(...);
 emit(ChallengeInfoUpdated(challengeId, _challenges[challengeId]));
 }

 ...
}

(a) example program in SCUTUM (b) example program in SCUTUM (with query and annotation)

Fig. 8. An example program wri"en in S!"#"$’s languages, where (a) describes the behavior of a component
using S𝑁 , and (b) is then enhanced with verification queries using S𝑂 for composing annotations.

component. A special case is dcall, which invokes an external function without switch-
ing of execution context; this corresponds to the delegate call mechanism in blockchain
programming languages, as well as library call for traditional o!-chain components.

Example 4.2 (An Example Program in S𝑁). Figure 8(a) shows the createChallenge function from
the motivating example (shwon in Figure 4) written in S𝑁 . The function "rst reads in a storage
variable _challenges[challengeId].challengeTime using S𝑁 ’s universal access path, whose value
is used to trigger an optional branch. The external call in line 8 of the original code in Solidity is
converted to a xcall in S𝑁 , whose returned results are then stored in program stack 𝑈. Eventually,
the snippet calls the emit construct to write to the event pool 𝑋 before the function returns.

Symbolic evaluation rules for S𝑁 . S!"#"$ symbolically interprets programs written in S𝑁
that transits from one state to another. Figure 9 shows a representative subset of the symbolic
evaluation rules for S𝑁 , where a rule written in the following form:

⇐𝑃, ω, 𝑑, 𝑒⇒ ! ⇐𝑓, ω≃, 𝑑 ≃, 𝑒 ≃⇒

denotes a successful transition of program state. That is, execution of the form 𝑃 which results in
the return form 𝑓. The four-tuple ⇐𝑅, ω, 𝑑, 𝑒⇒ describes a symbolic state during execution, where:

• 𝑅 is a program counter that points to the immediate next language construct or the evaluated
result. We place ⇔ for empty result.

, Vol. 1, No. 1, Article . Publication date: November 2024.

12 Yanju Chen, Juson Xia, Bo Wen, Kyle Charbonnet, Hongbo Wen, Hanzhi Liu, and Yu Feng

⇐𝑁, ω,𝑓,𝑔 ⇒ ! ⇐⇔, ω≃,𝑓 ≃,𝑔 ≃ ⇒
⇐comp(_, _⇑,𝑁), ω,𝑓,𝑔 ⇒ ! ⇐⇔, ω≃,𝑓 ≃,𝑔 ≃ ⇒ (C%$&)

⇐𝑀0, ω,𝑓,𝑔 ⇒ ! ⇐⇔, ω0,𝑓0,𝑔0 ⇒ ...
⇐𝑀𝐿 , ω𝐿↖1,𝑓𝐿↖1,𝑔𝐿↖1 ⇒ ! ⇐⇔, ω𝐿 ,𝑓𝐿 ,𝑔𝐿 ⇒
⇐block(𝑀0, ..., 𝑀𝐿), ω,𝑓,𝑔 ⇒ ! ⇐⇔, ω𝐿 ,𝑓𝐿 ,𝑔𝐿 ⇒

(B’()

⇐𝑆, ω,𝑓,𝑔 ⇒ ! ⇐𝑒, ω0,𝑓0,𝑔0 ⇒ ⇐𝑊 , ω0,𝑓0,𝑔0 ⇒ ! ⇐𝑊 , ω≃,𝑓0,𝑔 ≃ ⇒
𝑓 ≃ = 𝑓0 ↙ {𝑊 : { ⇓𝑔 ≃ ⇓𝑒}}

⇐assign(𝑊 , 𝑆), ω,𝑓,𝑔 ⇒ ! ⇐⇔, ω≃,𝑓 ≃,𝑔 ≃ ⇒ (A)*)
𝑒 = { ⇓𝑔 ≃ ⇓𝑂 ↑ 𝑓 [𝑄] | 𝑔 ≃ ∝ 𝑔 }

⇐𝑄, ω,𝑓,𝑔 ⇒ ! ⇐𝑒, ω,𝑓,𝑔 ⇒ (I+)

𝑅0 ↗ guarded(𝑆0,𝑁0) ... 𝑅𝐿 ↗ guarded(𝑆𝐿 ,𝑁𝐿)
𝑔0 = 𝑔 ⇐𝑆0, ω,𝑓,𝑔0 ⇒ ! ⇐𝑒0, ω0,𝑓0,𝑔0 ⇒ ⇐𝑁0, ω0,𝑓0,𝑔 ↔ 𝑒0 ⇒ ! ⇐⇔, ω≃0 ,𝑓

≃
0,𝑔0 ↔ 𝑒0 ⇒

𝑔1 = 𝑔0 ↔ ¬𝑒0 ⇐𝑆1, ω,𝑓,𝑔1 ⇒ ! ⇐𝑒1, ω1,𝑓1,𝑔1 ⇒ ⇐𝑁1, ω1,𝑓1,𝑔1 ↔ 𝑒1 ⇒ ! ⇐⇔, ω≃1 ,𝑓
≃
1,𝑔1 ↔ 𝑒1 ⇒

...
𝑔𝐿 = 𝑔𝐿↖1 ↔ ¬𝑒𝐿↖1 ⇐𝑆𝐿 , ω,𝑓,𝑔𝐿 ⇒ ! ⇐𝑒𝐿 , ω𝐿 ,𝑓𝐿 ,𝑔𝐿 ⇒ ⇐𝑁𝐿 , ω𝐿 ,𝑓𝐿 ,𝑔𝐿 ↔ 𝑒𝐿 ⇒ ! ⇐⇔, ω≃𝐿 ,𝑓 ≃𝐿 ,𝑔𝐿 ↔ 𝑒𝐿 ⇒

𝑔𝑃 = 𝑔𝐿 ↔ ¬𝑒𝐿 ⇐𝑁, ω,𝑓,𝑔𝑃 ⇒ ! ⇐⇔, ω≃𝑃 ,𝑓
≃
𝑃 ,𝑔𝑃 ⇒ ω≃ = ω ′ ω≃0 ′ ... ′ ω≃𝐿 ′ ω≃𝑃 𝑓 ≃ = 𝑓 ↙ 𝑓 ≃0 ↙ ... ↙ 𝑓 ≃𝐿 ↙ 𝑓 ≃𝑃

⇐branch(𝑁,𝑅0, ...,𝑅𝐿), ω,𝑓,𝑔 ⇒ ! ⇐⇔, ω≃,𝑓 ≃,𝑔 ⇒ (B!,)

𝑕 ↗ snippet(𝑄, 𝑄0, ..., 𝑄𝐿 ,𝑁)
⇐𝑆0, ω,𝑓,𝑔 ⇒ ! ⇐𝑒0, ω0,𝑓0,𝑔0 ⇒ ... ⇐𝑆𝐿 , ω𝐿↖1,𝑓𝐿↖1,𝑔𝐿↖1 ⇒ ! ⇐𝑒𝐿 , ω𝐿 ,𝑓𝐿 ,𝑔𝐿 ⇒
𝑓𝑄 = 𝑓 ↙ {𝑄0 : { ⇓𝑔0 ⇓𝑒0 }, ..., 𝑄𝐿 : { ⇓𝑔𝐿 ⇓𝑒𝐿 }} ⇐𝑕, ω𝐿 ,𝑓𝑄 ,𝑔𝐿 ⇒ ! ⇐⇔, ω≃,𝑓 ≃,𝑔 ≃ ⇒

⇐expand(𝑄, 𝑆0, ..., 𝑆𝐿), ω,𝑓,𝑔 ⇒ ! ⇐⇔, ω≃,𝑓 ≃,𝑔 ≃ ⇒ (E-&)

⇐𝑊 , ω,𝑓,𝑔 ⇒ ! ⇐𝑖, ω0,𝑓0,𝑔0 ⇒
⇐𝑆, ω0,𝑓0,𝑔0 ⇒ ! ⇐𝑗, ω1,𝑓 ≃,𝑔 ≃ ⇒

𝑒 = { ⇓𝑔 ≃≃ ⇓𝑂 ↑ 𝑖 [𝑗] | 𝑔 ≃≃ ∝ 𝑔 ≃ }
ω≃ = ω1 ′ {𝑗 < |𝑖 | }

⇐𝑊 [𝑆], ω,𝑓,𝑔 ⇒ ! ⇐𝑒, ω≃,𝑓 ≃,𝑔 ≃ ⇒ (L.!)

Fig. 9. A representative subset of the symbolic evaluation rules for the behavioral modeling langauge S𝑁 .

• ω is the program state that provides access to the stack, memory, storage and event pool
during execution. In S!"#"$’s, a program has access to 𝑑 via di!erent access paths (e.g.,
variable, snippet or identi"er, index of memory or storage location, etc.) as described by the
AccessPaths section in Figure 7.

• 𝑑 is the assertion store that tracks veri"cation conditions generated during the execution.
Such conditions can be explicitly produced and pushed to 𝑑 via veri"cation constructs (which
we elaborate in Section 4.2), or implicitly added via some operations that implies some facts.
For example, access to a list 𝑔 [𝑕] pushes an implicit condition 𝑕 < |𝑔 | to 𝑑 indicating the index
𝑕 must be smaller than the size of the list 𝑔 .

• 𝑒 keeps track of the current path condition, which is a boolean value that must evaluate to
true in order to reach the current program state. That being said, if a path condition evaluates
to false after execution of the form 𝑃 , then the current program state is unreachable and
should not be considered anymore; this can also be written as ⇐𝑃, ω, 𝑑, 𝑒⇒ ! ∞.

As shown by Figure 9, S!"#"$’s symbolic evaluation starts by identifying the entrance speci"ed
by the user with the (Comp) rule, which directs the program counter to each of the statements
within the attaching block via the (Bloc) rule. The (Expr) rule unrolls the content of a comp in the
current execution context. Rule (Brch) formulates the state transition when branches are met: each
if condition is appended to the current path condition when entering its corresponding block, and
negated when entering the next branch.
Here, we introduce the notation ⇓𝑒 ⇓𝑖 to denote a value 𝑖 that is obtained under a certain path

condition 𝑒 (aka, a guarded value). The (Brch) rule ends with merging of the newly obtained guarded
values in program stores that correspond to di!erent branches using the merging operator ↙:

ω0 ↙ ω1 = {𝑗 : ω0 [𝑗] | 𝑗 ↑ ε(ω0, ω1)} ′ {𝑗 : ω1 [𝑗] | 𝑗 ↑ ε(ω1, ω0)}′
{𝑗 : ω0 [𝑗] ′ ω1 [𝑗] | 𝑗 ↑ dom(ω0) ↔ 𝑗 ↑ dom(ω1)},

where ε(ω0, ω1) = dom(ω0)\dom(ω1) .

Similar to the (Bch) rule, in the (Asn) rule, any value being assigned to a location also carries the
current path condition as its guard and should be merged with the program store 𝑑 using the 𝑍𝑅𝑔𝑍𝑘
operator.

, Vol. 1, No. 1, Article . Publication date: November 2024.

S!"#"$: Temporal Verification for Cross-Rollup Bridges via Goal-Driven Reduction 13

𝑍 ::= Queries:
| 𝑍 ↔𝑍 conjunction
| ¬𝑍 negation
| 𝑍U𝑍 until
| ∈𝑍 next
| ⊋𝑍 always
| →𝑆 .𝑍 universal quanti"er
| 𝑕 predicate
| 𝑆 expression

𝑕 ::= Predicates:
| reverted(𝑊 , 𝑆) called before and reverted

𝑆 ::= Expressions (from S𝑃)
𝑊 ::= Access Paths (from S𝑃)

Fig. 10. S!"#"$’s query language S𝑂 . We formalize a minimal version for be"er presentation; note that the
full set of operators can be expressed and expanded using this version. For example,𝑙 ∋𝑙 ::= ¬(𝑙 ↔𝑙), etc.

⇐𝑆, ω,𝑓,𝑔 ⇒ ! ⇐𝑎, ω≃,𝑓 ≃,𝑔 ≃ ⇒
𝑎 ↗ false ∋ ¬𝑘bool (𝑎)

⇐assume(𝑆), ω,𝑓,𝑔 ⇒ ! ∞ (A)$1)
⇐𝑆, ω,𝑓,𝑔 ⇒ ! ⇐𝑒, ω≃,𝑓 ≃,𝑔 ≃ ⇒

⇐assume(𝑆), ω,𝑓,𝑔 ⇒ ! ⇐⇔, ω≃,𝑓 ≃,𝑔 ≃ ↔ 𝑒⇒ (A)$2)
⇐𝑆, ω,𝑓,𝑔 ⇒ ! ⇐𝑎, ω≃,𝑓 ≃,𝑔 ≃ ⇒

𝑎 ↗ false ∋ ¬𝑘bool (𝑎)
⇐assert(𝑆), ω,𝑓,𝑔 ⇒ ! ∞ (A)#1)

⇐𝑆, ω,𝑓,𝑔 ⇒ ! ⇐𝑒, ω≃,𝑓 ≃,𝑔 ≃ ⇒
⇐assert(𝑆), ω,𝑓,𝑔 ⇒ ! ⇐⇔, ω≃ ′ {𝑔 ≃ ∝ 𝑒},𝑓 ≃,𝑔 ≃ ⇒ (A)#2)

⇐𝑀, ω,𝑓,𝑔 ⇒ ! ⇐⇔, ω≃,𝑓 ≃,𝑔 ≃ ⇒
⇐annotate(𝑀), ω,𝑓,𝑔 ⇒ ! ⇐⇔, ω≃,𝑓 ≃,𝑔 ≃ ⇒ (A*#)

Fig. 11. Symbolic evaluation rules for the query language S𝑂 .

4.2 Writing!eries for Safety Checks
S!"#"$ provides a set of language extensionsS𝑂 for veri"cation. As shown in Figure 10, S𝑂 inherits
the expressions and access paths from the S𝑁 language, and incorporates two new categories of
forms for constructing veri"cation queries and speci"cation:

• Queries We show a minimum subset of the quanti"ers (e.g., →), logical operators (e.g., ¬,
↔), and temporal operators (e.g.,U, ∈, ⊋). Note that the full set of operators can be expressed
and expanded using the existing ones; for example,𝑙 ∋𝑙 ::= ¬(𝑙 ↔𝑙).

• Predicates In addition to regular predicates that can be de"ned by arithmetic operations,
S!"#"$ introduces an additional set of special predicates related to di!erent aspects of
program execution in systems like cross-rollup bridges. For example, the reverted predicate
models a fact over the historical state of whether a function has been called and successfully
returned. These predicates provide extra power and make it easier to refer to some special
states and facts that could not be easily expressed in normal veri"cation interface.

Figure 11 shows the symbolic evaluation rules for the veri"cation extension S𝑂 . Veri"cation
related rules, namely (Asm1), (Asm2), (Ast1) and (Ast2), directly push veri"cation conditions into
assertion store 𝑑 or path condition 𝑒 . Such veri"cation conditions need to be implied when a
location from the program state ω is accessed. For example, the (Id) rule and (Lac) rule can only
access the corresponding values that are guarded by its current path condition.

Example 4.3 (An Example Program in S𝑂). Figure 8(b) shows the createChallenge function from
the motivating example (shown in Figure 4) written with extra veri"cation annotation S𝑂 .

4.3 A Vanilla Solution for Safety Verification
Temporal property veri"cation seeks to ensure that a system behaves correctly over time by verify-
ing that its sequences of states satisfy speci"c conditions. Model checking, a classical technique in
formal veri"cation, has been extensively employed for this purpose. Model checking systematically
explores the state space of a system to determine whether a given temporal logic speci"cation
holds.

, Vol. 1, No. 1, Article . Publication date: November 2024.

14 Yanju Chen, Juson Xia, Bo Wen, Kyle Charbonnet, Hongbo Wen, Hanzhi Liu, and Yu Feng

Algorithm 1 Veri"cation by Goal-Driven Reduction
1: procedure C,/!((B, 𝐿 , ω0)
2: input: bridge B, speci"cation 𝐿 , initial state ω0
3: output: a counterexample or safe ∞
4: 𝐿 ≃ △ reduce(𝐿 ;B) 𝐿 reduces temporal property to safety check
5: ϑ △ G0.&,G/*(𝐿 ≃;B) 𝐿 generates location dependence graph
6: while 𝑀 △ E*"$/0.#/(ϑ) do 𝐿 generates sketch of execution sequence by graph reachability
7: 𝑄 △ SAT(SE1.’(ω0, 𝑀 ;B) ↔ ¬𝐿 ≃) 𝐿 symbolically evaluates sketch and check for violation
8: if 𝑄 then return model(𝑄) 𝐿 returns the concrete execution sequence that violates 𝐿 ≃

9: return ∞ 𝐿 no violation is found; returns safe

Given a system model described in Section 4.1, a classical model checking algorithm exhaustively
explores the system model’s state space to verify whether the speci"ed temporal properties hold. If
the properties are violated, the model checker provides a counterexample, which is a sequence of
states demonstrating the violation.
While model checking provides a systematic and exhaustive approach to temporal property

veri"cation, several limitations arise when applied to cross-rollup bridges:
• Scalability Model checking algorithms often struggle with scalability due to the state
explosion problem. Cross-rollup bridges, which integrate multiple entities and protocols,
introduce a vast state space that can become computationally infeasible for classical model
checking.

• Complex Interactions and Temporal Dependencies Cross-rollup bridges rely on complex
interactions between on-chain and o!-chain entities, often requiring reasoning about tempo-
ral sequences of events. Traditional model checkers may struggle to capture and verify these
interactions within a single framework.

• Over-Approximation and False Positives Model checking’s exhaustive exploration can
lead to over-approximation, especially when combined with symbolic abstractions. This can
result in a high number of false positives, complicating the veri"cation process.

5 Verification by Goal-Driven Reduction
In this section, we elaborate S!"#"$’s veri"cation algorithm. We start with an overview of the
veri"cation algorithm in Section 5.1. As vanilla temporal veri"cation usually enumerates program
execution sequences over an in"nite search space, to address this issue, we introduce a goal-driven
approach to reduce it to a smaller subset. Following this, Section 5.2 "rst introduces a new graph
representation that quanti!es the search space more e$ciently, which then allows a constrained
enumeration of the search space that only considers execution sequences that can likely violate
the provided speci"cation. Section 5.3 elaborates such enumeration algorithm by formalizing the
problem into a graph reachability problem.

5.1 Algorithm Overview
Algorithm 1 shows our top-level procedure for veri"cation. Given a bridge B and an initial program
state ω0, S!"#"$ starts by converting the liveness property from the temporal speci"cation 𝐿 into a
safety check 𝐿 ≃ (line 4), i.e., a non-temporal speci"cation that should always hold during the entire
course of execution, through a standard reduction procedure. Based on this new speci"cation 𝐿 ≃,
S!"#"$ infers a special graph structure that we refer to as location dependence graph ϑ, which en-
codes a goal-driven and reduced search space of program execution sequence that could potentially
violate the speci"cation 𝐿 ≃ (line 5). S!"#"$ then keeps enumerating such candidate sub-graphs 𝑀

, Vol. 1, No. 1, Article . Publication date: November 2024.

S!"#"$: Temporal Verification for Cross-Rollup Bridges via Goal-Driven Reduction 15

(line 6), and checks for the aforementioned violation (line 7) until a model (i.e., counterexample) is
found and returned (line 8); otherwise, when the enumeration exhausts, it terminates asserting
that the speci"cation 𝐿 is safe on the given bridge B and initial program state ω0 (line 9).

5.2 Location Dependence Graph
To prune irrelevant search space during veri"cation, we propose a new type of graph that quantify
the search space. To start with, we elaborate the notion of location, which is the building block of
the graph.

Locations. A speci"cation for veri"cation is constructed with predicates and expressions using
S!"#"$’s S𝑂 language. To evaluate the truth value of a given speci"cation 𝐿 , S!"#"$’s evaluation
rules will eventually retrieve data stored in program states and apply corresponding operations
over them. We thus de"ne those referred value accessed from program state, which the truthfulness
of speci"cation depends on.

De!nition 5.1 (Location). Given a speci"cation𝐿 , we say an access path is a location (denoted by 𝑚),
if 𝐿 ’s truthfulness depends on it. Such dependence could be data dependence, control dependence
etc. We say an access path is a location 𝑚 with regard to speci"cation 𝐿 , or location 𝑚 re#ects
speci"cation 𝐿 .

Speci"cally, if a speci"cation 𝐿 depends on a location 𝑚1, which itself further depends on another
access path 𝑚2, then 𝑚2 is also a location with regard to 𝐿 . In this case, 𝑚1 is referred to as a goal
location as it’s the most immediate dependent of speci"cation 𝐿 .

Example 5.2 (Example Locations). From the motivating example shown in Figure 4 with the
given speci"cation 𝐿 in Equation 1, we can identify several locations with regard to 𝐿 . For ex-
ample: _challenges[challengeId].challengeTime and cleared from function createChallenge, and
abortTime from function clearChallenge etc.

Given a speci"cation, We show in Figure 12 a representative set of inference rules for recursively
identifying locations on a bridge system, where ε is an environment that stores identi"ed locations.
Therefore, the judgment:

𝐿,ε " 𝑛
denotes that expression 𝑛 is a location with regard to the given speci"cation𝐿 and existing locations
stored in the environment ε. Specially, when 𝑛 is an access path, the judgment becomes:

𝐿, 𝑜 " 𝑛,

where 𝑜 is the set of locations extracted for speci"cation 𝐿 .
To quantify the search space of execution sequence that could potentially violate the user-

provided speci"cation, we introduce a new type of graph called location dependence graph

Graph construction. We then de"ne the location dependence graph.

De!nition 5.3 (Location Dependence Graph). Given a speci"cation 𝐿 , a location dependence graph
𝑝𝑙 is a hypergraph de"ned as 𝑝𝑙 = (𝑞 , 𝑟), where 𝑞 corresponds to a set of locations 𝑜, and 𝑟
corresponds to a set of hyperedges which is de"ned over 𝑠 ▽ 𝑜 ▽ 𝑜 where 𝑠 corresponds to a set of
functions available in the system.

Example 5.4 (Example Location Dependence Graph). Figure 13 shows the location dependence
graph constructed from the motivating example and speci"cation. The hyperedge that connects
abortTime to cleared is labeled with clearChallenge, since abortTime controls the valuation of
cleared via the function clearChallenge. That is, if the assertion of abortTime in line 27 fails, the
value of clear in line 8 may change. Thus, the location dependence graph captures such dependence.

, Vol. 1, No. 1, Article . Publication date: November 2024.

16 Yanju Chen, Juson Xia, Bo Wen, Kyle Charbonnet, Hongbo Wen, Hanzhi Liu, and Yu Feng

𝑙,ε " 𝑍0 ↔𝑍1
𝑙,ε " 𝑍0 𝑙,ε " 𝑍1

(A*+)
𝑙,ε " ¬𝑍
𝑙,ε " 𝑍

(N/2.#3%*)
𝑙,ε " 𝑍0U𝑍1

𝑙,ε " 𝑍0 𝑙,ε " 𝑍1
(U*#3’)

𝑙,ε " ∈𝑍
𝑙,ε " 𝑍

(N/-#)

𝑙,ε " ⊋𝑍

𝑙,ε " 𝑍
(A’4.5))

𝑙,ε " →𝑆 .𝑍

𝑙,ε " 𝑍 𝑙,ε " 𝑆
(U*31)

𝑙,ε " [𝑆0, ..., 𝑆𝐿]
𝑙,ε " 𝑆0 ... 𝑙,ε " 𝑆𝐿

(L3)#)
𝑙,ε " (𝑆0, 𝑆1)

𝑙,ε " 𝑆0 𝑙,ε " 𝑆1
(T"&’/)

𝑙,ε " reverted(𝑊)
𝑙,ε " 𝑆 𝑆 ↑ requires(𝑊 ;B) ′ conditions(𝑊 ;B) (R/1/0#/+)

𝑙,ε " ↘ (𝑊 , 𝑆0, ..., 𝑆𝐿) ↘ ↑ {call, xcall, dcall}
𝑙,ε " 𝑆0 ... 𝑙,ε " 𝑆𝐿

(C.’’)
𝑙,ε " 𝑄
𝑙,𝑚 " 𝑄

(I+)

𝑙,ε " 𝑊 .𝑄

𝑙,ε " 𝑊 𝑙,ε " 𝑄 𝑚 " 𝑊 .𝑄
(F3/’+)

𝑙,ε " 𝑊 [𝑆]
𝑙,ε " 𝑊 𝑙,ε " 𝑆 𝑚 " 𝑊 [𝑆] (K/5)

𝑙,ε " call(require, 𝑆)
𝑙,ε " 𝑆

(R/630/)

Fig. 12. Rules for goal-driven location inference.

_challenges[challengeId].challengeTime

2

A

D

C

B

1

3

..

A B cleared

C abortTime D verifiedTime

1 createChallenge 2 clearChallenge 3 verifyChallenge

_challenges[challengeId]

goal location

C location

function

locations

Fig. 13. Location dependence graph for the motivating example.

In addition, using the inference rules in Figure 12, we know that cleared is a goal location, but
abortTime isn’t.

5.3 Enumeration of Execution Sequence
The problem is reduced to a graph reachability problem over the location dependence graph.
As shown in Algorithm 2, the algorithm starts by extracting a set of goal locations 𝑜 from the
location dependence graph ϑ using the function goal(ϑ). These goal locations represent the critical
points in the graph that are relevant to the speci"cation 𝐿—for example, states where a security
property might be violated. It then encodes the search for paths to these goal locations as Integer
Linear Programming (ILP) constraints using the function E*!%+/(ϑ, 𝑜). This encoding transforms
the graph reachability problem into mathematical formulas, where the variables and constraints
represent the presence or absence of edges and nodes in potential execution paths. A blocking
constraint set 𝑡 is initialized to ̸, indicating that no execution sketches are currently blocked.

The algorithm enters the main loop (line 7) where it attempts to "nd a minimal execution sketch
𝑢 that satis"es both the encoded constraints𝑙 and the current blocking constraints 𝑡 . This is done
using the function minimize(𝑙 ↔ 𝑡), which seeks the simplest (e.g., shortest) path that reaches a
goal location without violating any constraints. If such a path 𝑢 is found, it represents a feasible
execution sketch that could potentially lead to a violation of the speci"cation 𝐿 . The algorithm
immediately returns this execution sketch for further analysis. To ensure the enumeration of all
possible execution sketches, the algorithm updates the blocking constraints 𝑡 by conjoining it with
block(𝑢). This e!ectively blocks the current execution sketch 𝑢 from being considered in future
iterations, forcing the algorithm to explore alternative paths in the next loop.

The loop continues until no new execution sketches can be found—that is, whenminimize(𝑙 ↔𝑡)
returns no solution. At this point, the algorithm concludes that all feasible execution sketches have
been enumerated and returns ∞ to indicate exhaustion.

5.4 Solving Reachability via ILP

, Vol. 1, No. 1, Article . Publication date: November 2024.

S!"#"$: Temporal Verification for Cross-Rollup Bridges via Goal-Driven Reduction 17

Algorithm 2 Enumeration of Execution Sketch by Graph Reachability Analysis
1: procedure E*"$/0.#/(ϑ,𝐿)
2: input: location dependence graph ϑ, speci"cation 𝐿
3: output: execution sketch 𝑀 or exhausted ∞
4: 𝑜 △ goal(ϑ) 𝐿 extracts a set of goal locations
5: 𝑙 △ E*!%+/(ϑ, 𝑜) 𝐿 encodes search for goal locations as graph reachability ILP constraints
6: 𝑡 = ̸ 𝐿 initializes the set of graphs blocked
7: while 𝑢 △ minimize(𝑙 ↔ 𝑡) do 𝐿 solves for minimum reachable graph
8: return 𝑢
9: 𝑡 △ 𝑡 ↔ block(𝑢) 𝐿 blocks the current proposed graph
10: return ∞ 𝐿 exhausted; returns ∞

In this section, we elaborate on the details of our ILP encoding for solving the reachability
problem. Given A location-dependence graph ϑ = (𝑣 , 𝑟) where 1) 𝑣 is the set of nodes (locations)
and 𝑟 is the set of directed edges between nodes, 2) A start node 𝑘 ↑ 𝑣 , 3) A set of goal nodes 𝑜 ↦ 𝑣 .
We aim to "nd a path from 𝑘 to any node in 𝑜.

Variables.
• Edge Variables (𝑃𝑆): For each edge 𝑛 ↑ 𝑟, de"ne a binary variable 𝑃𝑆 ↑ {0, 1}. 𝑃𝑆 = 1 if edge 𝑛
is included in the path; 𝑃𝑆 = 0 otherwise.

• Node Variables (𝑓𝑒): For each node 𝑖 ↑ 𝑣 , de"ne a binary variable 𝑓𝑒 ↑ {0, 1}. 𝑓𝑒 = 1 if node
𝑖 is included in the path; 𝑓𝑒 = 0 otherwise.

• Goal Node Indicator Variables (𝑌𝑌): For each goal node 𝑔 ↑ 𝑜, de"ne a binary variable 𝑌𝑌 ↑ {0, 1}.
𝑌𝑌 = 1 if the path reaches goal node 𝑔 ; 𝑌𝑌 = 0 otherwise.

Constraints.
• Flow Conservation Constraints: 𝑑↖ and 𝑑+ represent the set of incoming and outgoing edges,
respectively. ∑

𝑆↑𝑓↖ (𝑒)
𝑃𝑆 =

∑
𝑆↑𝑓+ (𝑒)

𝑃𝑆 →𝑖 ↑ 𝑣 \{𝑘}\𝑜.

• Start Node Constraint: Ensure that exactly one edge leaves the start node 𝑘:∑
𝑆↑𝑓+ (𝑀)

𝑃𝑆 = 1.

• Goal Node Constraints: for each goal node 𝑔 ↑ 𝑜:∑
𝑆↑𝑓↖ (𝑌)

𝑃𝑆 = 𝑌𝑌 →𝑔 ↑ 𝑜.

• Goal Node Selection Constraint: Ensure that the path reaches exactly one goal node.∑
𝑌↑𝑚

𝑌𝑌 = 1.

• Edge-Node Relationship Constraints (if using node variables): ensures that if an edge is used,
both its source and target nodes are included in the path.

𝑃𝑆 ∀ 𝑓𝑏 →𝑛 = (𝑍 ∝ 𝑖) ↑ 𝑟,

𝑃𝑆 ∀ 𝑓𝑒 →𝑛 = (𝑍 ∝ 𝑖) ↑ 𝑟 .

The Objective Function is to minimize the total length of the path:

minimize
∑
𝑆↑𝑛

𝑃𝑆 .

, Vol. 1, No. 1, Article . Publication date: November 2024.

18 Yanju Chen, Juson Xia, Bo Wen, Kyle Charbonnet, Hongbo Wen, Hanzhi Liu, and Yu Feng

6 Related Work
In this section, we survey the closest related works with respect to our proposed techniques.

Smart contract vulnerability analysis. Existing methods for detecting and analyzing vul-
nerabilities in smart contracts typically fall into two categories: static analysis[2, 16, 17] and
dynamic analysis[10, 19, 26]. Static analysis tools, such as symbolic execution, identify common
vulnerabilities (as outlined in) without needing an in-depth understanding of a DeFi protocol.
For instance, Securify[28] examines smart contract bytecode to identify pre-de"ned vulnerability
patterns through control #ow graph analysis. Slither[14], which is also integrated into S!"#"$,
is one of the most stable and actively maintained static analysis frameworks for smart contracts.
Prominent symbolic execution tools include Manticore[21], Mythril[11], Solar[15], and H.’$%)
[1] (the current state-of-the-art). As shown in our evaluation, symbolic execution alone, without
e!ective sketch generation and domain-speci"c compilation, struggles to address complex logical
bugs in DeFi protocols.
On the other hand, most dynamic and hybrid analysis tools are limited to a single contract [5,

19, 22, 31]. Even tools that support cross-contract fuzzing, such as ItyFuzz [26], face challenges in
generating e!ective results for DeFi attack synthesis without understanding the broader protocol
logic.

DeFi Security. The primary challenge in DeFi security stems from the complexity and broader
scope beyond individual smart contracts, involving intricate semantics and logic. While Zhou
et al.[32] provide a comprehensive overview of DeFi attacks, most existing research focuses on
identifying patterns from past attack instances and developing detection tools based on pattern
matching. For example, DeFiRanger[30] abstracts low-level smart contract semantics into high-level
patterns for detection, while FlashSyn[9] uses numerical approximations to identify patterns in
attack transaction sequences, enabling real-time detection of suspicious activity. UnifairTrade[7]
identi"es vulnerabilities in swap pair implementations, and DeFiTainter [20] applies taint analysis
by extracting sources and sinks from standard contract APIs.
However, the e!ectiveness and scalability of these approaches are limited by their reliance on

prede"ned patterns, allowing them to detect only certain types of vulnerabilities, such as price
manipulation through token swaps. Some newer tools have extended this methodology to other
vulnerabilities. For instance, DeFiCrisis[18] explores strategies for exploiting DeFi governance by
manipulating funding, and TokenScope[8] detects inconsistencies and phishing activities in token
applications.

Temporal veri"cation. Numerous studies have explored the analysis of temporal properties.
For example, [25] presents an approach for testing violations of past Linear Temporal Logic (LTL)
formulas. Similarly, [3] focuses on verifying LTL formulas within UML models. T2 [6] is a system
designed to verify temporal properties over LLVM, speci"cally supporting programs with linear
integer arithmetic. E-HSF [4] extends this by verifying existential Computation Tree Logic (CTL)
formulas, representing them as existentially quanti"ed Horn-like clauses and solving them using
a counterexample-guided approach. Typestates [27] allow for the expression of correct usage
patterns in class operations or protocols, and several of the properties evaluated in this work can
be expressed as typestates. While those prior works can conceptually used to enhance S!"#"$,
none of them targets cross-rollup bridges.
The approach most closely aligned with S!"#"$ is VerX [24], a veri"er that can automatically

prove temporal safety properties of Ethereum smart contracts. Similar to S!"#"$, VerX reduces

, Vol. 1, No. 1, Article . Publication date: November 2024.

S!"#"$: Temporal Verification for Cross-Rollup Bridges via Goal-Driven Reduction 19

temporal safety veri"cation to reachability checking, an e$cient symbolic execution engine used to
compute precise symbolic states within a transaction. S!"#"$ is di!erent in multiple aspects: "rst,
S!"#"$ extends both the speci"cation and veri"cation to reasoning about cross-rollup bridges, a
crucial infrastructure in blockchains; Second, S!"#"$ reduces the expensive temporal checking
over liveness properties to static analyzing the safety properties of a novel graph representation
of the original system, leading to e$cient veri"cation time without compromising much on the
precision.

7 Conclusion
We have introduced a scalable veri"er designed to systematically assess the security of cross-rollup
bridges—vital infrastructure for seamless asset transfers across Layer 2 (L2) rollups and between L2
and Layer 1 (L1) chains. Our approach overcomes the limitations of traditional security analysis
methods by employing a comprehensive multi-model framework that captures both individual
behaviors and complex interactions using temporal properties. By approximating temporal safety
veri"cation through reachability analysis of a graph representation, we e!ectively leverage ad-
vanced program analysis techniques. The incorporation of a con#ict-driven re"nement loop further
enhances precision by eliminating false positives.
Our evaluation on mainstream cross-rollup bridges, including Orbiter Finance, uncovered mul-

tiple zero-day vulnerabilities, demonstrating the practical utility of our method. With favorable
runtime performance enabling e$cient analysis suitable for real-time or near-real-time applications,
our veri"er addresses the urgent need for robust security assessments of cross-rollup bridges.

References
[1] a16z. 2023. Halmos: A symbolic testing tool for EVM smart contracts. https://github.com/a16z/halmos.
[2] Elvira Albert, Shelly Grossman, Noam Rinetzky, Clara Rodríguez-Núñez, Albert Rubio, and Mooly Sagiv. 2020. Taming

Callbacks for Smart Contract Modularity. Proc. ACM Program. Lang. 4, OOPSLA, Article 209 (nov 2020), 30 pages.
https://doi.org/10.1145/3428277

[3] Luciano Baresi, Mohammad Mehdi Pourhashem Kallehbasti, and Matteo Rossi. 2015. E$cient Scalable Veri"cation of
LTL Speci"cations. In 37th IEEE/ACM International Conference on Software Engineering, ICSE 2015, Florence, Italy, May
16-24, 2015, Volume 1, Antonia Bertolino, Gerardo Canfora, and Sebastian G. Elbaum (Eds.). IEEE Computer Society,
711–721.

[4] Tewodros A. Beyene, Corneliu Popeea, and Andrey Rybalchenko. 2013. Solving Existentially Quanti"ed Horn Clauses.
In Computer Aided Veri!cation - 25th International Conference, CAV 2013, Saint Petersburg, Russia, July 13-19, 2013.
Proceedings (Lecture Notes in Computer Science, Vol. 8044), Natasha Sharygina and Helmut Veith (Eds.). Springer, 869–882.
https://doi.org/10.1007/978-3-642-39799-8_61

[5] Priyanka Bose, Dipanjan Das, Yanju Chen, Yu Feng, and Christopher Kruegel. 2022. SAILFISH: Vetting Smart Contract
State-Inconsistency Bugs in Seconds. In 2022 IEEE Symposium on Security and Privacy (SP).

[6] Marc Brockschmidt, Byron Cook, Samin Ishtiaq, Heidy Khlaaf, and Nir Piterman. 2016. T2: Temporal Property
Veri"cation. In Tools and Algorithms for the Construction and Analysis of Systems - 22nd International Conference,
TACAS 2016, Held as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2016, Eindhoven,
The Netherlands, April 2-8, 2016, Proceedings (Lecture Notes in Computer Science, Vol. 9636), Marsha Chechik and
Jean-François Raskin (Eds.). Springer, 387–393.

[7] Jiaqi Chen, Yibo Wang, Yuxuan Zhou, Wanning Ding, Yuzhe Tang, XiaoFeng Wang, and Kai Li. 2023. Understanding
the Security Risks of Decentralized Exchanges by Uncovering Unfair Trades in the Wild. In 2023 IEEE 8th European
Symposium on Security and Privacy (EuroS&P). 332–351. https://doi.org/10.1109/EuroSP57164.2023.00028

[8] Ting Chen, Yufei Zhang, Zihao Li, Xiapu Luo, Ting Wang, Rong Cao, Xiuzhuo Xiao, and Xiaosong Zhang. 2019.
TokenScope: Automatically Detecting Inconsistent Behaviors of Cryptocurrency Tokens in Ethereum. In Proceedings
of the 2019 ACM SIGSAC Conference on Computer and Communications Security (London, United Kingdom) (CCS ’19).
Association for Computing Machinery, New York, NY, USA, 1503–1520. https://doi.org/10.1145/3319535.3345664

[9] Zhiyang Chen, Sidi Mohamed Beillahi, and Fan Long. 2022. FlashSyn: Flash Loan Attack Synthesis via Counter
Example Driven Approximation. arXiv:2206.10708 [cs.PL]

[10] Jaeseung Choi, Doyeon Kim, Soomin Kim, Gustavo Grieco, Alex Groce, and Sang Kil Cha. 2021. SMARTIAN: Enhancing
Smart Contract Fuzzing with Static and Dynamic Data-Flow Analyses. In 2021 36th IEEE/ACM International Conference

, Vol. 1, No. 1, Article . Publication date: November 2024.

https://github.com/a16z/halmos
https://doi.org/10.1145/3428277
https://doi.org/10.1007/978-3-642-39799-8_61
https://doi.org/10.1109/EuroSP57164.2023.00028
https://doi.org/10.1145/3319535.3345664
https://arxiv.org/abs/2206.10708

20 Yanju Chen, Juson Xia, Bo Wen, Kyle Charbonnet, Hongbo Wen, Hanzhi Liu, and Yu Feng

on Automated Software Engineering (ASE). 227–239. https://doi.org/10.1109/ASE51524.2021.9678888
[11] ConsenSys. 2020. Mythril: Security Analysis Tool for Ethereum Smart Contracts. https://github.com/ConsenSys/

mythril.
[12] Byron Cook, Eric Koskinen, and Moshe Vardi. 2011. Temporal Property Veri"cation as a Program Analysis Task.

In Computer Aided Veri!cation, Ganesh Gopalakrishnan and Shaz Qadeer (Eds.). Springer Berlin Heidelberg, Berlin,
Heidelberg, 333–348.

[13] Andrei Marian Dan, Yuri Meshman, Martin Vechev, and Eran Yahav. 2013. Predicate Abstraction for Relaxed Memory
Models. In Static Analysis, Francesco Logozzo and Manuel Fähndrich (Eds.). Springer Berlin Heidelberg, Berlin,
Heidelberg, 84–104.

[14] Josselin Feist, Gustavo Grieco, and Alex Groce. 2019. Slither: A Static Analysis Framework for Smart Contracts. In
2019 IEEE/ACM 2nd International Workshop on Emerging Trends in Software Engineering for Blockchain (WETSEB). IEEE.
https://doi.org/10.1109/wetseb.2019.00008

[15] Yu Feng, Emina Torlak, and Rastislav Bodik. 2021. Summary-Based Symbolic Evaluation for Smart Contracts. In
Proceedings of the 35th IEEE/ACM International Conference on Automated Software Engineering (Virtual Event, Australia)
(ASE ’20). Association for Computing Machinery, New York, NY, USA, 1141–1152. https://doi.org/10.1145/3324884.
3416646

[16] Neville Grech, Michael Kong, Anton Jurisevic, Lexi Brent, Bernhard Scholz, and Yannis Smaragdakis. 2018. MadMax:
Surviving out-of-Gas Conditions in Ethereum Smart Contracts. Proc. ACM Program. Lang. 2, OOPSLA, Article 116 (oct
2018), 27 pages. https://doi.org/10.1145/3276486

[17] Shelly Grossman, Ittai Abraham, Guy Golan-Gueta, Yan Michalevsky, Noam Rinetzky, Mooly Sagiv, and Yoni Zohar.
2017. Online Detection of E!ectively Callback Free Objects with Applications to Smart Contracts. Proc. ACM Program.
Lang. 2, POPL, Article 48 (dec 2017), 28 pages. https://doi.org/10.1145/3158136

[18] Lewis Gudgeon, Daniel Perez, Dominik Harz, Benjamin Livshits, and Arthur Gervais. 2020. The Decentralized Financial
Crisis. arXiv:2002.08099 [cs.CR]

[19] Bo Jiang, Ye Liu, and W. K. Chan. 2018. ContractFuzzer: Fuzzing Smart Contracts for Vulnerability Detection. In
Proceedings of the 33rd ACM/IEEE International Conference on Automated Software Engineering (Montpellier, France) (ASE
’18). Association for Computing Machinery, New York, NY, USA, 259–269. https://doi.org/10.1145/3238147.3238177

[20] Queping Kong, Jiachi Chen, YanlinWang, Zigui Jiang, and Zibin Zheng. 2023. DeFiTainter: Detecting PriceManipulation
Vulnerabilities in DeFi Protocols. In Proceedings of the 32nd ACM SIGSOFT International Symposium on Software Testing
and Analysis (Seattle, WA, USA) (ISSTA 2023). Association for Computing Machinery, New York, NY, USA, 1144–1156.
https://doi.org/10.1145/3597926.3598124

[21] Mark Mossberg, Felipe Manzano, Eric Hennenfent, Alex Groce, Gustavo Grieco, Josselin Feist, Trent Brunson, and
Artem Dinaburg. 2019. Manticore: A User-Friendly Symbolic Execution Framework for Binaries and Smart Contracts.
In 2019 34th IEEE/ACM International Conference on Automated Software Engineering (ASE). 1186–1189. https://doi.org/
10.1109/ASE.2019.00133

[22] Tai D. Nguyen, Long H. Pham, Jun Sun, Yun Lin, and Quang Tran Minh. 2020. SFuzz: An E$cient Adaptive Fuzzer for
Solidity Smart Contracts. In Proceedings of the ACM/IEEE 42nd International Conference on Software Engineering (Seoul,
South Korea) (ICSE ’20). Association for Computing Machinery, New York, NY, USA, 778–788. https://doi.org/10.1145/
3377811.3380334

[23] Orbiter Finance. [n. d.]. Orbiter Finance. https://www.orbiter."nance/. Accessed: 2024-9-10.
[24] Anton Permenev, Dimitar Dimitrov, Petar Tsankov, Dana Drachsler-Cohen, and Martin Vechev. 2020. VerX: Safety

Veri"cation of Smart Contracts. In 2020 IEEE Symposium on Security and Privacy (SP). 1661–1677.
[25] Grigore Rosu, Feng Chen, and Thomas Ball. 2008. Synthesizing Monitors for Safety Properties: This Time with Calls

and Returns. In Runtime Veri!cation, 8th International Workshop, RV 2008, Budapest, Hungary, March 30, 2008. Selected
Papers (Lecture Notes in Computer Science, Vol. 5289), Martin Leucker (Ed.). Springer, 51–68.

[26] Chaofan Shou, Shangyin Tan, and Koushik Sen. 2023. ItyFuzz: Snapshot-Based Fuzzer for Smart Contract. In Proceedings
of the 32nd ACM SIGSOFT International Symposium on Software Testing and Analysis (Seattle, WA, USA) (ISSTA 2023).
Association for Computing Machinery, New York, NY, USA, 322–333. https://doi.org/10.1145/3597926.3598059

[27] Robert E. Strom and Shaula Yemini. 1986. Typestate: A Programming Language Concept for Enhancing Software
Reliability. IEEE Trans. Software Eng. 12, 1 (1986), 157–171. https://doi.org/10.1109/TSE.1986.6312929

[28] Petar Tsankov, Andrei Dan, Dana Drachsler-Cohen, Arthur Gervais, Florian Bünzli, and Martin Vechev. 2018. Securify:
Practical Security Analysis of Smart Contracts. In Proceedings of the 2018 ACM SIGSAC Conference on Computer and
Communications Security (Toronto, Canada) (CCS ’18). Association for Computing Machinery, New York, NY, USA,
67–82. https://doi.org/10.1145/3243734.3243780

[29] Gavin Wood et al. 2014. Ethereum: A secure decentralised generalised transaction ledger. Ethereum project yellow
paper 151, 2014 (2014), 1–32.

, Vol. 1, No. 1, Article . Publication date: November 2024.

https://doi.org/10.1109/ASE51524.2021.9678888
https://github.com/ConsenSys/mythril
https://github.com/ConsenSys/mythril
https://doi.org/10.1109/wetseb.2019.00008
https://doi.org/10.1145/3324884.3416646
https://doi.org/10.1145/3324884.3416646
https://doi.org/10.1145/3276486
https://doi.org/10.1145/3158136
https://arxiv.org/abs/2002.08099
https://doi.org/10.1145/3238147.3238177
https://doi.org/10.1145/3597926.3598124
https://doi.org/10.1109/ASE.2019.00133
https://doi.org/10.1109/ASE.2019.00133
https://doi.org/10.1145/3377811.3380334
https://doi.org/10.1145/3377811.3380334
https://www.orbiter.finance/
https://doi.org/10.1145/3597926.3598059
https://doi.org/10.1109/TSE.1986.6312929
https://doi.org/10.1145/3243734.3243780

S!"#"$: Temporal Verification for Cross-Rollup Bridges via Goal-Driven Reduction 21

[30] Siwei Wu, Dabao Wang, Jianting He, Yajin Zhou, Lei Wu, Xingliang Yuan, Qinming He, and Kui Ren. 2021. DeFiRanger:
Detecting Price Manipulation Attacks on DeFi Applications. arXiv:2104.15068 [cs.CR]

[31] Valentin Wüstholz and Maria Christakis. 2020. Harvey: A Greybox Fuzzer for Smart Contracts. In Proceedings of
the 28th ACM Joint Meeting on European Software Engineering Conference and Symposium on the Foundations of
Software Engineering (Virtual Event, USA) (ESEC/FSE 2020). Association for Computing Machinery, New York, NY,
USA, 1398–1409. https://doi.org/10.1145/3368089.3417064

[32] Liyi Zhou, Xihan Xiong, Jens Ernstberger, Stefanos Chaliasos, ZhipengWang, YeWang, Kaihua Qin, Roger Wattenhofer,
Dawn Song, and Arthur Gervais. 2023. Sok: Decentralized "nance (de") attacks. In 2023 IEEE Symposium on Security
and Privacy (SP). IEEE, 2444–2461.

, Vol. 1, No. 1, Article . Publication date: November 2024.

https://arxiv.org/abs/2104.15068
https://doi.org/10.1145/3368089.3417064

	Abstract
	1 Introduction
	2 Background
	2.1 Blockchain and Rollups
	2.2 Cross-Rollup Bridges

	3 Overview
	3.1 Preliminaries and Problem Scope
	3.2 Motivating Example
	3.3 Our Approach: Reasoning with Scutum

	4 Model and Query of System Behavior
	4.1 Modeling of System Behavior
	4.2 Writing Queries for Safety Checks
	4.3 A Vanilla Solution for Safety Verification

	5 Verification by Goal-Driven Reduction
	5.1 Algorithm Overview
	5.2 Location Dependence Graph
	5.3 Enumeration of Execution Sequence
	5.4 Solving Reachability via ILP

	6 Related Work
	7 Conclusion
	References
	A Benchmarks and Specifications

