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Abstract—This paper presents a novel blockchain-based de-
centralized identity system (DID), tailored for enhanced digital
identity management in Internet of Things (IoT) and device-to-
device (D2D) networks. The proposed system features a hierar-
chical structure that effectively merges a distributed ledger with a
mobile D2D network, ensuring robust security while streamlining
communication. Central to this design are the gateway nodes,
which serve as intermediaries, facilitating DID registration and
device authentication through smart contracts and distributed
storage systems. A thorough security analysis underscores the
system’s resilience to common cyber threats and adherence to
critical principles like finality and liveness.

Keywords—Decentralized identity, D2D, Blockchain, Decentral-
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I. INTRODUCTION

In the dynamic realm of technology, the implementation
of blockchain-based services stands as a transformative force,
poised to revolutionize the landscape of decentralized appli-
cations for devices and the Internet of Things (IoT). Internet
of Things devices are often limited in terms of computational
and energy resources due to their design goals and constraints.
Due to these limitations, IoT devices often require special-
ized software and algorithms tailored for resource-constrained
environments. Optimization techniques, lightweight protocols,
and efficient algorithms are used to ensure effective operation
within the available resources while meeting the desired func-
tionality and security requirements of IoT applications. The
importance of incorporating blockchain into the fabric of these
applications cannot be overstated, as it introduces a level of
security, transparency, and efficiency that is paramount in our
interconnected world.

The provision of blockchain-based services offers a unique
opportunity to empower and expedite the implementation of
decentralized applications for devices and IoT in a modular
and versatile manner. By breaking down the complexities
associated with bespoke development, these services serve
as building blocks, enabling developers to leverage essential
functionalities seamlessly. This modular approach not only
accelerates the development process but also fosters a more
adaptable and scalable ecosystem for a diverse range of
applications.

As we delve into specific examples of blockchain-based
services, the significance becomes clear. Smart contracts, for

Maria Potop-Butucaru
Sorbonne University

Serge Fdida

Sorbonne University

LIP6 LIP6
Paris, France Paris, France
maria.potop-butucaru@lip6.fr serge.fdida@lip6.fr

instance, automate and secure agreements between devices, re-
ducing the need for intermediaries and enhancing the efficiency
of interactions. Immutable data storage on the blockchain
ensures the integrity and reliability of data generated by
devices, fostering a trustworthy foundation for various applica-
tions. Decentralized consensus mechanisms mitigate the risks
associated with centralized points of failure, contributing to
the resilience of the entire network.

One example of service that emerges as a linchpin in this
transformative landscape is the decentralized identity service
based on blockchain. As the backbone of secure and tamper-
resistant identification for devices, this service not only safe-
guards against unauthorized access but also empowers users
with greater control over their digital identities.

Decentralized identity systems and self-sovereign iden-
tity (SSI), especially their blockchain-based implementations,
are increasingly important in digital identity management.
Numerous surveys and studies [15] - [25] have explored
these systems’ technological, security, governance, and user-
centric aspects. These works highlight the balance between
blockchain’s immutability and transparency and SSI’s focus
on autonomy and privacy. They analyze the challenges and
benefits of decentralized identity systems, including their po-
tential to revolutionize traditional identity management and
give users more control over their data. Furthermore, these
studies examine the implications for regulatory compliance,
scalability, and integration with existing digital infrastructures.

Recent research efforts have increasingly focused on ex-
ploring the benefits and practical applicability of decentralized
identities and self-sovereign identities (SSIs) within the realm
of the Internet of Things (IoT). This burgeoning interest stems
from the growing recognition of the potential that decentral-
ized identity models, underpinned by technologies such as
blockchain and distributed ledgers, hold in addressing core
IoT challenges. In [26] for example, the authors present a
detailed analysis of the Self-Sovereign Identity (SSI) concept
and its application in the context of the Internet of Things
(IoT). It contrasts existing identity approaches like cloud-based
accounts and digital certificates with emerging SSI standards
such as Decentralized Identifiers (DIDs) and Verifiable Cre-
dentials (VCs). The authors argue that SSI, with its owner-
centric, privacy-aware, and decentralized approach, offers a
viable and attractive option for the secure identification of IoT
devices and users. While the paper discusses the theoretical
security aspects of SSI, it does not delve into a detailed study



of the security of the proposed model, such as vulnerability
assessments or resistance to specific types of cyber-attacks,
which is crucial in the context of IoT security. In [27] the
authors propose an innovative approach for implementing self-
sovereign identity (SSI) in IoT networks, particularly focusing
on the challenges posed by constrained networks. The authors
propose a new DID method tailored for IoT networks, along-
side a novel serialization mechanism for the DID document.
Additionally, the paper introduces a binary message envelope
for secure communication. This study focuses on the practical
implications of implementing SSI in constrained IoT networks,
offering a significant reduction in the size of identity metadata
and security overhead. Although the authors emphasize reduc-
ing security overhead and ensuring secure communication, this
study lacks a detailed examination of the model’s resilience
against various cyberattacks and vulnerabilities.

Furthermore, in [28] the authors focus on providing an in-
depth overview of various approaches to self-sovereign identity
(SSI) and its application in IoT environments. It discusses
the evolution of digital identity, emphasizing the importance
of SSI in the context of increasing privacy concerns and the
proliferation of IoT devices. The authors compare different SSI
infrastructures, highlighting their strengths and weaknesses.
The paper also examines existing SSI solutions, such as uPort
[1], Sovrin [2], and others [3]- [14]. Although this research
provides a detailed comparison of the current SSI infrastruc-
tures and their relevance to IoT, it has a significant drawback
in terms of security. The authors discuss the cryptographic
foundations of SSI and the use of blockchain technology
to ensure safe identity management. However, they do not
conduct a thorough analysis of the security of their particular
attack model.

To the best of our knowledge, we are the first to propose
a blockchain-based hierarchical architecture specifically de-
signed to support device-to-device communication and propose
a secure decentralized identity service. The originality of our
work stands in proposing an end-to-end security proof for
our decentralized identity service against a formally defined
attacker. The rest of the paper is organized as follows: Section
IT presents the system architecture, Section III presents the
detailed workflow of our decentralized identity service, and
Section IV proposes the formal security proofs for our service
and finally Section VI concludes the paper.

II. BLOCKCHAIN-BASED SYSTEM ARCHITECTURE

Our architecture integrates a dynamic, decentralized net-
work, incorporating a hierarchical structure with both an upper-
layer distributed ledger system and a mobile Device-to-Device
(D2D) network layer (see Figure 1). Two main functional
entities compose our architecture:

e Devices are the main component of the network. A
device is an entity or physical object that has a unique
identifier, an embedded system, and the ability to
transfer data over a network.

o  The IoT gateways that act as Blockchain nodes. These
gateways maintain the connection between the devices
and the Blockchain. These nodes verify and validate
transactions corresponding to the device’s requests.

Blockchain Layer

1

Network Layer

Hierarchical architecture

Fig. 1.

Two groups of participant nodes in the blockchain need to
be addressed separately in our architecture:

1) Nodes that maintain the consensus algorithm of
the blockchain, can be called Miners in traditional
blockchains or Members of the Election Commit-
tee in voting-based blockchains. They are the ones
who ensure the proper functioning of the chosen
blockchain in the architecture

2)  Gateway nodes are spread at the edge of the upper
blockchain network and are the intermediary medium
to link the blockchain layer to the D2D network layer.
They follow a process of registering their DID during
system initialization.

Note that a blockchain participant may be both a miner and a
gateway node, or neither at all.

Both Gateways and D2D nodes are equipped with asym-
metric cryptography keys, which enable secure and private
communication. These keys consist of a public key and a
private key, which are uniquely generated for each device.
Furthermore, the private key is securely stored within each
device, safeguarding it from unauthorized access. It is utilized
for decrypting received encrypted data and for digitally signing
messages. By leveraging these cryptographic capabilities, in-
cluding encryption, digital signatures, and hashing, each device
within the network can ensure secure and trustworthy commu-
nication, protect sensitive information, verify the authenticity
of data exchanges, and be associated with a unique identifier.

Another pivotal component of our architecture is the decen-
tralized storage system, which is intricately linked to the upper
layer of the architecture via gateway nodes. These nodes serve
as critical junction points, enabling seamless communication
and data transfer between the decentralized storage system and
the rest of the architecture. This system offers a fundamental
storage primitive for our architecture, essentially acting as the
backbone for data storage and management. It also maintains
a public-private key pair and provides a signature of retrieved
data using this key pair. By leveraging the decentralized nature
of this storage system, we ensure enhanced security, scalability,
and redundancy in data handling, which is crucial for main-
taining the integrity and efficiency of the entire architecture.
The integration of this system through gateway nodes not
only simplifies data accessibility but also bolsters the overall



resilience and robustness of our architectural framework.

III. DECENTRALIZED IDENTITY SERVICE

Our proposal introduces a Decentralized Identifier (DID)

service that offers two key functionalities: device DID regis-
tration and device DID authentication. The first functionality,
device DID registration, enables devices to acquire unique
decentralized identifiers. The second functionality, device DID
authentication, provides a mechanism for verifying the identity
of these devices. Together, these functionalities form the core
of our DID service, facilitating secure and efficient identity
management for devices in a decentralized environment.
Gateways are at the heart of our DID service and function as
controllers. They possess the ability to generate Decentralized
Identifier (DID) documents, conduct transactions, and interact
with the decentralized storage system for storing and retrieving
these documents. When a node joins the system for the first
time, it will try to establish a connection with at least one
trusted gateway node to register a network-wide unique DID.
Once a node has successfully registered its DID, other nodes
can verify its legitimacy based on this node’s DID. Nodes use
their DIDs to participate in the various communications in the
system. Since the DID is stored in the upper layer distributed
ledger along with its metadata in connected distributed storage
at the time of node registration, and cannot be tampered with,
this unique DID will replace the traditional certificate system
to verify the identification of the node.
Additionally, a smart contract is implemented, fulfilling the
essential roles of both a resolver and a secure, unalterable
registry for DIDs. This smart contract provides the functional-
ity to map DIDs with their corresponding data and upholds a
reliable registry, guaranteeing the accuracy and legitimacy of
decentralized identity data.

A. Register a device’s DID

In the following, we will present a detailed, step-by-step
description of Figure 2, which illustrates the DID registration
flow.

1)  The DID registration: A device requests the gateway
to register its DID by sending its public key, the
verification method, identity metadata if needed, and
its signature.

2) At this stage, the gateway playing the controller role
in the DID standard architecture formulates the DID
based on the chosen verification method and the
public key. The specific format and syntax may vary
depending on the method.

3)  Create a DID Document: Construct a DID document
for the IoT device. The DID document contains meta-
data and cryptographic material associated with the
DID. It typically includes the public key, verification
method, and service endpoints. The structure and
content of the DID document depend on the data
received from the device.

4)  Store the DID Document: A decentralized storage
system is used to store the DID document. This
can be achieved by uploading the document to the
decentralized storage system gateway and obtaining
its unique identifier (the document hash) and the
decentralized storage system public key.

5)  Register the DID: Call the appropriate function in the
smart contract to register the DID and link it to the
DID document hash. This step establishes the connec-
tion between the DID and its corresponding document
and finalizes the process of identity creation.

6) The Smart contract DID registration Response: Upon
the DID registration, the smart contract responds to
the requesting gateway with the created DID and the
registration transaction hash.

7)  The Gateway DID registration Response: The gate-
way forwards the created DID and the decentralized
storage system public key after signing the message
with its private key to the requesting device as the
final step of the DID creation.
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Fig. 2. DID registration flow

B. Authenticate a device

In the subsequent section, we will provide a thorough,
sequential breakdown of Figure 3, illustrating the DID authen-
tication flow.

1)  Obtain the Device’s DID: Retrieve the specific DID
associated with the device that you want to authen-
ticate. This can be obtained from the device itself or
from a trusted source that provides the device’s DID.

2)  Start the authentication process by sending a request
to the gateway containing the DIDtoAuthenticate, the
device’s DID, and the device’s signature.

3) Resolve the DID: The gateway uses the device’s
DID to fetch the associated device DID document
identifier (document hash) by querying the resolver
smart contract.

4)  Fetch the DID Document: Use the obtained device
document identifier to retrieve the associated device
DID document. This document contains the necessary
information to authenticate the device.

5) The gateway extracts the public key from the docu-
ment and verifies the device’s signature.

6) The gateway repeats the same process for the DID-
toAuthenticate to get its document.

7)  As the final DID document response, the gateway
responds to the device with a message containing the
DIDtoAuthenticate document and the decentralized
storage system signature.

8)  When receiving the final DID Document response
message, the device starts by verifying the decentral-
ized storage system signatures.



9)  Extract the Verification Method: Within the fetched
DIDtoAuthenticate document, the device identifies
the verification method. The verification method
specifies the cryptographic algorithm and key mate-
rial required for authentication.

10)  Retrieve the Public Key: Extract the public key that
will be used for the authentication process.

11)  Verify Authentication: Use the public key to verify
the signature provided by the device to authenticate.
This process ensures that the device possesses the
private key corresponding to the public key and can
provide valid authentication proof.
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Fig. 3. Authenticate device flow

IV. SECURITY ANALYSIS

In the following, we propose the security proof of our DID
service. First, we define the adversary model and the relevant
security hypotheses.

A. Formal Notations and Adversary Model

The following notations and definitions are borrowed from
Dolev, et al. [29]. A node A holds X as known information
is denoted by:

I, ={X}
Sending message from A to B with content X is denoted by:
A—-B:(X)

when this is a broadcast message from A, destination will not
be mentioned :

A (X)

The Checking operation of the legitimacy, performed by B,
for a received message is denoted by:

Checkingp((X),Ip)

The checking operation verifies whether a message is legiti-
mate by comparing it with locally available information.

Encryption / Decryption operations on a particular content
X with key K is denoted by:

E(K,X)

We define an adversary node Z with the following capa-
bilities:

e 7 can intercept the message sent from A to B during
the transmission.

e 7 can modify the message received from a node and
re-transfer it.

e 7 can generate and propagate any type of message
that may appear in the system

e  When required, Z may or not perform any operation,
then give arbitrary result or response.

e  Z can update Iz, when intercepting useful informa-
tion.

e 7 can try to decrypt encrypted message by using
information from Iz at any time.

In terms of attack patterns, the defined adversary Z is an
attacker who can initiate Adaptive Chosen Message Attacks
(A-CMA) [30]. In this case, the adversary can not only select
a set of messages and obtain their corresponding messages
(ciphertexts / plaintexts), but also select subsequent messages
based on the results of the previous set of messages.

B. System model and security hypothesis

Our system is a dynamic and decentralized network, con-
sisting of a large finite yet unbounded set of mobile devices.

We consider that in our system, nodes communicate via
messages, and wireless communication links are designed to
prevent data loss.

In our model, we distinguish between three types of
messages: a signed message, a signed item part of a message,
and a non-signed message. The difference between these types
lies in the scope and verification of the cryptographic signature
applied to the message or its components. In the following, we
present a detailed explanation of each type of message:

e Signed Message: This refers to an entire message
that has been digitally signed, i.e., sign4 represents
the signature of a complete message signed by node
A. The signature covers every part of the message,
ensuring its integrity and authenticity. This is common
in scenarios where the entire content of the message
needs to be protected against tampering and imperson-
ation. The list of signed messages exchanged during
the DID service workflows is as follows: DIDReg-
istrationReOquest, DIDRegistrationTx, DIDRegistra-
tionResponse, DIDDocumentRequest.

e  Signed item part of a message: In this case, only a
specific part or item within the message is signed,
rather than the entire message, i.e., signa(item)
represents the signature of a part or an item of a
message signed by a node A. This might be used
in scenarios where only certain critical elements of



the message need integrity and authenticity protection.
The messages with a signed item exchanged during the
DID service workflows are DIDDocumentResponse,
DIDDocumentFinalResponse.

e Non-Signed Message: A non-signed message is a
message that does not have any digital signature
associated with it. The list of non-signed messages
exchanged during the DID service workflows is as fol-
lows: StorageRequest, DIDRegistrationTxResponse,
ResolveDIDRequest, ResolveDIDResponse, DIDDoc-
umentRequest, StorageResponse.

We list below the security hypotheses.

1)  The distributed ledger system at the upper layer toler-
ates the attacker previously defined.

2)  Connected distributed storage system satisfies the
properties of Atomicity, Consistency, Isolation and
Durability (ACID properties recalled below. This dis-
tributed storage system tolerates attackers previously
defined.

3)  All Gateways are connected to the distributed storage
system via an interface. Through that interface, the
communication between gateways and distributed stor-
age system satisfies the properties of Confidentiality,
Integrity, and Availability (CIA properties recalled
below), which tolerates attackers previously defined.

4)  Each device and gateway node possesses a unique pair
of asymmetric cryptography keys (public and private
keys) for secure communication. The private key is
securely stored within each device.

5) Both Gateway and D2D nodes can compute local
DIDs via public keys, establishing a mono-mapping
of public keys to DIDs.

6) Public-private key paires based RSA encryption
scheme used in the system is secure under Adaptive
Chosen Message Attacks.

7)  Public-private key paires based digital signature used
in the system satisfies Existential Unforgeability under
Adaptive Chosen Message Attacks [30], which means
the adversary cannot succeed in forging the signature
of any message.

8)  Hash function, hash(), used in the system, is consid-
ered one-way and unbreakable.

9) A whitelist of trusted gateway nodes, with their public
keys and DIDs, is provided to joining devices during
initialization for secure connection establishment.

10)  The network includes firewall-like middleware to pre-
vent physical attacks like flooding and DoS attacks.

11)  The distributed storage system maintains a public-
private key pair and provides a signature of retrieved
data using this key pair.

The chosen upper-layer distributed storage should satisfy
the atomicity, consistency, isolation, and durability properties
listed below:

e Atomicity: all operations in a transaction, either all
complete or none of them.

e  Consistency: The integrity of the database (storage)
will not be corrupted before the transaction begins and
after the transaction ends.

e Isolation: The storage system prevents data inconsis-
tency due to the execution concurrently of multiple
transactions.

e  Durability: once a transaction completes, changes to
the data are permanent and will not be lost.

Through a dedicated interface, gateway nodes interact with
the distributed storage system satisfying the security properties
of confidentiality, integrity, and availability listed as follows:

e  Confidentiality: ensuring that information is transmit-
ted and stored confidentially so that unauthorized users
do not reveal the contents of the information.

e Integrity: ensuring the correctness and consistency of
data throughout its life cycle, either in transmission or
in storage.

e  Availability: when one needs to operate through the
storage systems, information, and services must re-
main available.

C. DID Service Security proofs
Let us begin with a basic Lemma 1.

Lemma 1. A node can verify the integrity of a signed item
(e.g., message, message field, message content etc.) by using
the corresponding public key and verification function.

Proof: The lemma directly follows from Hypothese 7. W

Next, we prove the security of the DID registration and
authentication process.

1) DID Registration: In DID registration, the D2D node
attempts to communicate with the gateway nodes in its
whitelist, with encryption. Upon receiving the message, the
gateway node interacts with the distributed ledger and dis-
tributed storage to register its DID, which will be eventually
sent back to the requesting node as confirmation. We consider
a DID registration scheme to be secure if it satisfies the
following two properties:

P1  Any correct DID registration request will eventually
be accepted by the DID service.

P2 Any node invoking DID registration will eventually
receive a correct DID registration response.

A correct DID registration request or response is a message
that respects the format defined in Section III. And a correct
DID registration response should be sent by a whitelisted
gateway node and its integrity should be verified by the
receiving node.

For the first property P1, we recall that according to
the hypothesis, newly joined D2D node A is pre-installed
with a whitelist containing several trusted gateway nodes
and a public-private key pair for asymmetric encryption.



DID registration requirement consists of the body of the
requirement and signature of message signed with A’s secret
key. Node A will try to send the requirement to some of the
gateway nodes in its whitelist, to increase the potential for
messages to be accepted by the DID service. Let Dst be one
of these chosen destination gateways.

IA = {, Kpub(A), Ksct(A), whit@LiStA, Kp“b(DSt), }
A — Dst: (X||signa)

where X contains A’s public key as well as related
metadata and verification method, verM D. X is encrypted
with the public key of the expected destination gateway node
Dst:

X = E(Kpup(Dst), Kpup(A)||ver M D||metaData)

and sgin 4 is the result of encryption of the hash of X by
the Ksct (A)

signa = E(Kset(A), hash(X))

According to our hypotheses, wireless communication links
are not lossy. Therefore, any DID registration request are
eventually received by a whitelisted destination gateway node.

We then give two Lemmas 2 and 3 to show the first
property P1 in DID registration holds.

Lemma 2. If a DID registration request is received by a
whitelisted gateway, and it is encrypted by the public key of
that gateway node, then the integrity of the DID registration
request can be verified by that gateway.

Proof: Since the DID registration request is signed by
the requesting node A, when another node B receives this
message, it needs only to obtain the public key of A, which
allows it to perform the integrity check according to the
Lemma 1.

In order to obtain the public key of A, Kp,,(A), the node
receiving this message will try to use its own secret key to
decrypt the message content X' and obtain K ,(A) from it.
Note, however, a node can only decrypt the content correctly
and obtain the correct K, (A) and related information, if it
is the destination gateway Dst. Thus the destination gateway
node can verify the integrity of the DID registration request
according to Lemma 1.

X = E(Kpuw(Dst), Kpup(A)||ver M D||metaData)
A — Dst: (X]||signa)
Ipst = {..., Kset(Dst), X', sign'y, ...}

(Kz’mb(A)|\verMD’HmetaData’) == FE(Ksu(Dst), X')
K;n:,b(A) == pub(A)

Since the public key used to encrypt the content of this
message is the public key of Dst, it is impossible for any

other node Z to correctly decrypt the content of the message
without the private key of Dst, and hence for any other
receiver nodes, it is impossible for them to obtain the correct
Kpub(A), and hence they will not be able to pass the integrity
check.

Iz ={. Ksu(2), X', signy,..}

(K, (A)|lverM D'||metaData’) == E(Kset(Z), X')

K;/mb(A) # Kpub(A)
|

Lemma 3. Any correct DID registration request will eventu-
ally be accepted by the DID service.

Proof: According to Lemma 2, the integrity of a DID
registration request can be verified by a whitelisted destination
gateway node. Therefore based on the communication assump-
tions, there must be a correctly formatted DID registration
request whose integrity is verified that is correctly received by
a whitelisted destination gateway node. Then the gateway can
obtain the correct public key of requesting node and all related
information: verification method and metadata, and perform
the correct registration process. At this point we can say that
the DID registration request has been correctly accepted by the
proposed DID service. Therefore the first property P1 holds.

|

For the second property P2, since once a gateway G in the
whitelist of the requesting D2D node has correctly received the
DID registration request, it will honestly execute the process
described in Section III to complete the DID registration.
Since all interactions with the distributed storage and the
smart contract in distributed ledger layer are performed by a
whitelisted gateway node, a correct DID registration response
therefore must be generated at that whitelisted gateway node.

I¢ ={...,DIDg,DID 4, K;t(G), Kpus(sys), ...}
X = DIDg||DIDA||K pup(sys)

signg = E(Kset(G), hash(X))

G — A: (X]||signg)

where K,,;(sys) is the public key of a public-secret key
pair maintained by the distributed storage system. This public
key is received at step 4 of DID registration by that whitelisted
gateway node. It is used in the DID authentication process.

However, it is notable that a gateway node attempting
to register a DID, will first check whether the DID has
already been registered to prevent data redundancy. Therefore,
if a malicious gateway node is the first to receive the DID
registration request of A, and tries to perform a malicious
operation in the upper distributed system with DID of A, it
is likely to cause an impact on the registration process of A,
for example it can modify the metadata or verification method
of DID, then create and store wrongly DID document to the
distributed storage system. But in fact, with the following
Lemma 4, we can see that the malicious gateway node is not
able to interrupt the correct DID registration process.



Lemma 4. If a DID registration request from a correct node
dev is received by a malicious D2D node / gateway then the
malicious D2D node / gateway cannot decrypt the DID regis-
tration request or any related information. The malicious D2D
node/gateway cannot execute correctly the DID registration
process.

Proof: We know that only gateway nodes can interact
with the distributed system and execute the DID registration
according to the description in Section III, therefore if the
malicious node that receives the DID registration request is
a D2D node, it cannot do anything except tamper with the
message or the content of message, and then forward it to
other nodes. Then, according to Lemma 2, we know that the
tampering with DID registration requests will eventually be
detected by verifying the message integrity. Therefore, in this
proof, we only consider that the malicious node that receives
the DID registration request is a gateway node.

By receiving a DID registration request from A, a
malicious gateway node Z tries to use the wrong information
to disrupt the registration process of the requesting D2D node.
Z will try to get the public key of A, then it computes the
DID of A from its public key. Let the function did() be the
algorithm for computing DID from a public key. With this
function, from one public key, only one unique DID can be
obtained.

X = E(Kpup(Dst), Kpup(A)||ver M D||metaData)
A — Dst : (X]||signa)
Iz ={.,X sign'y, Kpup(Z), Ksct(Z)...}

Kj’mb(A) [lver M D'||metaData’y « E(K(Z),X")

DID), = did(K},,,(A))

Since Z is a malicious gateway node, it will not be on A’s
whitelist. Therefore Z will never be able to get the correct
public key of A by decrypting the content of received message.
So it can’t compute the correct DID 4 either. That means, Z
will not be able to create an error DID document with correct
DID 4 to preform the DID registration and to interrupt the
registration process of other honest gateway node.

Note that a malicious gateway node can indeed request the
registration with fictitious DIDs, but it cannot predict and be
aware of the DIDs that need to be registered.

From previous lemma it follows that malicious
nodes/gateways cannot store in the distributed ledger or
distributed storage a wrong DID.

Lemmas 5, 6 and 7 below prove the second property P2.

Lemma 5. When DID registration request is accepted by the
DID service, a DID registration response from a whitelisted
gateway node will eventually be sent to the DID registration
requesting node.

Proof: According to Lemma 3, the DID registration
request message must eventually be received by a whitelisted

gateway node, which means accepted by DID service. Accord-
ing to Lemma 4, malicious nodes cannot disrupt the correct
DID registration process. Therefore the receiving whitelisted
gateway node must perform the DID registration operation
correctly and generate a correct response message and send it
back to the requesting node. Also according to our network
model in Section IV-B, we know that any message will
eventually be sent to any node. So we can say that a DID
registration response from a whitelisted gateway node will be
eventually received by the DID registration requesting node.

Lemma 6. If a DID registration response is received by the
requesting node from one of its whitelisted gateway nodes, then
the integrity of the DID registration response can be verified
by that requesting node.

Proof: According to Lemma 5, the requesting node A
will eventually receive a DID registration response from
a gateway node in its whitelist. To verify the integrity
of this response, A only needs to obtain the DID of the
sending gateway node from the response, and search for
the corresponding public key of that gateway node from its
whitelist.

X = DIDG||DID || Kpus(sys)

G- A: (X|signe)

Ia={..., X', signg, whiteListy, ...}
DID,, « X

K! (G) < whiteLists(DIDg)

pub

By now, node A has obtained the public key of the signing
node, the content to be verified and the signature for the
content part. Thus according to Lemma 1, node A can verify
the integrity of the DID registration response.

Lemma 7. Any node invoking DID registration request will
eventually receive a correct DID registration response.

Proof: According to Lemma 5 and 6, A can eventually
receive a response from a whitelisted gateway node whose
integrity can be verified. Therefore as long as A does not
receive a DID registration response from a whitelisted gate-
way that passes the integrity verification, it can resend the
DID registration request until it receives a response from
a whitelisted gateway whose integrity is verified. Since the
whitelisted gateway node is a honest node, it is sufficient to
verify the integrity of its response to confirm that the content of
DID registration response is correct. Hence the second property
P2 holds. ]

Finally according to Lemma 3 and 7, both P1 and P2 of
DID registration are proven to be correct and secure. Therefore
we say that the whole DID registration process is correct and
secure.

According to Lemma 4 and 7 the DID registration process
is secure and correct and will only be performed by whitelisted



honest gateway nodes, so once a DID from a requesting D2D
node has been registered, it must be correctly stored in the
distributed ledger system and distributed storage system.

Note 1. Note that if a node correctly accomplished the
registration process then all the registration information must
have been stored correctly in distributed ledger and distributed
storage system.

2) DID Authentication: In DID authentication, when a
registered node has obtained a DID of another node (which
can be done from online or offline), it can request a gateway
node to verify if the owner of the DID is a registered node
in the system or not, and to obtain its public key as well as
the verification method for future signature verifying. Thus
through DID authentication, a node can verify the source
and integrity of the received message. We say that a DID
authentication process is secure and correct if it satisfies the
following two properties:

P1  Any correct DID authentication request will eventually
be accepted by the DID service.

P2 Any node invoking DID authentication will eventually
receive a correct DID authentication response.

A correct DID authentication request is a message that
respects the format defined in Section III. And a correct DID
authentication response is a message containing the requesting
DID document, the integrity of that DID document is pre-
served.

For the first property P1, we recall that when a registered
node A wishes to verify the registration of a DID, DID,.,
and get the corresponding verification method for its signature,
it creates a DID authentication request and tries to send it
to at least a gateway node through one-hop or multi-hop
communication mentioned before, including the DID of A,
DID 4, queried DID, DID,.,, alongside A’s signature of
DID authentication request:

In={..DIDA,DID,¢q, Kpup(A), Ksct(A), ...}
X = DID4||DID,.,

signa = E(Kset(A), hash(X))

A (X]|signa)

Note 2, Lemma 8 and 9 prove that the first property P1 in
DID authentication holds.

Note 2. According to our hypotheses, a DID authentication
request is eventually correctly received by at least one honest
gateway node.

Lemma 8. If a DID authentication request is received by a
gateway node, then the integrity of the DID authentication
request can be verified by that gateway node.

Proof: When a DID authentication request sent by a D2D
node A is received by a gateway node G, that G can verify its
integrity to determine if the request has been tampered with.

In order to verify the integrity of DID authentication
request, G needs to obtain the public key of A and the

corresponding verification method. Node G can first obtain
the hash value of the DID document corresponding to A’s
DID by interacting with the smart contract according to the
DID authentication process described in Section III. With this
hash value, G can then proceed to obtain the complete DID
document from the distributed storage system, and finally, to
obtain the public key of A and the corresponding verification
method through the DID document.

X = DIDA||DID,eq
A (X||signa)

I ={.., X', sign/y,...}

Lsys = {--s Kpub(sys), Kset(sys), ...}

hgiapoc(A) <= get DL(DID,)

didDoc,||sign’,, . (didDocy) <= get DS(h;apoe(4))

sys
signl,s(didDoc'y) = E(Kse(sys), hash(didDoc'y))

sYs
(K (A)l[verM D) < didDoca

where getDL() and getDS() are two functions from
distributed system. These two functions can be invoked by a
gateway to retrieve data from distributed ledgers via smart con-
tract and distributed storage systems, respectively. didDoc 4
and hg;apoc(A) are the DID document of the sender’s DID and
its hash value, respectively. signs,s(didDoc) is the signature
of retrieved DID document, didDoc, signed by distributed
storage system in step 5 of DID authentication.

Note that according to Note 1, as long as node A has
completed DID registration, the stored information such as the
public key, verification method and other metadata obtained
from its DID document must be correct.

At this point, G has obtained the public key of A, the ver-
ification method, and the corresponding signature. Therefore
according to Lemma 1, node G can verify the integrity of this
DID authentication request.

Lemma 9. Any correct DID authentication request will even-
tually be accepted by the DID service.

Proof: Finally, according to Note 2 and Lemma 8, and
similar to Lemma 3, in the case where A can try to re-
transmit, a DID authentication request that passes integrity
verification will eventually be correctly received by at least
one honest gateway node. These honest gateway node then
performs DID authentication correctly. We say, at this point,
the DID authentication requests has been received correctly by
the DID service. The first property P1 therefore holds.

For the second property P2, when an honest gateway
node G tries to reply to a DID authentication request, it
first checks the distributed ledger and distributed storage
system to see if the DID to be verified has been registered
(through the getDL() and getDS() functions). Then, G sends
the obtained complete DID document to node A along with
the corresponding signature signed by the distributed storage



system.

Ic¢ ={....DID;¢q, DID¢, Kpup(G), Ksct(G), ...}
hdiapoc(req) < get DL(DID,..q)
didDocyeq||signsys(didDocreq) < getDS(haiapoc(req))
$ignsys(didDocreq) = E(Kgci(sys), hash(didDocyeq))
G — A : (didDocreq||signsys(req))

And for malicious node Z, not only malicious gateway
nodes, it can reply to X’ like anything arbitrarily.

IZ = {...,X/7Kpub(Z),Ksct(Z)v }
Z—A: (X"

Lemma 10. When DID authentication request is accepted
by DID service, at least one DID registration response from
a honest gateway node will eventually be sent to the DID
authentication requesting node.

Proof: According to Lemma 9, we know that eventually
the DID authentication request will be received correctly by
at least one honest gateway node. And that honest gateway
node must perform correctly the DID authentication process
and try to reply to the requesting node correctly. During which
other nodes may also try to reply to the requesting node with
arbitrary responses.

Therefore according to our network model in Section IV-B,
all these DID authentication responses, including the one from
the honest gateway node, will eventually be received by the
requesting node.

Lemma 11. If a DID authentication response is received by
the requesting node, then the integrity of the DID document
contained in the DID authentication response can be verified
by the requesting node.

Proof: When a DID authentication response is finally
received by the requesting node A according to Lemma 10, A
can verify the integrity of the DID document in this response.

To verify the integrity of the content of DID authentication
response, i.e., the DID document, the receiving node A only
needs to know the public key to decrypt the signature
of ID-document signed by the distributed storage system,
Kpup(sys). And according to Lemma 7, we know that
any registered node will correctly receive a correct DID
registration response, which contains the public key of the
distributed storage system. Therefore, for any registered node,
it knows Kpup(sys).

Ia ={...,didDocycq, signsys(req), Kpup(sys), ...}
Kpup(sys) < Ia

At this point, the node A can verify the integrity of the
received DID document according to Lemma 1.

Lemma 12. Any node invoking DID authentication will even-
tually receive a correct DID authentication response.

Proof: Similar to Lemma 7, according to Lemma 10 and
11, we know that a response sent by an honest gateway node
will eventually be received by the requesting node. And the
integrity of its content can be verified. Therefore, as long as
the node A does not receive a response that the integrity of
the content of that response has been verified, it can re-submit
DID authentication requests. Until it receives a response that
the integrity of the contents of that response is verified. Since
the content is signed by the distributed storage system, once the
integrity of the content in a response is verified, A can confirm
that it has received the correct DID authentication response
contenting the DID document of the DID to be verified.

Finally, according to Lemma 9 and 12, both two properties
of DID authentication are proven to be correct and secure.
Therefore, the DID authentication process is correct and se-
cure.

D. Authentication with DID Service

At this point, we have shown that both DID registration
and verification are correct and secure. Therefore, we can
abstract these two processes into two functions, didReg()
and didVer(). A node can achieve DID registration and
verification through these two functions.

Note that performing DID authentication does not, by
itself, verify the integrity of a received message during the
communication with others D2D node. Rather, it will return
the information necessary to verify the integrity of a received
message, i.e., the correct public key of the sender of the
message, and the corresponding verification method.

The following example demonstrates that through DID
service, nodes can authenticate and verify the integrity of
communications without the need for third-party certificates.

Two nodes A and B that are expected to communicate
with each other register their DIDs with the DID service:

A : didReg(Kpup(A)||verM D 4||metaDatan)
B : didReg(Kpus(B)||lver M Dg||metaDatap)

Later A signs and sends its DID along with the contents
of the message to B.

X = DID 4l|data
signa = E(Kset(A), hash(X))
A— B :(X]||signa)

When B receives this message, it first extracts the DID of
A from the message and then performs DID authentication
process with this DID. By verifying the obtained DID
document from corresponding DID authentication response,



B can finally obtain A’s public key and its corresponding
verification method.

DIDy + X
didDocy = didVer(DIDy)
(Kpup(A)||ver M D) < didDoca

So far according to Lemma 1, the node B has obtained the
public key of A, corresponding verification method, and the
corresponding signature of A. Thus, it can verify the integrity
of this message sent by A.

V. PERFORMANCE EVALUATION

The decentralized identity (DID) creation times were mea-
sured across two public blockchain configurations: Fantom
Testnet, Etherlink Testnet. For private blockchains, we utilized
the Hyperledger Besu client version 24.5.1, configured with
two different consensus mechanisms: IBFT2.0 and QBFT.
Each configuration operated with a block period of 2 sec-
onds, deployed on two virtual machines (VMs) running Linux
Ubuntu 22.04, with specifications of 8 vCPUs, 80 GB of
storage, and 16 GB of memory. The data was plotted to
provide a visual representation of the performance of each
configuration, with average values indicated by dashed lines
in distinct colours.

The implementation, deployment, and testing of the DID
Proof of Concept (PoC) were carried out using an HP Elite-
Book 850 G8 Notebook laptop. The laptop was configured
with Windows 11 Professional Version 23H2, an 11th Gen
Intel(R) Core(TM) i7-1185G7 3.00GHz processor, and 64
GB of memory. Linux Ubuntu 24.04 was installed over the
Windows Subsystem for Linux version 2.1.5.0. JavaScript,
specifically npm 10.7.0 and Node.js 20.15.0, was chosen as
the programming language for the APIs, while Solidity 0.8.0
was used for implementing and compiling the DID registry
contract. Additional tools and versions used include express
version 4.19.2, Docker version 27.0.3, IPFS Version 0.29.0,
kubo 0.29.0-3f0947b, and Postman v10.24.26.

Based on the performance results for various signature
algorithms, it is evident that both signing and verifying
signatures of messages incur very low time costs, thereby
having a minimal impact on the overall time required to
create a Decentralized Identifier (DID). For instance, using the
11th Gen Intel(R) Core(TM) i7-1185G7 3.00GHz processor,
the time to sign a message with ECDSA is approximately
596.98 microseconds, while verification takes about 695.83
microseconds. Even more efficient algorithms, such as the one
discussed in the paper [34], show signing times of around
29.18 microseconds and verification times of about 44.67
microseconds in batch mode on the same processor. These
extremely short durations demonstrate that the computational
overhead of cryptographic operations for signatures is neg-
ligible, ensuring that the process of creating and managing
DIDs remains efficient and responsive. This underscores that
modern processors, like the Intel i7-1185G7, further reduce
the significance of cryptographic computation times, thereby
facilitating the swift creation and verification of DIDs without
any noticeable delays.
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The chart 4 illustrates the DID creation times for each
blockchain configuration across multiple instances. The con-
figurations are represented as follows: Fantom Testnet: Red,
Etherlink Testnet: Blue, Hyperledger Besu IBFT: Green, Hy-
perledger Besu QBFT: Yellow. Each configuration’s average
DID creation time is also shown 5 in the corresponding colour.

1689.55

1600

1418.00
1400

1319.75

1270.95

" N
@ ° IS}
3 S S
3 S S

Average DID Creation Time (ms)
2
3
3

Fantom Testnet Etherlink Testnet  Hyp:

Blockchain Confi

r Besu IBFT Hyperledger Besu QBFT

Fig. 5. DID Average Creation Time per Blockchain

A. Observations

1) Fantom Testnet: The DID creation time for the Fantom
Testnet varied between approximately 1340 ms and 1573 ms.
The average DID creation time is about 1442 ms. The red
bar shows relatively consistent performance with moderate
variability.

2) Etherlink Testnet: The DID creation time for the Ether-
link Testnet ranged from around 1231 ms to 1586 ms. The
average DID creation time is approximately 1341 ms. The blue
bar also indicates consistent performance with a similar range
of variability as the Fantom Testnet.

3) Hyperledger Besu IBFT 2.0: The DID creation time for
Hyperledger Besu IBFT exhibited more variability, ranging
from 1203 ms to 2160 ms. The average DID creation time
is about 1428 ms. The green bar shows some fluctuations,
indicating periods of higher latency.

20



4) Hyperledger Besu QBFT: The DID creation time for
Hyperledger Besu QBFT was more stable, ranging from
1253 ms to 1295 ms. The average DID creation time is
approximately 1272 ms. The yellow bar indicates the most
consistent performance with the least variability among the
configurations.

B. Discussion

The analysis reveals several key insights into the perfor-
mance of different blockchain configurations in terms of DID
creation time:

e Consistency and Stability: Hyperledger Besu QBFT
demonstrated the most consistent performance with
minimal variability, making it a potentially reliable
choice for applications requiring predictable DID cre-
ation times. Fantom Testnet and Etherlink Testnet also
showed good performance with moderate variability,
suitable for scenarios where slight variations in DID
creation time are acceptable.

e  Variability: Hyperledger Besu IBFT exhibited the
most variability in DID creation times, which may
impact applications requiring consistent performance.

e Average Performance: Hyperledger Besu QBFT had
the lowest average DID creation time, followed closely
by Etherlink Testnet, making them efficient options for
rapid DID creation.

This comparative analysis of DID creation times across
four blockchain configurations provides valuable insights into
their performance characteristics. Hyperledger Besu QBFT
stands out for its consistency, while Etherlink Testnet offers
the lowest average creation time. These findings can guide the
selection of blockchain platforms for implementing decentral-
ized identity systems, depending on the specific performance
requirements of the application. Further research could explore
the scalability and resilience of these configurations under
varying network conditions.

VI. CONCLUSION

We propose a secure distributed identity service dedicated
to device-to-device networks. The security features of our ser-
vice combines classical cryptographical tools with the recent
blockchain technology. The originality of our work steams
in proposing formal security proofs for the entire workflow
of our service. It should be noted that our DID service is
tolerant to adversaries capable of performing adaptive chosen
message attacks and therefore it is tolerant to classical attacks
on the communication system such as Authorization violation,
Eavesdropping, Masquerade and forgery and Modification
attack (see [31] and [32] for more details). Moreover our
solution is resilient to Replay Attacks since the replay of
any DID registration or DID verification request / response
does not have any impact on the DID registration or DID
authentication process, except for a DoS-like physical attack.

Our DID service can be used in the implementation of
other secure services such as localization, clustering or routing.
Our future work aims at designing of a secure middleware
orchestrating these services.
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