
MixBuy: Contingent Payment in the Presence of Coin Mixers
Diego Castejon-Molina

IMDEA Software Institute

Universidad Politénica de Madrid

diego.castejon@imdea.org

Dimitrios Vasilopoulos

IMDEA Software Institute

dimitrios.vasilopoulos@imdea.org

Pedro Moreno-Sanchez
∗

IMDEA Software Institute

VISA Research

pedro.moreno@imdea.org

Abstract
A contingent payment protocol involves two mutually distrustful

parties, a buyer and a seller, operating on the same blockchain, and

a digital product, whose ownership is not tracked on a blockchain

(e.g. a digital book). The buyer holds coins on the blockchain and

transfers them to the seller in exchange for the product. However,

if the blockchain does not hide transaction details, any observer

can learn that a buyer purchased some product from a seller. In this

work, we take contingent payment a step further: we consider a

buyer who wishes to buy a digital product from a seller routing

the payment via an untrusted mixer. Crucially, we require that

said payment is unlinkable, meaning that the mixer (or any other

observer) does not learn which buyer is paying which seller. We

refer to such setting as unlinkable contingent payment (UCP).
We present MixBuy, a system that realizes UCP. Mixbuy relies

on oracle-based unlinkable contingent payment (O-UCP), a novel
four-party cryptographic protocol where the mixer pays the seller

and the seller provides the buyer with the product only if a semi-

trusted notary attests that the buyer has paid the mixer. More

specifically, we require four security notions: (i) mixer security that

guarantees that if the mixer pays the seller, the mixer must get paid

from the buyer; (ii) seller security that guarantees that if the seller

delivers the product to the buyer, the seller must get paid from the

mixer; (iii) buyer security that guarantees that if the buyer pays the

mixer, the buyer must obtain the product; and (iv) unlinkability that

guarantees that given a set of buyers and sellers, the mixer should

not learn which buyer paid which seller.

We present a provably secure and efficient cryptographic con-

struction for O-UCP. Our construction can be readily used to realize

UCP on most blockchains, as it has minimal functionality require-

ments (i.e., digital signatures and timelocks). To demonstrate the

practicality of our construction, we provide a proof of concept for

O-UCP and our benchmarks in commodity hardware show that the

communication overhead is small (a few kB per message) and the

running time is below one second.

Keywords
blockchain, coin mixing, contingent payment, fair exchange

1 Introduction
Given the increasing deployment of cryptocurrencies, they are now

accepted for purchases of digital products such as music, software,

e-books, authentication token for a website or mobile phone plan

(e.g. [1, 3, 12, 25, 48, 60, 63]). A contingent payment involves a buyer
and a seller, a blockchainB and a digital product 𝑝 whose ownership

is not tracked on a blockchain (e.g. a digital book). Buyer holds 𝛼

coins on B and wants to transfer them to the seller in exchange

∗
This work has been done while in employment of IMDEA Software Institute.

for the product 𝑝 . In the contingent payment setting, buyer and

seller have addresses (or accounts) in the same blockchainB. Hence,
with the exception of blockchains like Monero [57] or ZeroCash [9]

which support anonymous transactions, an observer who identifies

seller’s accounts can find out which accounts have been used to

purchase goods from a seller and for which amounts.

In this work, we strive to take the contingent payment a step

further adding the property of unlinkability between buyer and

seller. We call this extension unlinkable contingent payment. Here, a
group of buyers and a group of sellers route their payments through

a mixer such that neither the mixer, nor any other observer to the

blockchain knows which buyer is paying which seller.

Problem Description. An unlinkable contingent payment (UCP)

involves a blockchain B, a product 𝑝 , and three participants: buyer,

seller, and mixer. Initially, the buyer holds 𝛼 coins, the mixer holds

𝛽 coins, and the seller holds product 𝑝 . At the end of a successful

UCP, the buyer should have transferred 𝛼 coins to the mixer, the

mixer should have transferred 𝛽 coins to the seller (we assume

𝛼 − 𝛽 ≥ 0 is mixer’s fee), and the buyer should have received 𝑝

from the seller. A protocol for UCP should enforce the following

security and privacy properties: (a) if the mixer transfers 𝛽 coins to

the seller, the mixer obtains 𝛼 coins from the buyer (mixer security);

(b) if the seller delivers 𝑝 to the buyer, the seller receives 𝛽 coins

from the mixer (seller security); (c) if the buyer transfers 𝛼 coins to

the mixer, the buyer obtains the product 𝑝 (buyer security); (d) for

a set of buyers and sellers, the mixer should not learn which buyer

paid which seller (unlinkability).

Designing a protocol for the problem described above turns

out to be a non-trivial task. To illustrate the obstacles, consider

a setting where a buyer locks some funds into a shared address

with the mixer for a pre-determined amount of time 𝑇 . Similarly,

assume that the mixer locks some funds into a shared address

with a seller, also for time 𝑇 . In blockchains this is a standard,

well-established procedure realizable, e.g., with 2-out-of-2 multisig

addresses [70]. This is needed to ensure that the buyer and themixer

do not quit the protocol prematurely. The funds are unlocked after

𝑇 , which determines the maximum duration of the protocol. To

complete the UCP protocol, (i) the buyer cannot send to the mixer

the signed transaction before receiving the product 𝑝 from the

seller; (ii) the mixer cannot send to the seller the signed transaction

before receiving a signed transaction from the buyer; (iii) the seller

cannot deliver product 𝑝 to the buyer before receiving a signed

transaction from the mixer.

Hence, we end up on a fair exchange of three items of interest

(i.e., coins or product) between three mutually untrusted parties.

It is established that such fair exchange cannot be achieved in the

standard model [11]. However, it has been shown that the (allegedly

weak) synchronicity guarantees provided by blockchains (often

called claim-or-refund [11]) suffice to solve a weaker version of fair

1

https://orcid.org/0009-0005-4512-6656
https://orcid.org/0000-0003-2237-9202
https://orcid.org/0000-0003-2315-7839

Castejon-Molina et al.

Table 1: Related Work. Intermediated unlinkable contingent payment has not been explored yet.

Two-Party

Intermediated

Linkable Unlinkable

Payment Coordination [10, 42, 44, 53, 68] [4, 28, 43, 45, 54, 59] [31, 32, 37, 39, 41, 61, 64]

Contingent Payment [13, 15, 24, 30, 56, 65] [49, 58] This Work

exchange: either each party receives the expected item of interest

before a pre-defined time𝑇 , or they get refunded their initial item of

interest. In fact, several blockchain applications have been proposed

in the literature that leverage this claim-or-refund model to provide

a trade-off between functionality, security and unlinkability.

1.1 Related Work
We classify existing works with respect to the type of assets ex-

changed. Payment coordination refers to protocols that exchange

blockchain assets. Contingent payment refers to protocols where all
assets except for one (i.e., the product) are blockchain assets. Inter-
mediated refers to protocols inwhich sender/receiver or buyer/seller
rely on an untrusted intermediary to route the payment between

them.

Two-Party Payment Coordination. Consists on atomic swaps be-
tween Alice and Bob. Alice has 𝛼 coins in B1, while Bob has 𝛽 coins

in B2. The goal is to have Bob own 𝛼 coins in B1, while Alice owns
𝛽 coins in B2. This problem has been explored thoroughly by the re-

search community. Solutions are proposed based on cryptographic

protocols (e.g., [68]), smart contracts (e.g., [42, 44, 53]), and trusted

hardware (e.g., [10]). However, these protocols are restricted to the

coordinated exchange of blockchain assets.

Intermediated Payment Coordination. Intermediated payment co-

ordination involves at least three parties: Alice, Bob and an interme-

diary. We discuss three common approaches, multi-hop payments,
centralized coin mixers and cyclic swaps. In multi-hop payments,

Alice owns 𝛼 coins in B1, the intermediary owns 𝛽 coins in B2 and
Bob owns an address in B2. The goal is to have the intermediary

own 𝛼 coins inB1 while Bob owns 𝛽 coins inB2. In this sense, Alice
paid Bob using the intermediary as an exchange between B1 and
B2. In practice, multi-hop payments have been proposed for scala-

bility/layer 2 networks, such as the Lightning Network [4, 54, 59], or

cross currency payments [28]. Multi-hop payment protocols coordi-

nate the transfer of blockchain assets. Moreover, the intermediary is

able to link the incoming payment received from Alice with the out-

going payment to Bob. In order to prevent leaking such information

to the intermediary, centralized coinmixers [31, 32, 37, 39, 41, 61, 64]

have been proposed. Centralized coin mixers involve three type of

parties: senders (Alice), receivers (Bob) and mixer (also called hub

or tumbler). In this setting, the mixer collects 𝛼 coins from each

sender. Each receiver collects 𝛽 coins from the mixer in a random-

ized order, which prevents the mixer from learning which sender

paid to which receiver. Although centralized coin mixers provide

unlinkability towards the mixer, they only model the coordinated

transfer of blockchain assets. In cyclic swaps [43, 45], Alice owns

𝛼 coins in B1, the intermediary owns 𝛽 coins in B2 and Bob owns

a blockchain asset 𝑝 , e.g. a NFT, in B3. The goal is to have the

intermediary own 𝛼 coins in B1, Bob own 𝛽 coins in B2 and Alice

own 𝑝 in B3. Cyclic swaps can be used to model the intermediated

purchase of a product 𝑝 , if 𝑝 is an asset in B3.

Two-Party Contingent Payment. We discuss zero-knowledge con-

tingent payment (zkCP) (e.g. [13, 15, 24, 30, 56, 65]), between a

buyer and a seller. The buyer owns 𝛼 coins in blockchain B and the

seller holds a product 𝑝 . The product is not an asset in a blockchain.

The goal is to have the buyer own the product 𝑝 and the seller own

𝛼 coins in B. Existing works in zkCP do not include a mixer.

Intermediated Contingent Payment. In practice, they derive from

multi-hop payments. For instance, Alice owns 𝛼 coins in B1, the
mixer owns 𝛽 coins in B2 and Bob, who also operates in B2, owns
product 𝑝 . The objective is to have Alice own product 𝑝 , mixer own

𝛼 coins in B1 and Bob own 𝛽 coins in B2. This problem has been

explored in practice with the Lightning Service Authentication

Token (LSAT) [49, 58], but the security of the protocol has not been

formally proven. Moreover, the mixer knows that Alice paid Bob

and thus unlinkability is not achieved.

In summary, none of the existing relatedworks give a satisfactory

solution to the functionality of UCP.

1.2 Our Goal and Contributions
As summarized in Table 1, none of the existing works provide the

functionality, security and privacy properties required by UCP.

Hence, the following question naturally raises: Can we provide a
secure protocol for unlinkable contingent payment? We answer this

question in the affirmative. In this work, we present MixBuy, the

first protocol for unlinkable contingent payment. In particular:

• We describe MixBuy, which comprises two phases: the setup

phase in which the shared addresses are prepared and funded

whereas the product is prepared to be delivered; and the execu-

tion phase, in which the payment and product delivery takes

place. We base our setup phase on prior work on zkCP, while

the execution phase is a novel contribution of this work.

• We formalize the execution phase with the notion of oracle-
based unlinkable contingent payment (O-UCP), a novel four-party
cryptographic protocol where the mixer pays the seller and the

seller delivers the product only if a semi-trusted notary attests

that the buyer has paid the mixer. We present a provably secure

and efficient cryptographic construction for O-UCP.

• We provide a proof of concept for O-UCP. Our performance

evaluation in commodity hardware shows small communication

overhead (few kB per message) and running times below one

second, thereby demonstrating the practicality of our approach.

2

MixBuy: Contingent Payment in the Presence of Coin Mixers

2 Technical Overview
2.1 Unlinkable Contingent Payment Overview
An unlinkable contingent payment (UCP) involves a product 𝑝 , and

three parties: buyer B, mixer M and seller S. As shown in Fig. 1,

at the beginning of the UCP the buyer owns a key pair (vk𝐵, sk𝐵)
that controls 𝛼 coins. The mixer owns a key pair (vk𝑀 , sk𝑀) that
controls 𝛽 coins. Finally, the seller owns a key pair (vk𝑆 , sk𝑆) that
represents seller’s address. UCP is divided in two phases: setup
phase and execution phase. We next overview the setup phase.

2.1.1 UCP: Setup Phase. During the setup phase, parties proceed

as follows. In this description, we assume that there is a predefined

timeout 𝑇 known by every party that denotes the upper bound on

the protocol completion time. First, the buyer and the mixer create

a shared address (vk𝐵, vk𝑀) (e.g., in the form of 2-of-2 multisig),

and the buyer transfers 𝛼 coins to that shared address. Analogously,

mixer and seller create a shared address (vk𝑀 , vk𝑆) to which the

mixer transfers 𝛽 coins. Both shared addresses are set with a timeout

𝑇 after which the coins can be refunded to their original owners.

Second, the seller prepares the delivery of digital product 𝑝 to

the buyer. As in zkCP protocols [13, 15, 24, 30, 56, 65], the seller

samples an encryption/decryption key pair (pek, pdk) and encrypts
the digital product 𝑝 with the encryption key pek. The requisite for
such encryption scheme is to be IND-CPA secure [33]. Then, the

seller generates a zero-knowledge proof 𝜋 certifying that (i) the

ciphertext is the encryption of 𝑝 under pek; and (ii) 𝑝 satisfies some

predicate 𝜙 . For instance, the product 𝑝 may be a file (e.g. digital

book) and 𝜙 outputs 1 if hashing 𝑝 results into some fixed value ℎ

(i.e., ℎ = H(𝑝)).1 Finally, the buyer verifies the proof 𝜋 .
The described setup phase is defined and analyzed in previous

zkCP protocols. The open technical challenge that we tackle in this

work is the design of the execution phase. We overview next the

expected functionality of the execution phase.

2.1.2 UCP: Execution Phase. The execution phase starts in a setting
where 𝛼 coins are locked in the shared address (vk𝐵, vk𝑀), 𝛽 coins

are locked in the shared address (vk𝑀 , vk𝑆), and the buyer holds a

pair (𝑐, 𝜋), where 𝑐 is the encryption of the product 𝑝 under public

key pek and 𝜋 is a zero-knowledge proof. The execution phase

must be designed to achieve the following outcomes: (1) mixer

gets 𝜎𝐵 ← Sig(sk𝐵,m𝐵
) from the buyer, where m

𝐵
is a transac-

tion that transfers 𝛼 coins from (vk𝐵, vk𝑀) to vk𝑀 ; (2) seller gets

𝜎𝑀 ← Sig(sk𝑀 ,m
𝑀
) from the mixer, where m

𝑀
is a transaction

that transfers 𝛽 coins from (vk𝑀 , vk𝑆) to vk𝑆 ; (3) buyer gets pdk
and thus can get 𝑝 decrypting ciphertext 𝑐 . Hence, it must ensure

buyer security, mixer security, seller security and unlinkability.

Designing such a protocol is technically challenging. Among the

properties that such protocol needs to provide, we find unlinka-

bilty to be the most challenging one, motivating us to inspire our

approach from centralized coin mixers [31, 32, 37, 39, 41, 61, 64]. In

a nutshell, a centralized coin mixing protocol provides the same

outcomes (1) and (2) as required by the execution phase of UCP.

However, a direct application of a centralized coin mixing protocol

would fail to provide outcome (3). Moreover, in the coin mixing

1
The reader might wonder how buyer knows ifℎ corresponds to𝐻 (𝑝) (i.e., a malicious

seller has not used ℎ′ = 𝐻 (𝑝′)). This is an orthogonal problem for which solutions

exist (e.g., a penalization mechanism is proposed in [24]).

Figure 1: Buyer and mixer create the shared address
(vk𝐵, vk𝑀) which the buyer funds with 𝛼 coins. Mixer and
seller create the shared address (vk𝑀 , vk𝑆) which the mixer
funds with 𝛽 coins. Finally, seller encrypts the product (𝑐)
and proves in zero knowledge (𝜋) that 𝑐 contains the product.

setting, buyer and seller must collaborate with each other to arrive

to the desired outcomes (1) and (2), an assumption that cannot be

made in UCP, where buyer and seller are mutually distrustful.

2.2 Towards our Solution
For context, we first overview how a centralized coin mixing proto-

col works. In particular, we review the puzzle-promise and puzzle-

solve paradigm, first introduced in [41], and later followed by other

designs of centralized coin mixing protocols.

2.2.1 The Puzzle-Promise and Puzzle-Solve Paradigm. A central-

ized coin mixing protocol assumes that the same setup as described

for UCP has been successfully executed, except for the preparation

for the delivery of the product that is naturally not considered.

Concretely, there are also three parties: Alice, mixer, and Bob. 𝛼

coins are locked in shared address (vk𝐴𝑙𝑖𝑐𝑒 , vk𝑀), and 𝛽 coins are

locked in shared address (vk𝑀 , vk𝐵𝑜𝑏).
The protocol is run in epochs and consists of two steps, namely,

puzzle-promise and puzzle-solve (cf. Fig. 2 (i)).

Puzzle-Promise. During epoch E𝑖 , the mixer hides signature 𝜎𝑀
in a randomizable puzzle rP

1
and sends it to Bob. A randomizable

puzzle ensures that one cannot learn 𝜎𝑀 from rP
1
. Bob verifies that

learning the solution 𝑠1 corresponding to rP
1
would allow to extract

𝜎𝑀 . In the affirmative case, Bob chooses a random value 𝑟 and uses

it to randomize rP
1
into rP

2
so that they cannot be linked together.

Moreover, the solution 𝑠2 to rP
2
is a randomization of 𝑠1 with 𝑟 . Bob

sends rP
2
to Alice, who holds it until the end of epoch E𝑖 .

Puzzle-Solve. At the beginning of epoch E𝑖+1, Alice forwards rP
2

to the mixer. Thereafter, Alice and the mixer engage in a two-party

protocol that results in Alice learning the solution 𝑠2 and the mixer

obtaining Alice’s authorization 𝜎𝐴 on a transaction𝑚𝐴 transferring

𝛼 coins from (vk𝐴𝑙𝑖𝑐𝑒 , vk𝑀) to vk𝑀 . Alice forwards 𝑠2 to Bob, who

in turn can derandomize it to obtain 𝑠1 and then 𝜎𝑀 from rP
1
.

3

Castejon-Molina et al.

Figure 2: From left to right: (i) Coin mixing. During puzzle-promise, mixer sends rP
1
(hides signature 𝜎𝑀 on transaction𝑚𝑀) to

Bob, who randomizes it into rP
2
and sends it to Alice. During puzzle-solve, Alice provides mixer with rP

2
, and thereafter Alice

and mixer engage in a two-party protocol that results in Alice learning 𝑠2 and mixer obtaining signature 𝜎𝐴 (on transaction𝑚𝐴).
Then, Alice forwards 𝑠2 to Bob, who de-randomizes it to get 𝑠1 and solve rP

1
, obtaining 𝜎𝑀 . (ii) Attempt to build UCP: 𝑠2 allows to

get product decryption key pdk. After puzzle-promise, the seller encrypts pdk using rP
2
and forwards 𝑐𝑝𝑑𝑘 to the buyer. Attack:

buyer and mixer collude such that mixer reveals 𝑠2 without buyer publishing𝑚𝐵 . The buyer learns pdk without paying. (iii)
Attempt to build UCP: 𝑠1 allows to get product decryption key pdk. After puzzle-promise, the seller encrypts pdk using rP

1
and

forwards 𝑐𝑝𝑑𝑘 to the buyer. Buyer and mixer begin puzzle-solve, which results in revealing 𝑠2 and publishing𝑚𝐵 . Attack: seller
and mixer collude such that seller does not de-randomize 𝑠2 to reveal 𝑠1 nor publishes𝑚𝑀 . The buyer paid but did not learn pdk.

The key observation regarding unlinkability is that the random-

ization factor 𝑟 is unknown to the mixer, hence the mixer cannot

link rP
1
to rP

2
. Assume 𝑛 honest Bobs that interact with the mixer

during epoch E𝑖 (i.e., puzzle-promise step). Thenceforth, 𝑛 corre-

sponding honest Alices interact with the mixer in any order during

E𝑖+1 (i.e., puzzle-solve step). Following the aforementioned obser-

vation, the mixer cannot link who paid to whom, up to what is

leaked by the content of the transactions themselves (e.g., payment

amounts). We discuss these system aspects in Section 6. The unlink-

ability of the puzzle-promise, puzzle-solve paradigm in coin mixing

protocols has been formally analyzed in [32].

2.2.2 Limitations of Puzzle-Promise, Puzzle-Solve Paradigm in UCP.
Recall that a two-party contingent payment ties the published trans-

action paying the seller to the disclosure of the product decryption

key pdk (hence, the delivery of product 𝑝) to the buyer. In other

words, the buyer engages with the seller in a protocol where the

seller gets 𝜎𝐵 only if buyer learns pdk. Likewise, in UCP we want

to tie the published transaction on the blockchain that sends 𝛽

coins from the mixer to the seller (i.e.,𝑚𝑀), to the disclosure of

pdk. Note that if we use the puzzle-promise, puzzle-solve paradigm

off-the-shelf as implementation of the execution phase in UCP, we

are missing the guarantee that the buyer learns pdk.
Designing such a protocol is technically challenging.We describe

below how any attempt to leverage the blockchain in such a manner

that one of the solutions 𝑠1, 𝑠2 to puzzles rP
1
, rP

2
, respectively,

leads to the reveal of pdk is futile. Contrary to the puzzle-promise

puzzle-solve paradigm, where the buyer and the seller cooperate

in order to route an unlikable payment via the mixer, in the UCP

setting the three parties are mutually distrustful.

More specifically, assume that we tie the disclosure of pdk to

puzzle solution 𝑠2, e.g., by encrypting pdk into ciphertext 𝑐𝑝𝑑𝑘 such

that it can only be decrypted with 𝑠2. We deploy a smart contract

that reveals 𝑠2 if transaction𝑚𝐵 , that sends𝛼 coins from the buyer to

the mixer, is published (cf. Fig. 2 (ii)). The following attack on seller

security is possible: at the end of the puzzle-promise step, when

the honest seller forwards the puzzle rP
2
to the malicious buyer,

the latter can collude with the malicious mixer such that the buyer

learns the puzzle solution 𝑠2 without publishing the transactionm𝐵
.

As a result, the buyer can use 𝑠2 to get pdk, while the seller does
not get paid because 𝑠2 cannot be obtained from the blockchain.

Conversely, assume that we tie the disclosure of pdk to puzzle

solution 𝑠1. We deploy a smart contract that reveals 𝑠1 if transac-

tion m
𝑀
, sending 𝛽 coins from the mixer to the seller, is published.

(cf. Fig. 2 (iii)). The following attack on buyer security is possi-

ble: during the puzzle-solve step, the malicious seller colludes with

the malicious mixer such that the latter does not publish trans-

action m
𝑀
.
2
As a result, the honest buyer, who according to the

puzzle-promise, puzzle-solve paradigm has already published trans-

action m
𝐵
, does not get pdk because 𝑠1 cannot be obtained.

2.2.3 Solving the Fair Exchange Problem. In order to cope with the

above deadlock, we introduce a fourth party, called notary, that is
trusted to carry out a simple task, namely, to attest all transactions

published on the blockchain. A transaction’s attestation is a signa-

ture on such transaction verifiable under the notary’s verification

key v̂k, that is disseminated through a public channel (e.g., a bulletin

board or a blockchain). The notary’s functionality is thus similar to

that of oracle and data feeds that have been largely studied in the

2
Colluding parties can split buyer’s coins with a transaction different to m

𝑀
.

4

MixBuy: Contingent Payment in the Presence of Coin Mixers

literature [23, 47, 50, 52, 69, 72] and deployed solutions exist.
3
The

advantages of such limited trust on the notary are twofold: (a) the

notary is oblivious about what attested transactions are used for, i.e.,

no communication between the notary and the other three parties

is required in order to carry out an UCP; and (b) the limited require-

ments on notary’s functionality reduces the burden on deploying

it in practice. Specifically, the notary setting provides a generic

mechanism for transaction attestation that is compatible with most

blockchains, without imposing additional burdens on miners or

the blockchain. Similar oracle services already exist, supporting

real-world deployment. While this setting introduces a semi-trusted

party, the notary can be held accountable for its attestations and

the trust distributed among different notaries (cf. Section 6). We

refer the reader to Appendix A for a more thorough analysis of the

trade-offs between the notary approach and other alternatives for

addressing the fair exchange problem in MixBuy.

A key technical contribution of our work is a novel cryptographic

construction that leverages notary’s attestation to tie the inclusion

ofm
𝐵
in the blockchain (i.e., buyer’s payment to the mixer) to both:

(i) the disclosure of decryption key pdk to the buyer; and (ii) the

disclosure of 𝜎𝑀 to the seller. In this construction, notary’s attesta-

tion is independent of the authorization scheme of the blockchain

and is only required for security, but not for unlinkability. Next, we

overview this construction (and the rest of MixBuy).

2.3 Overview of MixBuy
MixBuy provides the functionality of UCP, ensuring buyer security,

mixer security, seller security and unlinkability.

2.3.1 Setup Phase. The setup phase in MixBuy is identical to the

one described in Section 2.1. Additionally, the notary’s verification

key v̂k is disseminated through a public channel (e.g., a bulletin

board or a blockchain).

2.3.2 Execution Phase. The execution phase in MixBuy is run in

epochs and consists of the steps puzzle-promise, puzzle-link, and
attest-and-solve, as shown in Fig. 3. The puzzle-promise step com-

prises the same operations as the puzzle-promise step of coin mix-

ing. On the contrary, steps puzzle-link and attest-and-solve fully

differ from the puzzle-solve in coin mixing and instead are based

on a novel cryptographic construction described hereafter.

Puzzle-Promise. During epoch E𝑖 , the mixer creates a random-

izable puzzle rP
1
containing 𝜎𝑀 and sends it to the seller, who

randomizes it into rP
2
. Buyer receives rP

2
.

Puzzle-Link. At the beginning of epoch E𝑖+1, the buyer forwards
rP

2
to the mixer. Note that at this point, similarly to the puzzle-

promise, puzzle-solve paradigm, the randomization factor 𝑟 used by

the seller to randomize 𝑠1 is unknown to the mixer, hence the mixer

cannot link 𝑠1 to 𝑠2. In this way, MixBuy achieves unlinkability.

The mixer then opens rP
2
and includes the solution 𝑠2 into an

attestation puzzle aP
3
. It is crucial to see here that although rP

2
and

aP
3
hide the same value, we have designed attestation puzzle aP

3
in

such a way that it can be opened only if the notary attests m
𝐵
(i.e.,

a payment from the buyer to the mixer). At this point, the mixer

is ensured that in order to obtain the solution to rP
2
, the buyer

3
ChainLink: https://chain.link; SupraOracles: https://supra.com

Figure 3: MixBuy execution phase. Puzzle-Promise as in coin
mixing (cf. Fig. 2). In Puzzle-Link, mixer re-encrypts 𝑠2 into
aP

3
and seller encrypts the product decryption key pdk into

aP
4
. In Attest-and-Solve, the oracle attests buyer’s payment,

so buyer and seller can solve aP
3
and aP

4
.

must have included m
𝐵
in the blockchain, meaning that the mixer

received 𝛼 coins from the buyer if rP
2
(hence, rP

1
) is solved. In this

way, MixBuy achieves mixer security.

Thereafter, the mixer sends aP
3
together with its authorization

on𝑚𝐵 to the buyer, who in turn forwards aP
3
to the seller. The

possession of aP
3
ensures the seller that if the buyer pays the mixer

usingm
𝐵
, then the notary will provide an attestation for such trans-

action (i.e., the notary is trusted for this task), thus the seller opens

aP
3
, learns the solution 𝑠2, de-randomizes it to learn 𝑠1 and finally

obtains 𝜎𝑀 from rP
1
. Henceforth, the seller provides the buyer with

an attestation puzzle aP
4
containing the product decryption key

pdk that the buyer needs to obtain the product. As with aP
3
, the

solution to aP
4
can only be obtained if the notary attests m

𝐵
. In

this way, MixBuy achieves seller security.

Finally, aP
4
guarantees the buyer that publishing m

𝐵
releases

the decryption key pdk. Hence, MixBuy achieves buyer security.

Attest-and-Solve. At this point, the buyer is in the unique po-

sition to trigger the final operations of the attest-and-solve step

by submitting m
𝐵
. After m

𝐵
is published, the notary outputs its

attestation that the payment occurred. Thereafter, the buyer can

use the attestation to solve puzzle aP
4
, retrieve the product decryp-

tion key pdk and get the product 𝑝 . Likewise, the seller can use

the attestation to solve puzzle aP
3
, learn the solution to puzzle rP

2
,

recover the solution to the puzzle rP
1
, and then submit m

𝑀
.

3 Preliminaries
Notation. We denote by 𝜆 the security parameter. Symbol (

$←)

denotes the sampling of an element at random from a uniform

distribution, (←) is used to store values from a probabilistic oper-

ation, (:=) is used to assign values from a deterministic operation,

and (↼) is used to parse data from a variable. Furthermore, ek, dk,
5

https://chain.link
https://supra.com

Castejon-Molina et al.

vk, and sk denote encryption, decryption, verification, and sign-

ing keys, respectively. We consider probabilistic polynomial time
(PPT) and deterministic polynomial time (DPT) machines as efficient

algorithms. In security games, adversaries are stateful.

Relation. We recall the notion of a relation. For that, let R ⊆ D𝑆×
D𝑤 be a relation with statement/witness pairs (X,w) ∈ D𝑆 × D𝑤 .

We denote by LR the associated language defined as LR := {X ∈
D𝑆 | ∃w ∈ D𝑤 s.t. (X,w) ∈ R}. For any relation that we consider in
this paper, we require the following two properties: (i) There exists

a PPT algorithm createR(1𝜆) that computes (X,w) ∈ R (note that

this implies that |X |, |w | ≤ poly(𝜆)); and (ii) the relation is decidable
in polynomial time. Furthermore, we say that R is a hard relation if

for all PPT adversariesA, the probability that on input X A outputs

w such that (X,w) ∈ R is negligible, where the probability is taken

over the coins ofA and (X,w) ← createR(1𝜆). A relation is linearly
homomorphic if there exist a pair of operations (⊗, +) such that for

(X1,w1) ∈ R, (X2,w2) ∈ R it holds that (X1 ⊗ X2,w1 + w2) ∈ R.

Digital Signature Scheme. We require a digital signature scheme

[34] DS := (KGen, Sig, Vf), where: (i) PPT algorithm KGen gets as

input the security parameter 1
𝜆
and outputs a verification/signing

key pair (vk, sk); (ii) PPT algorithm Sig gets as input a signing

key sk and a message𝑚, and outputs a signature 𝜎 ; and (iii) DPT

algorithm Vf gets as input a verification key vk, a message𝑚, and

a signature 𝜎 , and outputs 1 if 𝜎 is a valid signature on𝑚 under

vk, otherwise it outputs 0. We require a correct DS (i.e. it holds

that Pr[Vf (vk,𝑚, Sig(sk,𝑚)) = 1] = 1) and secure for existential

unforgeability under chosen message attack (EUF-CMA).

Adaptor Signature Scheme. An adaptor signature scheme [4, 18]

ADP := (PreSig, PreVf, Adapt, Extract), is defined with respect to

a digital signature scheme DS and a relation R where: (i) PPT al-

gorithm PreSig gets as input a signing key sk, a message𝑚, and a

public statement X, and outputs a pre-signature 𝜎 ; (ii) DPT algo-

rithm PreVf gets as input a verification vk, a message𝑚, a public

statement X and a pre-signature 𝜎 and outputs 1 if 𝜎 is a valid

pre-signature on𝑚 under vk and X, otherwise it outputs 0; (iii) DPT
algorithm Adapt gets as input a pre-signature 𝜎 and a witness w,

and outputs a signature 𝜎 ; and (iv) DPT algorithm Extract gets as
input a signature 𝜎 , a pre-signature 𝜎 and a public statement X,
and outputs a witness w. We require a correct ADP, secure for full
extractability and adaptability, as defined in [18].

Non-Interactive Zero Knowledge. Let R be a hard relation with

corresponding L := {X | ∃w s.t. (X,w) ∈ R}. We require a non-

interactive zero-knowledge proof system [20] NIZK := (SetUp,
Prove,Vf), for relation R, where: (i) PPT algorithm SetUp gets as

input the security parameter 1
𝜆
and outputs a common reference

string crs and a trapdoor td; (ii) PPT algorithm Prove gets as input
a crs, a public statement X and a witness w, and outputs a proof 𝜋 ;

and (iii) DPT algorithm Vf gets as input a crs, a public statement X
and a proof 𝜋 , and outputs 1 if 𝜋 is a valid proof, otherwise it outputs

0. We require three security properties, namely, completeness, zero-

knowledge, and knowledge-soundness [8].

Witness Encryption based on Signatures. We require a witness

encryption based on signatures schemeWES := (Enc,Dec), defined
with respect to a digital signature scheme D̂S = (�KGen, Ŝig, V̂f),

where: (i) PPT algorithm Enc gets as input a tuple comprising a

verification key v̂k and a message �̂�, a plaintext m, and outputs a

ciphertext 𝑐 ; and (ii) DPT algorithm Dec gets as input a signature �̂�
and a ciphertext 𝑐 , and outputs a plaintext m. We say thatWES is

correct if it holds that Pr[Dec(Ŝig(ŝk, �̂�), Enc((v̂k, �̂�),𝑚)) = m] =
1, and we require the security notion of indistinguishability under

chosen plaintext attack (IND-CPA) as defined in [52].

Verifiable Witness Encryption for a Relation. We require a verifi-

able witness encryption for a relation scheme VWER := (EncR,
VfEncR,DecR), defined with respect to a relation R and a digital

signature scheme D̂S = (�KGen, Ŝig, V̂f), where: (i) PPT algorithm

EncR gets as input a tuple comprising a verification key v̂k and

a message �̂�, a a witness w, and outputs a ciphertext tuple, con-

taining ciphertext and a proof (𝑐, 𝜋); (ii) DPT algorithm VfEncR
gets as input a ciphertext tuple, containing ciphertext and a proof

(𝑐, 𝜋), a tuple comprising a verification key v̂k and a message �̂�

and a public statement X, and outputs 1 if it is a valid ciphertext,

otherwise it outputs 0; and (iii) DPT algorithm Dec gets as input
a signature �̂� and and tuple comprising a ciphertext 𝑐 and a proof

𝜋 , and outputs a witness w′. We require a VWER secure for one-

wayness, which guarantees that w can be recovered from 𝑐 only

with a valid signature 𝜎 on message m̂ under verification key v̂k;
and verifiability, which guarantees that if 𝜋 verifies, 𝑐 encrypts w
such that (X,w) ∈ R. We provide formal definitions of VWER and

its security properties in Appendix C. In Appendix E we provide a

construction of VWER, together with the security proofs.

Linear-Only Homomorphic Encryption Scheme. A linear-only ho-

momorphic encryption scheme LHE := (KGen, Enc, Dec) [38],
where: (i) PPT algorithm KGen gets as input the security parameter

1
𝜆
and outputs a encryption/description key pair (ek, dk); (ii) PPT

algorithm Enc gets as input an encryption key ek and a plaintext𝑚,

and outputs a ciphertext 𝑐 ; and (iii) DPT algorithmDec gets as input
a decryption key dk and a ciphertext 𝑐 , and outputs a plaintext𝑚.

We say that LHE is correct if it holds that Pr[Dec(dk, Enc(ek,𝑚)) =
𝑚] = 1 and we require the standard notion of indistinguishabil-

ity under chosen plaintext attack (IND-CPA) [33]. An encryption

scheme is linearly homomorphic if there exists a pair of operations
(◦, +) such that Enc(ek,𝑚1) ◦ Enc(ek,𝑚2) = Enc(ek,𝑚1 +𝑚2).

We define an additional property called OMDL-LHE because it

becomes useful to prove the security of our proposed construction

in Section 5. We provide the intuition in the following, while the

formal definition is in Appendix C. In OMDL-LHE, the challenger
generates an encryption/decryption key pair and a list of 𝑘 + 1
(statement, witness) pairs. Then, encrypts all witnesses with the

encryption key and provides the encryption key, the statements

and ciphertexts to the adversary. The adversary has access to a

decryption oracle. If the adversary is able to return more valid

witnesses than queries to the decryption oracle, wins the game.

4 MixBuy: Our Approach for UCP
Environment. MixBuy involves a digital product 𝑝 , and four par-

ties: buyer B, mixer M, seller S, and notary N. The buyer owns

key pair (vk𝐵, sk𝐵) that controls 𝛼 coins. The mixer owns key pair

(vk𝑀 , sk𝑀) that controls 𝛽 coins. The seller owns key pair (vk𝑆 , sk𝑆)
that represents seller’s address. The notary owns key pair (v̂k, ŝk)

6

MixBuy: Contingent Payment in the Presence of Coin Mixers

Figure 4: MixBuy protocol. Bootstrapping: mixer and notary
generate the encryption/decryption key and the verifica-
tion/decryption key. Setup phase: buyer, mixer and seller pre-
pare the purchase (cf. Fig. 1). Execution phase: involves three
steps, puzzle-promise, puzzle-link, and attest-and-solve.

and attest transactions published on the blockchain. The attesta-

tions are disseminated through a public channel (e.g., a bulletin

board or a blockchain). For ease of exposition, we describe the no-

tary functionality as a single party, although the functionality can

also be achieved by a set of notaries (cf. Section 6). Finally, we as-

sume the existence of a public inventory in the form of a key-value

store that maps digital product 𝑝 to its hash value ℎ (i.e., ℎ := H(𝑝)).

Threat Model. The three parties carrying out an unlinkable con-

tingent payment, namely, the buyer, the mixer, and the seller are

mutually distrustful. The notary is only trusted to correctly attest

all transactions published on the blockchain. Moreover, we assume

the blockchain accepts a transaction m only if it is accompanied by

a digital signature 𝜎 that correctly verifies with the corresponding

verification key vk. Finally, we assume that the communication

between buyer and seller is not visible to the mixer, which is a com-

mon assumption in centralized coin mixing services [32, 41, 64].

4.1 Protocol Definition
In this section, we define oracle-based unlinkable contingent payment
(O-UCP), our novel cryptographic protocol for MixBuy’s execution

phase. Thereafter, we show how O-UCP is used in MixBuy to exe-

cute unlinkable contingent payment. Finally, we formally describe

the security and unlinkability properties of O-UCP.

Naming Convention for the Algorithms in Definition 1. The first
letter indicates the party invoking the algorithm (e.g., seller S), the
name of the algorithm follows (e.g., Set), and the subscript indicates

the order of execution where appropriate. We denote randomizable

puzzles by rP and attestation puzzles by aP.

Definition 1 (Oracle-based Unlinkable Contingent Payment). The
oracle-based unlinkable contingent payment is defined w.r.t. a digital
signature scheme DS = (KGen, Sig,Vf) and a relation R. It comprises
11 algorithms (MGen, NGen,MSet1, SSet2,MSet3, SSet4, BVfSet,
NAttest, VfAttest, SSolve, BSolve), defined bellow:

• (ek, dk) ← MGen(1𝜆): PPT algorithm invoked by mixer gets as
input the security parameter 1𝜆 and outputs the keypair (ek, dk).

• (v̂k, ŝk) ← NGen(1𝜆): PPT algorithm invoked by notary, gets as
input the security parameter 1𝜆 and outputs the notary verifica-
tion/signing keypair (v̂k, ŝk).

• rP
1
← MSet1 (ek, sk𝑀 ,m

𝑀
): PPT algorithm invoked bymixer, gets

as input mixer’s encryption and signing keys ek and sk𝑀 , and a
transaction m

𝑀
from mixer to seller , and outputs puzzle rP

1
.

•
{
(rP

2
, st

𝑆
),⊥

}
← SSet2 (ek, vk𝑀 ,m

𝑀
, rP

1
): PPT algorithm that is

invoked by seller, gets as input mixer’s encryption key ek, mixer’s
verification key vk𝑀 , a transaction from mixer to seller m

𝑀
, and

randomizable puzzle rP
1
, and outputs either a tuple comprising

randomizable puzzle rP
2
and seller’s secret state st

𝑆
, or aborts (⊥).

• aP
3
← MSet3 (dk, v̂k,m𝐵

, rP
2
): PPT algorithm invoked by mixer,

gets as input mixer’s decryption key dk, notary’s verification key
v̂k, a transaction from buyer to mixer m

𝐵
, and randomizable puzzle

rP
2
, and outputs attestation puzzle aP

3
.

•
{
aP

4
,⊥

}
← SSet4 (v̂k,m𝐵

, pdk, aP
3
, st

𝑆
): PPT algorithm invoked

by seller, gets as input notary’s verification key v̂k, a transaction
from buyer to mixer m

𝐵
, product’s decryption key pdk, attesta-

tion puzzle aP
3
, and seller’s secret state st

𝑆
, and outputs either

attestation puzzle aP
4
, or aborts (⊥).

• 1/0← BVfSet (v̂k,m
𝐵
, pek, aP

4
): DPT algorithm invoked by buyer,

gets as input notary’s verification key v̂k, a transaction from buyer
to mixer m

𝐵
, product’s encryption key pek, and attestation puzzle

aP
4
, and outputs 1 if puzzle aP

4
hides the corresponding product’s

decryption key pdk, otherwise it outputs 0.
• 𝜏 ← NAttest (ŝk,m

𝐵
): PPT algorithm invoked by notary, gets as

input notary’s signing key ŝk and a transaction from buyer to mixer
m
𝐵
, and outputs the attestation token 𝜏 .

• 1/0← VfAttest(v̂k,m
𝐵
, 𝜏): DPT algorithm gets as input notary’s

verification key v̂k, a transaction from buyer to mixer m
𝐵
, and an

attestation token 𝜏 , and returns 1 if 𝜏 is a valid attestation on m
𝐵

under the key v̂k, otherwise it outputs 0.
• 𝜎

𝑀
← SSolve (𝜏, rP

1
, aP

3
, st

𝑆
): DPT algorithm invoked by seller,

gets as input an attestation token 𝜏 , puzzle rP
1
, attestation puzzle

aP
3
, and seller’s secret state st

𝑆
, and outputs a signature 𝜎

𝑀
.

• pdk← BSolve (𝜏, aP
4
): DPT algorithm invoked by buyer, gets as

input an attestation token 𝜏 and attestation puzzle aP
4
, and outputs

product’s decryption key pdk.

4.1.1 O-UCP in MixBuy. Hereby, we show how O-UCP is used in

MixBuy to execute an unlinkable contingent payment. The protocol

is divided in three phases, namely, bootstrapping, setup phase, and

execution phase (cf. Fig. 4).

7

Castejon-Molina et al.

Bootstrapping. During bootstrapping, the mixer and the notary

invoke algorithmsMGen andNGen, respectively, in order to gener-

ate their key pairs (ek, dk) and (v̂k, ŝk). Bootstrapping is executed

only once at the time of deploying MixBuy.

Setup Phase. The setup phase in MixBuy is identical to the one

described in Section 2.1 with the addition of the dissemination of

notary’s verification key v̂k.

Execution Phase. The execution phase in MixBuy runs in epochs

and consists of puzzle-promise, puzzle-link, and attest-and-solve:
• Puzzle-Promise. In epoch E𝑖 , mixer invokesMSet1 to create rP

1

and sends it to the seller. In turn, seller invokes SSet2 to check

if rP
1
is well-formed and randomizes it into rP

2
. Finally, seller

sends rP
2
to the buyer, who holds it until the end of epoch E𝑖 .

• Puzzle-Link. At the beginning of epoch E𝑖+1, the buyer sends rP
2

and transaction m
𝐵
to the mixer. Thereafter, the mixer invokes

MSet3 that outputs attestation puzzle aP
3
, which can be solved

with notary’s attestation 𝜏 on m
𝐵
. The mixer sends aP

3
together

with its authorization on m
𝐵
to the buyer, who in turn forwards

aP
3
to the seller. The seller invokes SSet4 that verifies that aP

3
is

well-formed and outputs attestation puzzle aP
4
, which encrypts

the product decryption key pdk and can be solved with notary’s

attestation 𝜏 on m
𝐵
. The seller sends aP

4
to the buyer, who runs

BVfSet to check if aP
4
is well-formed.

• Attest-and-Solve. The attest-and-solve step is triggered with the

submission of transactionm
𝐵
by the buyer. Thereafter, the notary

invokes NAttest to create attestation 𝜏 , which is disseminated

through a public channel. Finally, the buyer and the seller use

𝜏 to invoke BSolve and SSolve, respectively, in order to get the

product decryption key pdk and the authorization 𝜎
𝑀
.

Definition 2 (O-UCP Correctness). A O-UCP is said to be correct
if for all 𝜆 ∈ N, all (v̂k, ŝk) ∈ NGen(1𝜆), all (ek, dk) ∈ MGen(1𝜆),
all (vk𝑀 , sk𝑀) ∈ KGen(1𝜆), all (vk𝐵, sk𝐵) ∈ KGen(1𝜆), all pairs of
messages (m

𝐵
,m

𝑀
), and all (pek, pdk) ∈ R, it holds that:

Pr

∧
∧
∧
∧

𝑏0 = 1

𝑏1 = 1

𝑏2 = 1

𝑏3 = 1

𝑏4 = 1

����������������������

rP
1
← MSet1 (ek, sk𝑀 ,m

𝑀
)

(rP
2
, st

𝑆
) ← SSet2 (ek, vk𝑀 ,m

𝑀
, rP

1
)

aP
3
← MSet3 (dk, v̂k,m𝐵

, rP
2
)

aP
4
← SSet4 (v̂k,m𝐵

, pdk, aP
3
, st

𝑆
)

𝜎
𝐵
← Sig(sk𝐵,m𝐵

) ; 𝜏 ← NAttest (ŝk,m
𝐵
)

𝜎
𝑀
← SSolve (𝜏, rP

1
, aP

3
, st

𝑆
)

pdk′ ← BSolve (𝜏, aP
4
)

𝑏0 := BVfSet (v̂k,m
𝐵
, pek, aP

4
)

𝑏1 := Vf (vk𝐵,m𝐵
, 𝜎

𝐵
) ; 𝑏2 := Vf (vk𝑀 ,m

𝑀
, 𝜎

𝑀
)

𝑏3 := VfAttest(v̂k,m
𝐵
, 𝜏) ; 𝑏4 := (pek, pdk′) ∈ R

= 1

Mixer Security. This property protects the balance of the mixer

such that if the mixer pays to the seller, the former will be paid by

the buyer. When interacting with a mixer in O-UCP, an adversary

might stop when reaching MSet1, MSet3, or at the end. We model

this with OMSet1, OMSet3, and OFull. Note that for a given trans-

action m
𝐵
, the adversary may choose to pay (hence, attestation

exists) or not to pay (hence, attestation does not exist). Regardless

of adversary’s decision, the mixer will give only one attestation

puzzle per transaction to the adversary (i.e., OMSet3 and OFull are
mutually exclusive). The adversary returns a set of tuples compris-

ing mixer’s verification keys vk𝑖
𝑀
, messages m𝑖

𝑀
and signatures

ExpM

Q1 := ∅ ; Q2 := ∅ ; q := 0

(v̂k, ŝk) ← NGen(1𝜆)

(ek, dk) ← MGen(1𝜆){
(vk𝑖𝑀 ,m𝑖

𝑀 , 𝜎𝑖
𝑀)

}
𝑖∈ [0,q] ← A

OMSet1,OMSet3,OFull (ek, v̂k)

𝑏0 := ∃𝑖 ∈ [0, q] s.t. (vk𝑖𝑀 , ·) ∈ Q1
∧ (vk𝑖𝑀 ,m𝑖

𝑀) ∉ Q1 ∧ Vf (vk
𝑖
𝑀 ,m𝑖

𝑀 , 𝜎𝑖
𝑀) = 1

𝑏1 := ∀𝑖 ∈ [0, q], (vk𝑖𝑀 ,m𝑖
𝑀) ∈ Q1 ∧ Vf (vk

𝑖
𝑀 ,m𝑖

𝑀 , 𝜎𝑖
𝑀) = 1

𝑏2 := ∀𝑖, 𝑗 ∈ [0, q], 𝑖 ≠ 𝑗, (vk𝑖𝑀 ,m𝑖
𝑀 , 𝜎𝑖

𝑀) ≠ (vk
𝑗

𝑀
,m𝑗

𝑀
, 𝜎

𝑗

𝑀
)

return 𝑏0 ∨ (𝑏1 ∧ 𝑏2)
OMSet1 (m𝑀

)
(vk𝑀 , sk𝑀) ← KGen(1𝜆)

rP
1
← MSet1 (ek, sk𝑀 ,m𝑀)

Q1 := Q1 ∪ (vk𝑀 ,m𝑀)
return (rP

1
, vk𝑀)

OMSet3 (m𝐵
, rP

2
)

if m𝐵 ∈ Q2 abort
Q2 := Q2 ∪ (m𝐵)

aP
3
← MSet3 (dk, v̂k,m𝐵, rP2)

return (aP
3
)

OFull(m
𝐵
, rP

2
, 𝜎 , vk)

if m𝐵 ∈ Q2 abort
q = q + 1
Q2 := Q2 ∪ (m𝐵)

aP
3
← MSet3 (dk, v̂k,m𝐵, rP2)

if Vf (vk,m𝐵, 𝜎) = 0 abort

𝜏 ← NAttest (ŝk,m𝐵)
return (aP

3
, 𝜏)

Figure 5: Definition of the experiment ExpM.

𝜎𝑖
𝑀
. The set contains one tuple more than the number of completed

interactions with the mixer (i.e., the number of OFull queries). We

model two scenarios in which the adversary wins. If one of the

tuples contains a valid forgery for a message that was not queried

in OMSet1 (condition 𝑏0), the adversary wins. Alternatively, the

adversary wins if all tuples contain different messages m𝑖
𝑀

queried

in OMSet1 and all signatures 𝜎𝑖
𝑀

are valid (conditions 𝑏1 and 𝑏2).

The second winning condition implies that the adversary managed

to obtain information from rP
1
or aP

3
without an attestation.

Definition 3 (Mixer Security). A O-UCP offers mixer security if
there exists a negligible function negl(𝜆) such that for all 𝜆 ∈ N and
for all PPT adversaries A it holds that Pr[ExpM(𝜆) = 1] ≤ negl(𝜆),
with ExpM defined in Fig. 5.

Seller Security. This property ensures that the adversary can

only get the product if the seller is paid. Here, the adversary has

access to an attestation oracle ONAttest, that models payments

from the adversary to the mixer. The adversary generates all the

mixer setup information, two messages m
𝑀
, m

𝐵
, as well as puzzle

rP
1
. Then, the challenger provides the adversary with rP

2
, and

the adversary produces aP
3
. Finally, the challenger produces aP

4
,

which encrypts the product decryption key pdk and sends it to the

adversary, who replies with a decryption key pdk′. We model two

scenarios in which the adversary wins. The adversary wins if it did

not use the attestation oracle on m
𝐵
(i.e. the buyer did not paid),

but the decryption key pdk′ is correct (condition 𝑏0). This winning
condition implies that the adversary managed to get the product

8

MixBuy: Contingent Payment in the Presence of Coin Mixers

ExpS

Q := []

(v̂k, ŝk) ← NGen(1𝜆)

(pek, pdk) ← createR(1𝜆)

(ek, vk𝑀 ,m𝐵,m𝑀 , rP
1
)

← AONAttest (v̂k, pek){
(rP

2
, st𝑆),⊥

}
← SSet2 (ek, vk𝑀 ,m𝑀 , rP

1
)

if ⊥ abort

aP
3
← AONAttest (rP

2
){

aP
4
,⊥

}
← SSet4 (v̂k,m𝐵, pdk, aP3, st𝑆)

if ⊥ abort

pdk′ ← AONAttest (aP
4
)

if Q[m𝐵] = ⊥
𝑏0 := (pek, pdk′) ∈ R

else

𝜏 := Q[m𝐵]
𝜎𝑀 ← SSolve (𝜏, rP

1
, aP

3
, st𝑆)

𝑏1 := VfAttest(v̂k,m𝐵, 𝜏) = 1

𝑏2 := Vf (vk𝑀 ,m𝑀 , 𝜎𝑀) = 0

return 𝑏0 ∨ (𝑏1 ∧ 𝑏2)

ONAttest (𝜎,m, vk)
if Vf (vk,m, 𝜎) = 0 abort

𝜏 ← NAttestN (ŝk,m)
Q[m] := 𝜏

return 𝜏

Figure 6: Definition of the experiment ExpS.

without paying. Alternatively, if the adversary wins if it used the

attestation oracle on m
𝐵
(i.e. the buyer did paid), but the seller fails

to extract signature 𝜎
𝑀

for the payment m
𝑀
(conditions 𝑏1 and 𝑏2).

In this case the adversary was able to trick the seller with ill-formed

rP
1
or aP

3
that prevents the seller to obtain 𝜎

𝑀
.

Definition 4 (Seller Security). AO-UCP is said to offer seller security
if there exists a negligible function negl(𝜆) such that for all 𝜆 ∈ N and
for all PPT adversaries A it holds that Pr[ExpS(𝜆) = 1] ≤ negl(𝜆),
where ExpS is defined in Fig. 6.

Buyer Security. This property ensures that the adversary cannot

prevent the buyer from getting the product if the buyer pays for

it. We model the property by providing the adversary access to

an attestation oracle OSigNAttest that models the signature gen-

eration from the buyer and the notary. The adversary can query

oracle OSigNAttest with messages of their choice. Then, the ad-

versary outputs a tuple of buyer signature 𝜎∗
𝐵
, product encryption

key pek, transaction from buyer to mixerm
𝐵
and puzzle aP

4
, which

encrypts the product decryption key pdk. We model two scenarios.

If the transaction m
𝐵
provided by the adversary was not queried

in OSigNAttest, but the forged signature 𝜎∗
𝐵
is valid, the adversary

wins (condition 𝑏0). Here the adversary was successful in stealing

money from buyer’s account. Alternatively, the adversary wins if

the oracle was queried, aP
4
verifies, but the challenger is unable

to extract a valid pek from aP
4
(conditions 𝑏1, 𝑏2 and 𝑏3). In this

ExpN

Q := ∅

(v̂k, ŝk) ←NGen(1𝜆)

(𝑚,𝜏) ← AONAttest (v̂k)

return VfAttest(v̂k,m, 𝜏) ∧m ∉ Q

ONAttest (𝑚)

𝜏 ← NAttest (ŝk,𝑚)
Q := Q ∪𝑚
return 𝜏

Figure 7: Definition of the experiment ExpN.

scenario the adversary tricks the buyer with an ill-formed aP
4
that

does not contain the product decryption key pdk.

Definition 5 (Buyer Security). A O-UCP is said to offer buyer se-
curity if there exists a negligible function negl(𝜆) such that for all
𝜆 ∈ N and for all PPT adversariesA it holds that Pr[ExpB(𝜆) = 1] ≤
negl(𝜆), where ExpB is defined in Fig. 8.

Attestation Unforgeability. This property ensures that only the

notary produces valid attestations. The adversary is given access

to notary’s verification key v̂k and an attestation oracle ONAttest.
The adversary outputs a message and a forgery and wins if the

message was not queried, but the forgery is valid.

Definition 6 (Attestation Unforgeability). A O-UCP is said to offer
attestation unforgeability security if there exists a negligible function
negl(𝜆) such that for all 𝜆 ∈ N and for all PPT adversariesA it holds
that Pr[ExpN(𝜆) = 1] ≤ negl(𝜆), where ExpN is defined in Fig. 7.

Unlinkability. This property models the impossibility for an ob-

server, including the mixer and the notary, to distinguish between

two concurrent O-UCP executions. A prerequisite is that the ob-

server must not be aware that the buyer and seller are communi-

cating, that is, the observer must not learn any metadata (e.g., IP

address or traffic) that reveals that the two parties are communi-

cating. This expectation can be realized in practice, for instance: (i)

buyers and sellers can use HTTPS over Tor to conceal online com-

munications, and (ii) in physical stores, they can exchange QR codes

in person. In both cases, external observers remain unaware of the

communication channel. We model the property by completing

two interactions with an adversarial mixer. These two interactions

start sequentially requesting rP
1
from the adversary. Thereafter, the

challenger runs algorithm SSet2 for each received puzzle. Then, the

challenger flips a coin to define the order in which puzzles rP
2
are

sent to the adversary: i.e., in the same or the reversed order as the

puzzles rP
1
received from the adversary. Once the full interaction

is completed, if both or one of the operations fail, the challenger

forwards ⊥ to the adversary, otherwise the resulting signatures are

forwarded. The adversary wins if they can guess if the order of rP
2

was reversed with better probability than a coin flip.

Definition 7 (Unlinkability). A O-UCP is unlinkable if there exists
a negligible function negl(𝜆) such that for all 𝜆 ∈ N and for all PPT
adversaries A it holds that Pr[ExpLink(𝜆) = 1] ≤ negl(𝜆), where
ExpLink is defined in Fig. 9.

9

Castejon-Molina et al.

ExpB

Q := []

(v̂k, ŝk) ← NGen(1𝜆)

(vk𝐵, sk𝐵) ← KGen(1𝜆)
(𝜎∗𝐵, pek,m𝐵, aP4)

← AOSigNAttest (vk𝐵, v̂k)
if Q[m𝐵] = ⊥
𝑏0 := (Vf (vk𝐵,m𝐵, 𝜎

∗
𝐵) = 1)

else

𝜏 := Q[m𝐵]
pdk← BSolve (𝜏, aP

4
)

𝑏1 := BVfSet (v̂k,m𝐵, pek, aP4)

𝑏2 := VfAttest(v̂k,m𝐵, 𝜏)
𝑏3 := (pek, pdk) ∉ R

return 𝑏0 ∨ (𝑏1 ∧ 𝑏2 ∧ 𝑏3)

OSigNAttest (m)
𝜎𝐵 ← Sig(sk𝐵,m)

𝜏 ← NAttest (ŝk,m)
Q[m] := 𝜏

return (𝜎𝐵, 𝜏)

Figure 8: Definition of the experiment ExpB.

5 Our Cryptographic Construction
As described in Section 2, we remark that for the preparation of the

product delivery, we follow the construction in zkCP and thus refer

the reader to [13, 15, 30, 56] for a more complete description, secu-

rity analysis and performance evaluation. In this section, we focus

on describing the cryptographic construction, security analysis and

performance evaluation of O-UCP.

Building Blocks. We require a digital signature scheme (D̂S), an
adaptor signature scheme (ADP), a linear only encryption scheme

(LHE), a witness encryption based on signatures (WES), verifiable
witness encryption for a relation (VWER), and a NIZK, with the

properties described in Section 3. Regarding the NIZK, we require

two different languages. Language L1 is used forMSet1 while L2

is used for MSet3.

L1 := { (𝑐, ek, X) |∃ w : 𝑐 ← LHE.Enc(ek,w) ∧ (X,w) ∈ R}

L2 := { (𝑐, v̂k,m𝐵, X) |∃ w : 𝑐 ←WES.Enc((v̂k,m𝐵),w) ∧ (X,w) ∈ R}

We present a high level overview of our construction, and the

formal description is given in Fig. 10.

Bootstrapping. MGen and NGen are instantiated as the key gen-

eration algorithm of the LHE scheme and the signature scheme D̂S
used in WES and VWER, respectively.

Puzzle-Promise. MSet1 starts with the generation of public state-

ment/witness pair (X1,w1) ∈ R. This is followed with the genera-

tion of a pre-signature 𝜎 of transactionm
𝑀

with statement X1. The
witness w1 is encrypted using LHE resulting in ciphertext 𝑐1 and a

NIZK proof 𝜋1 for language L1 is generated. Finally, the random-

izable puzzle rP
1
is set to (𝜎, 𝑐1, 𝜋1,X1). Algorithm SSet2 verifies

that pre-signature 𝜎 and proof 𝜋1 are valid. Thereafter, a public

statement/witness pair (X𝑟 ,w𝑟) ∈ R is generated and used to ran-

domize X1 to X2 and ciphertext 𝑐1 into 𝑐2, using the homomorphic

properties of R and LHE. Finally, puzzle rP
2
is set to (𝑐2, X2).

ExpLink

(vk0𝐵, sk
0

𝐵) ← KGen(1𝜆) ; (vk1𝐵, sk
1

𝐵) ← KGen(1𝜆)

(ek, v̂k, vk0𝑀 , vk1𝑀 , rP0
1
, rP1

1
, (m0

𝑀 ,m0

𝐵), (m
1

𝑀 ,m1

𝐵)) ← A(vk
0

𝐵, vk
1

𝐵)
𝑏 ← {0, 1}

(pek0, pdk0) ← createR(1𝜆) ; (pek1, pdk1) ← createR(1𝜆){
(rP0

2
, st0𝑆),⊥

}
← SSet2 (ek, vk0𝑀 ,m0

𝑀 , rP0
1
){

(rP1
2
, st1𝑆),⊥

}
← SSet1 (ek, vk1𝑀 ,m1

𝑀 , rP1
1
)

(aP0
3
, aP1

3
) ← A(rP0⊕𝑏

2
, rP1⊕𝑏

2
){

aP0
4
,⊥

}
← SSet4 (v̂k,m0

𝐵, pdk
0, aP0

3
, st0⊕𝑏

𝑆
){

aP1
4
,⊥

}
← SSet4 (v̂k,m1

𝐵, pdk
1, aP1

3
, st1⊕𝑏

𝑆
)

𝜎0

𝐵 ← Sig(sk0𝐵,m
0

𝐵)
𝜎1

𝐵 ← Sig(sk1𝐵,m
1

𝐵)
(𝜏0, 𝜏1) ← A(𝜎0

𝐵, 𝜎
1

𝐵)

𝜎0⊕𝑏
𝑀
← SSolve (𝜏0, rP0⊕𝑏

1
, aP0

3
, st0⊕𝑏

𝑆
)

𝜎1⊕𝑏
𝑀
← SSolve (𝜏1, rP1⊕𝑏

1
, aP1

3
, st1⊕𝑏

𝑆
)

if (Vf (vk0𝑀 ,m0

𝑀 , 𝜎0

𝑀) = 0) ∨ (Vf (vk1𝑀 ,m1

𝑀 , 𝜎1

𝑀) = 0)
𝜎0

𝑀 = 𝜎1

𝑀 = ⊥
𝑏′ ← A(𝜎0

𝑀 , 𝜎1

𝑀)
return (𝑏 = 𝑏′)

Figure 9: Definition of the experiment ExpLink. Note that in
order to improve readability, we have not explicitly stated
the conditions in which the challenger aborts: if any of the
algorithms returns ⊥, the challenger aborts the game.

Puzzle-Link. MSet3 decrypts 𝑐2 and re-encrypts the witness w2

using WES resulting in ciphertext 𝑐3, which can be decrypted with

notary’s attestation on transaction m
𝐵
. A NIZK proof 𝜋3 for L2 is

generated and the attestation puzzle aP
3
is set to (𝑐3, 𝜋3). Algorithm

SSet4 first verifies that the proof 𝜋3 is valid and then encrypts pdk
using VWER resulting in ciphertext/proof tuple (𝑐4, 𝜋4). 𝑐4 can

be decrypted with notary’s attestation on transaction m
𝐵
. Finally,

the attestation puzzle aP
4
is set to (𝑐4, 𝜋4). Algorithm BVfSet is

instantiated as the verification algorithm of the VWER scheme.

Attest-and-Solve. NAttest and VfAttest are instantiated as the

signature generation and verification of the signature scheme D̂S,
respectively. SSolve decrypts theWES ciphertext 𝑐4 to get w2 and

then obtains w1 by removing the randomization factor w𝑟 from w2.

Finally, uses witness w1 to adapt the pre-signature 𝜎 into signature

𝜎
𝑀
. BSolve is instantiated as the decryption algorithm of VWER.

5.1 Security Analysis
In the following, we state our claims and provide intuitions on

the security and privacy of our construction. We refer the reader

to Appendix D for the full proofs.

Theorem 1 (Mixer Security). Assume that NIZK is zero knowl-
edge, thatWES is IND-CPA, that adaptor signature is full extractable
and the linear only encryption scheme is OMDL-LHE. Then, our con-
struction offers mixer security according to Definition 3.

10

MixBuy: Contingent Payment in the Presence of Coin Mixers

MGen(1𝜆)

(ek, dk) ← LHE.KGen(1𝜆)

return (ek, dk)
NGen(1𝜆)

(v̂k, ŝk) ← D̂S.�KGen(1𝜆)
return (v̂k, ŝk)

NAttest (ŝk,m
𝐵
)

𝜏 ← D̂S.Ŝig(ŝk,m𝐵)
return 𝜏

VfAttest(v̂k,m
𝐵
, 𝜏)

return D̂S.V̂f (v̂k,m𝐵, 𝜏)

BVfSet (v̂k,m
𝐵
, pek, aP

4
)

(𝑐4, 𝜋4) ↼ aP
4

𝑐∗ ← VWER.VfEncR(𝑐4, 𝜋4, (v̂k,m𝐵), pek)
return 𝑐∗

MSet1 (ek, sk𝑀 ,m
𝑀
)

(X1,w1) ← createR(1𝜆)
𝜎 ← ADP.PreSig(sk𝑀 ,m𝑀 , X1)

𝑐1 ← LHE.Enc(ek,w1)

y := (𝑐𝑀 , ek, X1)
𝜋1 ← NIZK.ProveL1 (crs, y,w1)
rP

1
:= (𝜎, 𝑐1, 𝜋1, X1)

return rP
1

SSet4 (v̂k,m𝐵
, pdk, aP

3
, st

𝑆
)

(𝑐3, 𝜋3) ↼ aP
3

(X2, ·, ·) ↼ st𝑆

y := (𝑐3, v̂k,m𝐵, X2)
if NIZK.VfL2 (crs, y, 𝜋3) = 0 abort

(𝑐4, 𝜋4) ← VWER.EncR((v̂k,m𝐵), pdk)
aP

4
:= (𝑐4, 𝜋4)

return aP
4

SSet2 (ek,m𝑀
, vk𝑀 , rP

1
)

(𝜎, 𝑐1, 𝜋1, X1) ↼ rP
1

y := (𝑐1, ek, X1)
𝑎 := NIZK.VfL1 (crs, y, 𝜋1)
𝑏 := ADP.PreVf (vk𝑀 ,m𝑀 , X1, 𝜎)
if (𝑎 = 0) ∨ (𝑏 = 0) abort

(X𝑟 ,w𝑟) ← createR(1𝜆)
X2 := X𝑟 ⊗ X1

𝑐𝑟 ← LHE.Enc(ek,w𝑟)
𝑐2 := 𝑐1 ◦ 𝑐𝑟
rP

2
:= (𝑐2, X2)

st𝑆 := (X2, X𝑟 ,w𝑟)
return (rP

2
, st𝑆)

BSolve (𝜏, aP
4
)

(𝑐4, 𝜋4) ↼ aP
4

pdk := VWER.DecR(𝜏, 𝑐4, 𝜋4)
return pdk

MSet3 (dk, v̂k,m𝐵
, rP

2
)

(𝑐2, X2) ↼ rP
2

w2 ← LHE.Dec(dk, 𝑐2)

𝑐3 ←WES.Enc((v̂k,m𝐵),w2)

y := (𝑐3, v̂k,m𝐵, X2)
𝜋3 ← NIZK.ProveL2 (crs, y,w2)
aP

3
:= (𝑐3, 𝜋3)

return aP
3

SSolve (𝜏, rP
1
, aP

3
, st

𝑆
)

(𝜎, ·, ·, ·) ↼ rP
1

(𝑐3, 𝜋3) ↼ aP
3

(·, ·,w𝑟) ↼ st𝑆
w2 ←WES.Dec(𝜏, 𝑐3)
w1 = w2 − w𝑟

𝜎𝑀 := ADP.Adapt(𝜎,w1)
return 𝜎𝑀

Figure 10: Our cryptographic construction for O-UCP.

In mixer security, the adversary attempts to generate a signature

𝜎
𝑀

on a transaction m
𝑀

without notary’s attestation 𝜏 on trans-

action m
𝐵
. Note that an attestation on m

𝐵
means that the mixer

was paid. In a successful attack the adversary produces 𝜎
𝑀

either

from: (i) the randomizable puzzle rP
1
; or (ii) the attestation puzzle

aP
3
without an attestation. Regarding (i), puzzle rP

1
comprises a

pre-signature 𝜎 on transaction m
𝐵
under the verification key vk𝐵

and public statement X1, an LHE ciphertext 𝑐1 encrypting w1, a

NIZK 𝜋1 for language L1, and X1. Given that OMDL-LHE holds, the

adversary cannot extract information about w1 from 𝑐1. Likewise,

given that a NIZK proof for L1 is zero knowledge, 𝜋1 does not

leak information about w1. Finally, given that the adaptor signature

scheme satisfies the strong full extractability, the adversary cannot

forge a valid signature 𝜎
𝑀
. As regards to (ii), puzzle aP

3
comprises

aWES ciphertext 𝑐3 encrypting w2 and a NIZK 𝜋3 for language L2.

Given thatWES is IND-CPA secure, the adversary cannot extract

information about w2 from 𝑐3. Similarly, given that a NIZK proof

for L2 is zero knowledge, 𝜋3 does not leak information about w2.

Therefore, the adversary cannot produce 𝜎
𝑀

from puzzles rP
1
and

aP
3
without notary’s attestation, hence mixer security holds.

Theorem 2 (Seller Security). Assume the VWER is one way,
NIZK is knowledge-sound and adaptor signature scheme is adaptable.
Then, our construction offers seller security according to Definition 4.

In seller security, the adversary attempts to obtain pdk without
the seller getting a valid 𝜎

𝑀
(i.e., without paying). In a successful

attack the adversary: (i) extracts pdk from aP
4
, containing a VWER

ciphertext/proof pair (𝑐4, 𝜋4); (ii) forges NIZK 𝜋1 for language L1

or 𝜋3 for language L2, convincing the seller that rP
1
or aP

3
are

well-formed; or (iii) produces a valid pre-signature 𝜎 on message

m
𝑀

under the verification key vk𝑀 and public statement X1, such

that it cannot be adapted to a valid signature 𝜎
𝑀

using witness w1.

Concerning (i), since VWER satisfies one-wayness, the adversary

cannot extract pdk from (𝑐4, 𝜋4) without notary’s attestation 𝜏 . As
regards to (ii), since NIZK for languages L1, L2 satisfy soundness-

knowledge, the adversary cannot forge either 𝜋1 or 𝜋3 such that

puzzles rP
1
, aP

3
are not well-formed. Finally about (iii), given that

the adaptor signature scheme satisfies adaptability, a valid 𝜎 can be

adapted to a valid 𝜎
𝑀

using w1. Therefore, the adversary cannot

obtain the product decryption key pdk without the seller receiving
a payment, hence seller security holds.

Theorem 3 (Buyer Security). Assume the signature scheme is
EUF-CMA and VWER provides VWER verifiability. Then, our con-
struction offers buyer security according to Definition 5.

In buyer security, the adversary attempts to obtain signature

𝜎
𝐵
on m

𝐵
without the buyer getting the product decryption key

pdk. In a successful attack the adversary: (i) forges a signature

𝜎
𝐵
; or (ii) produces aP

4
, i.e. a VWER ciphertext/proof pair (𝑐4, 𝜋4),

such that either 𝑐4 does not encrypt pdk or it cannot be decrypted
using notary’s attestation 𝜏 , yet 𝜋4 convinces the buyer that 𝑐4
is well-formed. Concerning (i), given that DS is EUF-CMA, the

adversary cannot produce such a forgery. As regards to (ii), since

VWER satisfies verifiability, the adversary cannot produce such a

pair (𝑐4, 𝜋4). The adversary cannot obtain 𝜎
𝐵
without the buyer

getting pdk, hence buyer security holds.

Theorem 4 (Attestation Unforgeability). Assume the sig-
nature scheme is EUF-CMA. Then, our construction offers attestation
unforgeability according to Definition 6.

In attestation unforgeability, the adversary attempts to forge an

attestation for a message of their choice. Since the attestation is a

11

Castejon-Molina et al.

EUF-CMA secure signature scheme, the adversary cannot forge a

valid attestation, hence attestation unforgeability holds.

Theorem 5 (Unlinkability). Assume that createR samples at
random from a uniform distribution. Then, our construction offers
unlinkability according to Definition 7.

In unlinkability, the adversary attempts to distinguish if buyer
0

interacted with seller
0
or with seller

1
. The adversary knowsw0

1
,w1

1
,

w0⊕𝑏
2

andw1⊕𝑏
2

. In order to computew0⊕𝑏
2

andw1⊕𝑏
2

, the challenger

sampled at random from a uniform distribution two values w0

𝑟 and

w1

𝑟 and added them to w0

1
, w1

1
. Then, the challenger flipped a coin

to decide if the order of the two w2 is altered. Note that w0

2
and

w1

2
are indistinguishable from elements sampled at random from

the distribution of w0

𝑟 and w1

𝑟 . In order to distinguish if buyer
0

interacted with seller
0
or with seller

1
, the adversary would need to

identify the order in which two elements were sampled at random

from a uniform distribution. Since the adversary cannot do this

with a probability greater than 1/2 + negl(𝜆), unlinkability holds.

5.2 Performance Evaluation
We evaluate our implementation for O-UCP for puzzle-promise,

puzzle-link and attest-and-solve.

Puzzle-Promise. Algorithms MSet1 and SSet2 rely on the imple-

mentation of A2L [27]. As such, this step is implemented in C

and relies on RELIC [2], GMP [36] and PARI [66]. We rely on the

Schnorr ADP for curve secp256k1. The LHE is instantiated with

HSM-CL [16, 17] encryption scheme for 128-bit security level.

Puzzle-Link. MSet3, SSet4 and BVfSet are based on the imple-

mentation made available with the paper Cryptographic Oracle-
based Conditional Payments [51, 52]. The oracle implementation is

written in Rust with the crates Ristretto [46] and zkp [40]. In partic-

ular,MSet3 runs the decryption algorithm of HSM-CL encryption

scheme discussed in the previous paragraph (in C) to obtain w2,

followed by its re-encryption using the oracle encryption of [51, 52]

(in Rust). SSet4 runs the verification of the previous encryption and

followed by the oracle encryption applied to pdk. Finally, BVfSet is
implemented exactly as the verification algorithm of [51, 52].

Attest-and-Solve. SSolve and BSolve use algorithms from [27, 51,

52] as building blocks. SSolve is implemented as the decryption

algorithm of [51, 52]. BSolve runs the decryption algorithm of [51,

52], followed by the de-randomization and Adapt algorithms of [27].

NIZKs in MSet1 and MSet3 are implemented with sigma (Σ)
protocols [19] made non interactive with Fiat-Shamir heuristic [29].

We omit from the evaluation MGen, NGen and NAttest since they
are implemented with standard algorithms.

Optimizations. MSet1 and SSet2 compute (X1,w1) and (X𝑟 ,w𝑟),
respectively. The computation of these statement/witness pairs is

pre-computed in advance. MSet3 and SSet4 require to run cut-and-

choose to perform the proofs. The random values required by the

cut-and-choose technique are pre-computed as in [52].

Testbed and Results. We conducted our experiments in an Ubuntu

22.04.3 virtual machine with 4GB of RAM and 2 processors. In our

experiments, all four parties run on the same machine and commu-

nicate via localhost. We measured the average runtimes over 100

Table 2: Running time and message size of MixBuy.

Algorithm Time (ms)
MSet1 0.2 ± 0.1
SSet2 500 ± 300
MSet3 200 ± 100
SSet4 20 ± 1
BVfSet 10 ± 1
SSolve 2 ± 1
BSolve 2 ± 1

Message Size (kB)
rP

1
4.8

rP
2

2.2

aP
3

6.3

aP
4

6.3

runs each, taking into consideration the optimizations mentioned

above. We also measure the size of the messages exchanged be-

tween parties. Note that the messages considered are rP
1
, rP

2
, aP

3

and aP
4
. Our findings (cf. Table 2) show that SSet2 and MSet3 take

significantly longer than the rest of the algorithms. The reason for

this is the use of the computationally heavy HSM-CL encryption:

SSet2 randomizes a HSM-CL ciphertext andMSet3 decrypts it. The
message sizes is relatively small, of a few kB, while the total exe-

cution time is under a second. The results of this proof of concept

show that O-UCP is practical in commodity hardware.

On-chain Cost. MixBuy requires to send two transactions during

the Setup Phase to fund the shared addresses, and two transactions

(m
𝐵
, m

𝑀
) during the Execution Phase. We use Schnorr signatures

for curve secp256k1. The size of each signature is 32B. Schnorr

signatures are compatible with two-party adaptor signatures [26].

Therefore, our construction does not require a blockchain script

to enforce multisignatures. As shown in [68], timed verifiable sig-

natures [67] can be used to replace time lock scripts for Schnorr

signatures. Since our construction requires no scripts from the

blockchain, they are standard transfers between two addresses. In

Ethereum a standard ETH transfer has a cost of 21,000 gas
4
. As

we discuss in Section 6, transaction m
𝑀

can be settled off-chain,

further reducing on-chain costs.

6 Discussion
Blockchain Requirements. MixBuy has the same blockchain re-

quirements as prior interoperability works [4, 13, 32, 52–54, 61,

64, 68]. These requirements are: (i) transaction authorization ver-

ification with digital signatures; (ii) transaction correctness veri-

fication; (iii) shared addresses; and (iv) timelocks. Requirements

(i) and (ii) must be ensured by the blockchain, while (iii) and (iv)

can be fulfilled either by the blockchain (e.g., multi-sig and Hash-

TimeLock [59]) or a cryptographic protocol (e.g., two-party adaptor

signatures [26] and timed verifiable signatures [67]), making it

compatible with most blockchains. MixBuy is compatible with both

UTXO and account-based blockchains. In MixBuy, the notary can

only attest transactions that are publicly accessible, which requires

m
𝐵
to be on-chain. Nevertheless, m

𝑀
can be settled off-chain.

Product Inventory. If the buyer has previously owned the product
and holds a commitment, then she can verify whether the cipher-

text provided by the seller corresponds to the expected product

using this commitment (e.g. [65]). Conversely, if the buyer has

4
https://ethereum.org/en/developers/docs/gas/

12

MixBuy: Contingent Payment in the Presence of Coin Mixers

never owned the product and thus lacks such commitment, a public

bulletin board listing pairs of product names and their respective

commitments can be employed. The buyer can verify seller’s ci-

phertext using the contents of the bulletin board. This approach

is similar to software distribution, where clients verify the down-

loaded software’s authenticity using the developers’ commitment

and signature. Note that possessing the commitment of a product

does not equate to owning the product itself.

Mixer Financial Requirements. MixBuy requires a pre-funded

mixer, who offers mixing services locking their own coins in shared

accounts with sellers (c.f Fig. 1). This might (i) be a barrier for new

mixers; and (ii) limit the number of simultaneous shared accounts

supported by the mixer. We remark that untrusted centralized

mixers [31, 32, 37, 39, 41, 61, 64] share this assumption.

Notary Accountability. Due to attestation unforgeability (cf. Def-

inition 6), no coalition of malicious buyer, seller, or mixer can

impersonate an honest notary by forging a valid attestation. As a

result, the notary can be held accountable for the attestations it pro-

duces. If the notary fails to produce an attestation for a transaction

published on the blockchain, a buyer might have made a payment

m
𝐵
for a product decryption key pdk but is unable to obtain it. In

such cases, the buyer can provide evidence that (i) m
𝐵
is published

on the blockchain, and (ii) the notary did not issue the required

attestation. The notary would then be held responsible. Conversely,

if a notary issues an attestation for a transaction not published on

the blockchain, a seller could receive payment m
𝑀

from the mixer,

without the latter receiving the corresponding transactionm
𝐵
from

the buyer. In this scenario, the mixer can present evidence that (i)

m
𝐵
is not published on the blockchain, and (ii) the attestation on

m
𝐵
exists. Given attestation unforgeability, the mixer cannot have

forged the attestation, so the notary would then be held liable.

Reducing the Trust in the Notary. Relying on a single notary cre-

ates a single point of failure, thus it is advantageous to distribute

the responsibility of transaction attestation among a set of 𝑁 no-

taries. Hence, transaction m
𝐵
is considered attested only when a

threshold of 𝑡 notaries have attested it. MixBuy can efficiently dis-

tribute transaction attestation among 𝑁 notaries, using a method

similar to that in [52]. Specifically, there is no need to modify the

signature scheme used by the notaries. The only requirements for

the notaries are: (i) each notary must publish its verification key v̂k𝑖
along with proof of knowledge of the corresponding secret key ŝk𝑖
during the bootstrapping phase (cf. Fig. 4), and (ii) they must adhere

to a standardized format for the transactions they sign. Moreover,

(a) algorithms MSet3 and SSet4 (cf. Fig. 10) must be updated to

encrypt w2 and pdk under the verification keys v̂k𝑖 of the set of
𝑁 notaries; (b) algorithm BVfSet (cf. Fig. 10) must be revised to

incorporate the verification keys v̂k𝑖 and (c) algorithms SSolve and

BSolve (cf. Fig. 10) must be modified to decrypt 𝑐3 and 𝑐4 using

a set of 𝑡 attestations 𝜏𝑖 . Notably, notaries issue attestations inde-

pendently, without being aware of other notaries, the purpose for

their attestations, or who makes use of them. Thus, MixBuy can be

deployed with a fixed set of 𝑁 notaries and a predefined threshold

𝑡 . In Appendix B, we discuss why an approach in which buyer and

seller can dynamically choose a subset of notaries 𝑁 ′ ⊂ 𝑁 requires

further investigation, which we leave as future work.

Variable Amounts. In MixBuy all buyer transactions are of value

𝛼 , while all seller transactions are of value 𝛽 . Hence, unlikability is

achieved for purchases of the same amount. Nevertheless, for prod-

ucts priced at a multiple of 𝛽 (e.g., 𝑘 ·𝛽), buyer and seller would need
to run 𝑘 times the puzzle-promise and puzzle-link steps. Instead of

encrypting the decryption key of the product pdk in aP
4
, the seller

encrypts a 𝑘-share of pdk, such that all 𝑘 of them are needed to

reconstruct pdk. Once the buyer has all 𝑘-aP
4
, the attest-and-solve

step can start and the buyer sends the k payments to the mixer. The

notary produces 𝑘 attestations, allowing the buyer to get the prod-

uct, and the seller to get the 𝑘 payments from the mixer. However,

setting up several instances of MixBuy for a purchase might be te-

dious for buyers. This problem is common to most centralized coin

mixers [32, 39, 41, 64]. Nevertheless, Accio [31] and Blindhub [61]

achieve unlinkability for senders and receivers that are transferring

different amounts. The extension of MixBuy to support purchases

for products with different prices is an interesting future work.

Griefing Attack. The mixer might be subject to griefing attacks

[64], as it happens with centralized coin mixers [31, 32, 39, 41, 61,

64]. ForMixBuy the attack results in the seller requesting rP
1
, which

makes themixer lock funds in a shared account with the seller. If the

attacker can lock the mixer’s coins without a cost, a set of malicious

buyers and sellers might collude to lock all mixer funds in shared

addresses, resulting in a denial of service. In order to mitigate this

attack, the adversary should only be able to lock mixer’s coins at

an equivalent cost. Note that in Fig. 1, the buyer needs to lock 𝛼

coins in the shared address with the mixer before the mixer locks

𝛽 coins with the seller. For simplicity, we omitted that after the

buyer locks 𝛼 coins, the mixer provides a blind signature, which

the buyer forwards to the seller. Then, the seller presents the blind

signature to the mixer. If it is valid and has not been used before,

the mixer locks 𝛽 coins. This approach is inspired by [64].

Breaking Unlinkability. The mixer might attempt to break the

unlinkability by boycotting some of the transactions during the

puzzle-promise step such that only one buyer receives rP
2
(e.g. by

providing only one valid rP
1
). If only one buyer has rP

2
, when the

buyer finalizes the purchase, the mixer can link the only buyer with

the only seller. This attack affects most centralized coin mixing

services [31, 32, 39, 41, 61, 64]. However, the business model of the

mixer is to route a payment from a sender to a receiver in exchange

for a fee. Therefore, mixer’s cost for breaking unlinkability is two-

fold: (i) losing the fees for all but one of the payments; and (ii) losing

credibility as an mixer, hence missing potential future users.

7 Conclusions
In this work, we presented MixBuy, a system that realizes unlink-

able contingent payments (UCP). MixBuy relies on a novel four-

party cryptographic protocol called oracle-based unlinkable contin-
gent payment (O-UCP) which we defined together with its security

and unlinkability properties. We presented a provably secure and

efficient cryptographic construction for O-UCP, and a proof of

concept that demonstrates its practicality.

13

Castejon-Molina et al.

Acknowledgments
We would like to thank the reviewers for their helpful feedback.

This work has been partially supported by the ESPADA project

(grant PID2022-142290OB-I00), MCIN/AEI/10.13039/501100011033/

FEDER, UE; and by the PRODIGY project (grant ED2021-132464B-

I00), funded by MCIN/AEI/10.13039/501100011033/ and the Euro-

pean Union NextGenerationEU/ PRTR.

References
[1] Mitsutoshi Adachi, Alexandra Born, Isabella Gschossmann, and Anton van der

Kraaij. 2021. The expanding functions and uses of stablecoins. ECB web-

site. https://www.ecb.europa.eu/pub/financial-stability/fsr/focus/2021/html/

ecb.fsrbox202111_04~45293c08fc.en.html.

[2] Diego F Aranha. 2020. RELIC is an Efficient LIbrary for Cryptography. https:

//dfaranha.github.io/project/relic/ Accessed on 10.01.2024.

[3] AT&T. 2019. AT&T Now Accepts BitPay. AT&T webpage. https://about.att.com/

story/2019/att_bitpay.html.

[4] Lukas Aumayr, Oguzhan Ersoy, Andreas Erwig, Sebastian Faust, Kristina

Hostáková, Matteo Maffei, Pedro Moreno-Sanchez, and Siavash Riahi. 2021.

Generalized Channels from Limited Blockchain Scripts and Adaptor Signatures.

In Advances in Cryptology – ASIACRYPT 2021, Mehdi Tibouchi and Huaxiong

Wang (Eds.). Springer International Publishing, Cham, 635–664.

[5] Fadi Barbàra and Claudio Schifanella. 2022. BxTB: cross-chain exchanges of

bitcoins for all Bitcoin wrapped tokens. In 2022 Fourth International Conference
on Blockchain Computing and Applications (BCCA). IEEE, IEEE, San Antonio, TX,

USA, 143–150.

[6] Balthazar Bauer, Georg Fuchsbauer, and Antoine Plouviez. 2021. The One-More

Discrete Logarithm Assumption in the Generic Group Model. In Advances in
Cryptology – ASIACRYPT 2021, Mehdi Tibouchi and Huaxiong Wang (Eds.).

Springer International Publishing, Cham, 587–617.

[7] Bellare, Namprempre, Pointcheval, and Semanko. 2003. The one-more-RSA-

inversion problems and the security of Chaum’s blind signature scheme. Journal
of Cryptology 16 (2003), 185–215.

[8] Mihir Bellare and Oded Goldreich. 1993. On Defining Proofs of Knowledge. In

Advances in Cryptology — CRYPTO’ 92, Ernest F. Brickell (Ed.). Springer Berlin
Heidelberg, Berlin, Heidelberg, 390–420.

[9] Eli Ben Sasson, Alessandro Chiesa, Christina Garman, Matthew Green, Ian Miers,

Eran Tromer, and Madars Virza. 2014. Zerocash: Decentralized Anonymous

Payments from Bitcoin. In 2014 IEEE Symposium on Security and Privacy. IEEE,
Berkeley, CA, USA, 459–474. https://doi.org/10.1109/SP.2014.36

[10] Iddo Bentov, Yan Ji, Fan Zhang, Lorenz Breidenbach, Philip Daian, and Ari

Juels. 2019. Tesseract: Real-Time Cryptocurrency Exchange Using Trusted

Hardware. In Proceedings of the 2019 ACM SIGSAC Conference on Computer
and Communications Security (London, United Kingdom) (CCS ’19). Associ-
ation for Computing Machinery, New York, NY, USA, 1521–1538. https:

//doi.org/10.1145/3319535.3363221

[11] Iddo Bentov and Ranjit Kumaresan. 2014. How to Use Bitcoin to Design Fair

Protocols. In Advances in Cryptology – CRYPTO 2014, Juan A. Garay and Rosario

Gennaro (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 421–439.

[12] Bitpay. 2023. Buy from Microsoft. Bitpay merchan directory. https://bitpay.com/

directory/microsoft/.

[13] S. Bursuc and S. Mauw. 2022. Contingent payments from two-party signing

and verification for abelian groups. In 2022 2022 IEEE 35th Computer Security
Foundations Symposium (CSF) (CSF). IEEE Computer Society, Los Alamitos, CA,

USA, 195–210. https://doi.org/10.1109/CSF54842.2022.9919654

[14] Jan Camenisch and Ivan Damgård. 2000. Verifiable Encryption, Group Encryp-

tion, and Their Applications to Separable Group Signatures and Signature Sharing

Schemes. In Advances in Cryptology — ASIACRYPT 2000, Tatsuaki Okamoto (Ed.).

Springer Berlin Heidelberg, Berlin, Heidelberg, 331–345.

[15] Matteo Campanelli, Rosario Gennaro, Steven Goldfeder, and Luca Nizzardo.

2017. Zero-Knowledge Contingent Payments Revisited: Attacks and Payments

for Services. In Proceedings of the 2017 ACM SIGSAC Conference on Computer
and Communications Security (Dallas, Texas, USA) (CCS ’17). Association for

Computing Machinery, New York, NY, USA, 229–243. https://doi.org/10.1145/

3133956.3134060

[16] Guilhem Castagnos, Dario Catalano, Fabien Laguillaumie, Federico Savasta, and

Ida Tucker. 2019. Two-Party ECDSA from Hash Proof Systems and Efficient

Instantiations. In Advances in Cryptology – CRYPTO 2019, Alexandra Boldyreva
and Daniele Micciancio (Eds.). Springer International Publishing, Cham, 191–

221.

[17] Guilhem Castagnos and Fabien Laguillaumie. 2015. Linearly Homomorphic

Encryption from DDH. In Topics in Cryptology — CT-RSA 2015, Kaisa Nyberg
(Ed.). Springer International Publishing, Cham, 487–505.

[18] Wei Dai, Tatsuaki Okamoto, and Go Yamamoto. 2022. Stronger Security

and Generic Constructions for Adaptor Signatures. In Progress in Cryptology – IN-
DOCRYPT 2022, Takanori Isobe and Santanu Sarkar (Eds.). Springer International

Publishing, Cham, 52–77.

[19] Ivan Damgård. 2002. On Σ-protocols. , 84 pages.
[20] Alfredo De Santis, Silvio Micali, and Giuseppe Persiano. 1988. Non-Interactive

Zero-Knowledge Proof Systems. In Advances in Cryptology — CRYPTO ’87, Carl
Pomerance (Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg, 52–72.

[21] Thomas Dinsdale-Young, Bernardo Magri, Christian Matt, Jesper Buus Nielsen,

and Daniel Tschudi. 2020. Afgjort: A Partially Synchronous Finality Layer for

Blockchains. In Security and Cryptography for Networks, Clemente Galdi and

Vladimir Kolesnikov (Eds.). Springer International Publishing, Cham, 24–44.

[22] Nico Döttling, Lucjan Hanzlik, Bernardo Magri, and Stella Wohnig. 2024. McFly:

Verifiable Encryption to the Future Made Practical. In Financial Cryptography
and Data Security, Foteini Baldimtsi and Christian Cachin (Eds.). Springer Nature

Switzerland, Cham, 252–269.

[23] Thaddeus Dryja. 2018. Discreet Log Contracts. https://adiabat.github.io/dlc.pdf.

[24] Stefan Dziembowski, Lisa Eckey, and Sebastian Faust. 2018. FairSwap: How

To Fairly Exchange Digital Goods. In Proceedings of the 2018 ACM SIGSAC
Conference on Computer and Communications Security (Toronto, Canada) (CCS
’18). Association for Computing Machinery, New York, NY, USA, 967–984.

https://doi.org/10.1145/3243734.3243857

[25] ECB Crypto-Assets Task Force. 2020. Stablecoins: Implications for monetary

policy, financial stability, market infrastructure and payments, and banking

supervision in the euro area. European Central Bank Occasional Paper Series.

https://www.ecb.europa.eu/pub/pdf/scpops/ecb.op247~fe3df92991.en.pdf.

[26] Andreas Erwig, Sebastian Faust, Kristina Hostáková, Monosij Maitra, and Siavash

Riahi. 2021. Two-Party Adaptor Signatures from Identification Schemes. In

Public-Key Cryptography – PKC 2021, Juan A. Garay (Ed.). Springer International

Publishing, Cham, 451–480.

[27] Etairi. 2022. Etairi/A2L: Implementation of anonymous Atomic Locks described

in https://eprint.iacr.org/2019/589. https://github.com/etairi/A2L.

[28] European Central Bank and Bank of Japan. 2019. Synchronized cross-border pay-

ments. STELLA project. https://www.ecb.europa.eu/paym/intro/publications/

pdf/ecb.miptopical190604.en.pdf Accessed on 10.01.2024.

[29] Amos Fiat and Adi Shamir. 1987. How To Prove Yourself: Practical Solutions to

Identification and Signature Problems. In Advances in Cryptology — CRYPTO’
86, Andrew M. Odlyzko (Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg,

186–194.

[30] Georg Fuchsbauer. 2019. WI Is Not Enough: Zero-Knowledge Contingent

(Service) Payments Revisited. In Proceedings of the 2019 ACM SIGSAC Con-
ference on Computer and Communications Security (London, United Kingdom)

(CCS ’19). Association for Computing Machinery, New York, NY, USA, 49–62.

https://doi.org/10.1145/3319535.3354234

[31] Zhonghui Ge, Jiayuan Gu, Chenke Wang, Yu Long, Xian Xu, and Dawu Gu.

2023. Accio: Variable-Amount, Optimized-Unlinkable and NIZK-Free Off-

Chain Payments via Hubs. In Proceedings of the 2023 ACM SIGSAC Confer-
ence on Computer and Communications Security (Copenhagen, Denmark) (CCS
’23). Association for Computing Machinery, New York, NY, USA, 1541–1555.

https://doi.org/10.1145/3576915.3616577

[32] Noemi Glaeser, Matteo Maffei, Giulio Malavolta, Pedro Moreno-Sanchez, Erkan

Tairi, and Sri Aravinda Krishnan Thyagarajan. 2022. Foundations of Coin Mixing

Services. In Proceedings of the 2022 ACM SIGSAC Conference on Computer and
Communications Security (Los Angeles, CA, USA) (CCS ’22). Association for

Computing Machinery, New York, NY, USA, 1259–1273. https://doi.org/10.1145/

3548606.3560637

[33] Shafi Goldwasser and Silvio Micali. 1984. Probabilistic encryption. J. Comput.
System Sci. 28, 2 (1984), 270–299. https://doi.org/10.1016/0022-0000(84)90070-9

[34] Shafi Goldwasser, Silvio Micali, and Ronald L. Rivest. 1988. A digital signature

scheme secure against adaptive chosen-message attacks. SIAM J. Comput. 17, 2
(apr 1988), 281–308. https://doi.org/10.1137/0217017

[35] Vipul Goyal, Abhiram Kothapalli, Elisaweta Masserova, Bryan Parno, and Yi-

fan Song. 2022. Storing and Retrieving Secrets on a Blockchain. In Public-Key
Cryptography – PKC 2022, Goichiro Hanaoka, Junji Shikata, and Yohei Watanabe

(Eds.). Springer International Publishing, Cham, 252–282.

[36] T Granlund. 2019. the GMP Development Team: GNU MP. The GNU Multiple

Precision Arithmetic Library. https://gmplib.org/ Accessed on 10.01.2024.

[37] Matthew Green and Ian Miers. 2017. Bolt: Anonymous Payment Channels

for Decentralized Currencies. In Proceedings of the 2017 ACM SIGSAC Con-
ference on Computer and Communications Security (Dallas, Texas, USA) (CCS
’17). Association for Computing Machinery, New York, NY, USA, 473–489.

https://doi.org/10.1145/3133956.3134093

[38] Jens Groth. 2004. Rerandomizable and Replayable Adaptive Chosen Cipher-

text Attack Secure Cryptosystems. In Theory of Cryptography, Moni Naor (Ed.).

Springer Berlin Heidelberg, Berlin, Heidelberg, 152–170.

[39] L. Hanzlik, J. Loss, S. Thyagarajan, and B. Wagner. 2024. Sweep-UC: Swapping

Coins Privately. In 2024 IEEE Symposium on Security and Privacy (SP). IEEE
Computer Society, Los Alamitos, CA, USA, 84–84. https://doi.org/10.1109/

14

https://www.ecb.europa.eu/pub/financial-stability/fsr/focus/2021/html/ecb.fsrbox202111_04~45293c08fc.en.html
https://www.ecb.europa.eu/pub/financial-stability/fsr/focus/2021/html/ecb.fsrbox202111_04~45293c08fc.en.html
https://dfaranha.github.io/project/relic/
https://dfaranha.github.io/project/relic/
https://about.att.com/story/2019/att_bitpay.html
https://about.att.com/story/2019/att_bitpay.html
https://doi.org/10.1109/SP.2014.36
https://doi.org/10.1145/3319535.3363221
https://doi.org/10.1145/3319535.3363221
https://bitpay.com/directory/microsoft/
https://bitpay.com/directory/microsoft/
https://doi.org/10.1109/CSF54842.2022.9919654
https://doi.org/10.1145/3133956.3134060
https://doi.org/10.1145/3133956.3134060
https://adiabat.github.io/dlc.pdf
https://doi.org/10.1145/3243734.3243857
https://www.ecb.europa.eu/pub/pdf/scpops/ecb.op247~fe3df92991.en.pdf
https://github.com/etairi/A2L
https://www.ecb.europa.eu/paym/intro/publications/pdf/ecb.miptopical190604.en.pdf
https://www.ecb.europa.eu/paym/intro/publications/pdf/ecb.miptopical190604.en.pdf
https://doi.org/10.1145/3319535.3354234
https://doi.org/10.1145/3576915.3616577
https://doi.org/10.1145/3548606.3560637
https://doi.org/10.1145/3548606.3560637
https://doi.org/10.1016/0022-0000(84)90070-9
https://doi.org/10.1137/0217017
https://gmplib.org/
https://doi.org/10.1145/3133956.3134093
https://doi.org/10.1109/SP54263.2024.00081
https://doi.org/10.1109/SP54263.2024.00081

MixBuy: Contingent Payment in the Presence of Coin Mixers

SP54263.2024.00081

[40] hdevalence. 2020. zkp 0.8.0: a toolkit for Schnorr proofs. https://docs.rs/zkp/

latest/zkp/ Accessed on 10.01.2024.

[41] Ethan Heilman, Leen Alshenibr, Foteini Baldimtsi, Alessandra Scafuro, and

Sharon Goldberg. 2017. Tumblebit: An untrusted bitcoin-compatible anony-

mous payment hub. In Network and distributed system security symposium. The

Internet Society, San Diego, California, USA.

[42] Maurice Herlihy. 2018. Atomic Cross-Chain Swaps. In Proceedings of the 2018
ACM Symposium on Principles of Distributed Computing (Egham, United King-

dom) (PODC ’18). Association for Computing Machinery, New York, NY, USA,

245–254. https://doi.org/10.1145/3212734.3212736

[43] Maurice Herlihy. 2018. Atomic Cross-Chain Swaps. In Proceedings of the 2018
ACM Symposium on Principles of Distributed Computing (Egham, United King-

dom) (PODC ’18). Association for Computing Machinery, New York, NY, USA,

245–254. https://doi.org/10.1145/3212734.3212736

[44] Maurice Herlihy, Barbara Liskov, and Liuba Shrira. 2019. Cross-chain deals and

adversarial commerce. Proc. VLDB Endow. 13, 2 (oct 2019), 100–113. https:

//doi.org/10.14778/3364324.3364326

[45] Soichiro Imoto, Yuichi Sudo, Hirotsugu Kakugawa, and Toshimitsu Masuzawa.

2023. Atomic cross-chain swaps with improved space, time and local time

complexities. Information and Computation 292 (2023), 105039. https://doi.org/

10.1016/j.ic.2023.105039

[46] isislovecruf and github:dalek-cryptography:curve-maintainers. 2022. curve25519

dalek ristretto 4.0.0. https://crates.io/crates/curve25519-dalek Accessed on

10.01.2024.

[47] Ari Juels, Lorenz Breidenbach, Alex Coventry, Sergey Nazarov, Steve Ellis, and

Brendan Magauran. 2019. Mixicles: Simple Private Decentralized Finance.

[48] KPMG. 2022. Frontiers in Finance: Innovating through platforms and ecosystems.

KPMG. https://assets.kpmg.com/content/dam/kpmg/xx/pdf/2022/05/frontiers-

in-finance.pdf.

[49] Lightning Labs. 2021. LSAT: Lightning Service Authentication Token. Lightning

Labs. https://lsat.tech/ https://lsat.tech/.

[50] B. Liu, P. Szalachowski, and J. Zhou. 2021. A First Look into DeFi Oracles. In 2021
IEEE International Conference on Decentralized Applications and Infrastructures
(DAPPS). IEEE Computer Society, Los Alamitos, CA, USA, 39–48. https://doi.

org/10.1109/DAPPS52256.2021.00010

[51] LLFourn. 2023. LLFOURN/DLC-verifiable-encryption-non-pairing. https:

//github.com/LLFourn/dlc-verifiable-encryption-non-pairing.

[52] Varun Madathil, Sri Aravinda Krishnan Thyagarajan, Dimitrios Vasilopoulos,

Lloyd Fournier, Giulio Malavolta, and Pedro Moreno-Sanchez. 2023. Crypto-

graphic Oracle-based Conditional Payments. In 30th Annual Network and Dis-
tributed System Security Symposium, NDSS 2023, San Diego, California, USA,
February 27 - March 3, 2023. The Internet Society, San Diego, California,

USA. https://www.ndss-symposium.org/ndss-paper/cryptographic-oracle-

based-conditional-payments/

[53] Giulio Malavolta, Pedro Moreno-Sanchez, Aniket Kate, Matteo Maffei, and Srivat-

san Ravi. 2017. Concurrency and Privacy with Payment-Channel Networks. In

Proceedings of the 2017 ACM SIGSACConference on Computer and Communications
Security (Dallas, Texas, USA) (CCS ’17). Association for Computing Machinery,

New York, NY, USA, 455–471. https://doi.org/10.1145/3133956.3134096

[54] Giulio Malavolta, Pedro A. Moreno-Sanchez, Clara Schneidewind, Aniket Kate,

andMatteo Maffei. 2019. Anonymous Multi-Hop Locks for Blockchain Scalability

and Interoperability.

[55] Satoshi Nakamoto et al. 2008. Bitcoin.

[56] Ky Nguyen, Miguel Ambrona, and Masayuki Abe. 2020. WI is Almost Enough:

Contingent Payment All Over Again. In Proceedings of the 2020 ACM SIGSAC
Conference on Computer and Communications Security (Virtual Event, USA) (CCS
’20). Association for Computing Machinery, New York, NY, USA, 641–656. https:

//doi.org/10.1145/3372297.3417888

[57] Shen Noether, Adam Mackenzie, et al. 2016. Ring confidential transactions.

Ledger 1 (2016), 1–18.
[58] OlaoluwaOsuntokun. 2019. LSAT: Your Ticket Aboard the Internet’s Money Rails.

The lightning Conference. https://www.youtube.com/watch?v=qfFESA961mk

https://www.youtube.com/watch?v=qfFESA961mk.

[59] Joseph Poon and Thaddeus Dryja. 2016. The bitcoin lightning network: Scalable

off-chain instant payments. bitconlightning.com. https://www.bitcoinlightning.

com/wp-content/uploads/2018/03/lightning-network-paper.pdf Accessed on

06.05.2022.

[60] PriceWaterhouseCoopers. 2021. El Salvador’s law: a meaningful test for Bitcoin.

PWCwebpage. https://www.pwc.com/gx/en/financial-services/pdf/el-salvadors-

law-a-meaningful-test-for-bitcoin.pdf.

[61] X. Qin, S. Pan, A. Mirzaei, Z. Sui, O. Ersoy, A. Sakzad, M. Esgin, J. K. Liu, J. Yu,

and T. Yuen. 2023. BlindHub: Bitcoin-Compatible Privacy-Preserving Payment

Channel Hubs Supporting Variable Amounts. In 2023 2023 IEEE Symposium on
Security and Privacy (SP) (SP). IEEE Computer Society, Los Alamitos, CA, USA,

2020–2038. https://doi.org/10.1109/SP46215.2023.00116

[62] Giulia Scaffino, Lukas Aumayr, Zeta Avarikioti, andMatteoMaffei. 2023. Glimpse:

on-demand PoW light client with constant-size storage for DeFi. In Proceedings

of the 32nd USENIX Conference on Security Symposium (Anaheim, CA, USA) (SEC
’23). USENIX Association, USA, Article 42, 18 pages.

[63] Shopify. 2023. Shopify help center: cryptocurrencies. Shopify web-

page. https://help.shopify.com/en/manual/payments/additional-payment-

methods/cryptocurrency.

[64] Erkan Tairi, Pedro Moreno-Sanchez, and Matteo Maffei. 2021. A 2 l: Anonymous

atomic locks for scalability in payment channel hubs. In 2021 IEEE Symposium
on Security and Privacy (SP). IEEE, IEEE, USA, 1834–1851.

[65] Ertem Nusret Tas, István András Seres, Yinuo Zhang, Márk Melczer, Mahimna

Kelkar, Joseph Bonneau, and Valeria Nikolaenko. 2024. Atomic and Fair Data

Exchange via Blockchain. Cryptology ePrint Archive (2024).
[66] The PARI Group, Univ. Bordeaux. 2019. PARI/GP version 2.12.0. https://pari.

math.u-bordeaux.fr/ Accessed on 10.01.2024.

[67] Sri Aravinda Krishnan Thyagarajan, Adithya Bhat, Giulio Malavolta, Nico Döt-

tling, Aniket Kate, and Dominique Schröder. 2020. Verifiable Timed Signa-

tures Made Practical. In Proceedings of the 2020 ACM SIGSAC Conference on
Computer and Communications Security (Virtual Event, USA) (CCS ’20). As-
sociation for Computing Machinery, New York, NY, USA, 1733–1750. https:

//doi.org/10.1145/3372297.3417263

[68] Sri Aravinda Krishnan Thyagarajan, Giulio Malavolta, and Pedro Moreno-

Sanchez. 2022. Universal Atomic Swaps: Secure Exchange of Coins Across

All Blockchains. In IEEE Symposium on Security and Privacy, SP. IEEE, USA,
1299–1316. https://doi.org/10.1109/SP46214.2022.9833731

[69] Sam Werner, Daniel Perez, Lewis Gudgeon, Ariah Klages-Mundt, Dominik Harz,

andWilliam Knottenbelt. 2023. SoK: Decentralized Finance (DeFi). In Proceedings
of the 4th ACM Conference on Advances in Financial Technologies (Cambridge,

MA, USA) (AFT ’22). Association for Computing Machinery, New York, NY, USA,

30–46. https://doi.org/10.1145/3558535.3559780

[70] Bitcoin Wiki. 2013. Multi-signature in Bitcoin. https://en.bitcoin.it/wiki/Multi-

signature.

[71] Tiancheng Xie, Jiaheng Zhang, Zerui Cheng, Fan Zhang, Yupeng Zhang,

Yongzheng Jia, Dan Boneh, and Dawn Song. 2022. zkBridge: Trustless Cross-

chain Bridges Made Practical. In Proceedings of the 2022 ACM SIGSAC Confer-
ence on Computer and Communications Security (Los Angeles, CA, USA) (CCS
’22). Association for Computing Machinery, New York, NY, USA, 3003–3017.

https://doi.org/10.1145/3548606.3560652

[72] Fan Zhang, Ethan Cecchetti, Kyle Croman, Ari Juels, and Elaine Shi. 2016. Town

Crier: An Authenticated Data Feed for Smart Contracts. In Proceedings of the 2016
ACM SIGSAC Conference on Computer and Communications Security (Vienna,

Austria) (CCS ’16). Association for Computing Machinery, New York, NY, USA,

270–282. https://doi.org/10.1145/2976749.2978326

15

https://doi.org/10.1109/SP54263.2024.00081
https://docs.rs/zkp/latest/zkp/
https://docs.rs/zkp/latest/zkp/
https://doi.org/10.1145/3212734.3212736
https://doi.org/10.1145/3212734.3212736
https://doi.org/10.14778/3364324.3364326
https://doi.org/10.14778/3364324.3364326
https://doi.org/10.1016/j.ic.2023.105039
https://doi.org/10.1016/j.ic.2023.105039
https://crates.io/crates/curve25519-dalek
https://assets.kpmg.com/content/dam/kpmg/xx/pdf/2022/05/frontiers-in-finance.pdf
https://assets.kpmg.com/content/dam/kpmg/xx/pdf/2022/05/frontiers-in-finance.pdf
https://lsat.tech/
https://lsat.tech/
https://doi.org/10.1109/DAPPS52256.2021.00010
https://doi.org/10.1109/DAPPS52256.2021.00010
https://github.com/LLFourn/dlc-verifiable-encryption-non-pairing
https://github.com/LLFourn/dlc-verifiable-encryption-non-pairing
https://www.ndss-symposium.org/ndss-paper/cryptographic-oracle-based-conditional-payments/
https://www.ndss-symposium.org/ndss-paper/cryptographic-oracle-based-conditional-payments/
https://doi.org/10.1145/3133956.3134096
https://doi.org/10.1145/3372297.3417888
https://doi.org/10.1145/3372297.3417888
https://www.youtube.com/watch?v=qfFESA961mk
https://www.youtube.com/watch?v=qfFESA961mk
https://www.bitcoinlightning.com/wp-content/uploads/2018/03/lightning-network-paper.pdf
https://www.bitcoinlightning.com/wp-content/uploads/2018/03/lightning-network-paper.pdf
https://www.pwc.com/gx/en/financial-services/pdf/el-salvadors-law-a-meaningful-test-for-bitcoin.pdf
https://www.pwc.com/gx/en/financial-services/pdf/el-salvadors-law-a-meaningful-test-for-bitcoin.pdf
https://doi.org/10.1109/SP46215.2023.00116
https://help.shopify.com/en/manual/payments/additional-payment-methods/cryptocurrency
https://help.shopify.com/en/manual/payments/additional-payment-methods/cryptocurrency
https://pari.math.u-bordeaux.fr/
https://pari.math.u-bordeaux.fr/
https://doi.org/10.1145/3372297.3417263
https://doi.org/10.1145/3372297.3417263
https://doi.org/10.1109/SP46214.2022.9833731
https://doi.org/10.1145/3558535.3559780
https://en.bitcoin.it/wiki/Multi-signature
https://en.bitcoin.it/wiki/Multi-signature
https://doi.org/10.1145/3548606.3560652
https://doi.org/10.1145/2976749.2978326

Castejon-Molina et al.

A Why Did We Opt for the Notary Setting?
In order to prevent the attacks discussed in Section 2, MixBuy needs

the following three functionalities: (1) a way to prove that transac-

tion m
𝐵
is included in the blockchain; (2) a way to encrypt a secret

(i.e., the product decryption key) w.r.t. an event in the future (i.e.,

the publication of m
𝐵
on the blockchain), and decrypt that secret

with the proof generated in (1); and (3) a way for the 𝑏𝑢𝑦𝑒𝑟 verify

that the encrypted secret is a valid product decryption key pdk.
Hereafter, we explore different approaches to satisfy functionalities

(1), (2), and (3) by analyzing the following aspects:

• Proof of Inclusion: Does the approach enable to prove m
𝐵
’s inclu-

sion in the blockchain? This aspect allows to evaluate compliance

with functionality (1).

• Proof Size: What is the size of the proof and its on-chain cost?

This aspect allows to evaluate the costs associated with enforcing

functionality (1).

• Encryption to the Future: Does the approach allow for encrypting

a secret w.r.t. to an event in the future? This aspect evaluates the

compliance with the encryption requisite of functionality (2).

• Verifiability: Does the approach enable the verification that the

encrypted secret is a valid product decryption key pdk? This

aspect evaluates compliance with functionality (3).

• Transaction Inclusion: Does the approach support using the proof

of m
𝐵
’s inclusion in the blockchain to decrypt the ciphertext?

This aspect evaluates the compliance with the decryption requi-

site of functionality (2).

• Blockchain Compatibility: Which blockchains are compatible

with this approach? This aspect identifies what are the additional

blockchain requirements to those detailed in Section 6 to satisfy

the approach analyzed.

Canonical Blockchain State Verification. The original Bitcoin pa-

per [55] introduced a simplified payment verification (SPV) protocol

to enable the proof of transaction or block inclusion without main-

taining a full copy of the blockchain. Subsequent works have built

upon this concept. For example, in zkBridge [71] transaction inclu-

sion is proven using zero-knowledge proofs, while Glimpse [62] and

bxtb [5] rely on Merkle proofs. Concerning the analyzed aspects:

• Proof of Inclusion: this approach allows any party with read access
to the blockchain to prove if transaction m

𝐵
is in the blockchain.

• Proof Size: The proof size in [71] is a SNARK of 131B, whereas

in [62] the proof consists of a 32B hash and a list of block headers

(which are also hashes), each with a size of 32B. Such proofs

would need to be verified by the miners. Considering the proofs

alone, the cost is 230k gas for [71] and 111k gas for [62].

• The mechanisms used in [5, 62, 71] do not support encryption to
the future, hence verifiability and transaction inclusion are not

satisfied either.

• Blockchain Compatibility: In addition to the requirements de-

tailed in Section 6, the blockchain must support a mechanism

to verify the proof of transaction inclusion (e.g. zero knowledge

proofs or merkle proofs).

Storing a Secret in the Blockchain. . A mechanism for hiding a

secret within the blockchain is proposed in [35]. Specifically, a party

possessing a secret (i.e., pdk), first selects a statement and thereafter

engages in a secret-sharing process to distribute the secret among

a set of miners. Henceforth, any party knowing the witness corre-

sponding to that statement can interact with the miners to retrieve

the shares and reconstruct the secret. We speculate that the miners

in [35] would accept the proofs in [5, 62, 71] as valid witnesses.

However, since this combination has not yet been explored and its

security properties have not been formally defined nor proven, we

focus our analysis on the aspects that can be evaluated for [35]:

• Encryption to the Future: the mechanism secret shares a secret

among miners. Due to the secrecy property described in [35], no

party can reconstruct the secret without sufficient shares. The

secret is only reconstructed if a witness is provided to the miners.

Hence, [35] allows to encrypt to a future event.

• Verifiability: this approach does not specify a mechanism to

verify a property of the shared secret (i.e if it is the decryption

key corresponding to a given encryption key), other than the

share is valid (i.e. robustness property in [35]). Yet, the used secret

sharing scheme is not publicly verifiable, so any user willing to

learn if the information held by the miners are valid shares,

should become a miner and be handed-off a share of the secret.

• Blockchain Compatibility: In addition to the requirements de-

tailed in Section 6, the blockchain must support a mechanism to

secret share a secret among a set of miners, such that the shares

are not published in the blockchain itself.

Finality Layer. Blockchains with a finality layer, e.g., [21, 22], em-

ploy a committee to sign blocks that are considered final. McFly [22]

provides a primitive called verifiable witness encryption, which en-

ables the encryption of a message under a statement such that it can

only be decrypted with a witness corresponding to that statement.

In [22], the concrete statement-witness pair is a tuple comprising a

verification key 𝑣𝑘 of the committee and the block header (𝑚) (i.e.,
the statement), and signature 𝜎 on the block header𝑚 under the

verification key of the committee 𝑣𝑘 (i.e., the witness). Concerning

the analyzed aspects:

• Proof of Inclusion: in [21, 22], presenting a block signed by the

committee that contains transaction m
𝐵
proves that the transac-

tion is in the blockchain.

• Proof Size: In [22], the committee produces a BLS signature of

96B that is included in the signed block. Any observer to the

blockchain might use such signature off-chain without incurring

in on-chain costs.

• Encryption to the Future: McFly [22] uses verifiable witness en-

cryption to encrypt a message such that it can be decrypted once

the committee signs a given block header.

• Verifiability: Verifiable witness encryption allows to verify some

aspects of the encrypted message. In particular, it can be used

to prove that the ciphertext contains the decryption key corre-

sponding to an encryption key.

• Transaction Inclusion: In McFly [22], the committee signs the

block header, but not the individual transactions in the block.

Hence, this mechanism can be used to encrypt a message until

a given block height has been reached, but not until a given

transaction is included in the blockchain.

• Blockchain Compatibility: In addition to the requirements de-

tailed in Section 6, the blockchain must support a finality layer

with a committee that signs the block headers.

16

MixBuy: Contingent Payment in the Presence of Coin Mixers

The Notary. This approach involves a semi-trusted third party,

i.e., the notary, with read access to the blockchain, which generates

an attestation when a transaction is published on the blockchain.

Hence, any party with access to the bulletin board where the notary

broadcasts its attestations can leverage these attestations to verify

that m
𝐵
is published on the blockchain. The notary approach is

based in [52], which works with the same primitive as [22]. In this

case, instead of a committee signing the blocks we have the notary

attesting individual messages. Since the notary is an independent

party, distinct from to the committee in [22], the notary can individ-

ually sign any transaction published on the blockchain. Concerning

the analyzed aspects:

• Proof of Inclusion: the notary produces a signature, called attesta-

tion, whenever transaction m
𝐵
is in the blockchain.

• Proof Size: the notary produces a BLS signature of 96B as in [22,

52]. Using the signature to decrypt a ciphertext incurs in no

on-chain costs.

• Encryption to the Future: Verifiable witness encryption allows to

encrypt a message such that it can be decrypted once the notary

attests that m
𝐵
is published on the blockchain.

• Verifiability: Verifiable witness encryption allows to verify some

aspects of the encrypted message. In particular, it can be used

to prove that the ciphertext contains the decryption key corre-

sponding to an encryption key.

• Transaction inclusion: Since the notary attests individual transac-

tions, it can be used to decrypt a ciphertext once transaction m
𝐵

is published on the blockchain.

• Blockchain Compatibility: The notary approach does not impose

any additional blockchain requirements beyond those outlined

in Section 6.

Why Did We Opt for the Notary Setting? So far, in our analy-

sis of the approaches above, only the notary satisfies all criteria.

In addition, the notary approach offers a generic mechanism to

attest transactions, compatible with most blockchains as it does

not impose any additional burden on the miners or the blockchain.

Although, we introduce a semi-trusted party to attest transactions,

users are free to choose the notaries of their choice (e.g. those who

they deem honest) and notaries can be made accountable for their

attestations (c.f. Section 6). Moreover, oracle services, similar to our

notaries, already exist
5
, which facilitates real-world deployment.

Hence, we chose the notary setting to ensure MixBuy’s compatibil-

ity with the majority of blockchains in use today.

B Dynamic Selection of Notary Set and
Threshold

Instead of fixing a set of 𝑁 notaries and threshold 𝑡 at the system

level, one could consider that each buyer and seller might prefer

to select a subset 𝑁 ′ of the 𝑁 notaries and a threshold 𝑡 ′. Next, we
motivate why this setting requires further analysis with respect to

unlinkability.

In order to support this setting, at the beginning of execution

phase (cf. Fig. 4) the buyer will inform the mixer about the notaries

selected, {v̂k𝑖 }𝑖∈𝑁 ′ and the threshold 𝑡 ′, so that the mixer produces

aP
3
with the correct subset of notaries.

5
ChainLink: https://chain.link; SupraOracles: https://supra.com

To argue about unlinkability, we need to update the unlinkability

game (cf. Fig. 9). In particular, the adversary instead of providing

v̂k outputs {v̂k𝑖 }𝑖∈𝑁 0 , 𝑡0 for buyer
0
and {v̂k𝑖 }𝑖∈𝑁 1 , 𝑡1 for buyer

1
.

Then, after receiving signatures (𝜎0
𝐵
, 𝜎1

𝐵
), the adversary should

provide attestations for all oracles in 𝑁 0
and 𝑁 1

. An interesting

future direction is to analyze the unlinkability of MixBuy under

this new definition capturing the dynamic selection of notary set

and threshold.

While the unlinkability notion above focuses on unlinkability

within a single epoch, another venue of interesting future work

is to analyze the unlinkability across epochs for a deployment of

MixBuy with a dynamic selection of notary set and threshold.

Achieving unlinkability across epochs is challenging in general

due to e.g., intersection attacks. As described in [41], in these attacks,

observers of transactions posted to the blockchain within one epoch

can learn which payers and payees participated in that epoch. Then,

this information can be correlated to de-anonymize users across

epochs (e.g., using frequency analysis or techniques used to break

k-anonymity). We observe that having different sets of notaries

between the pairs of buyers and sellers may provide an additional

advantage to the adversary to successfully launch an intersection

attack. We provide two illustrative examples:

Example 1. Assume that a seller only trusts the set of notaries

{v̂k𝑖 }𝑖∈𝑁 ′ . Then, if a buyer provides {v̂k𝑖 }𝑖∈𝑁 ′ at the beginning of

execution, the mixer learns that this buyer is purchasing from the

aforementioned seller.

Example 2. Assume that a buyer and seller always use the same

set {v̂k𝑖 }𝑖∈𝑁 ′ of notaries in their interactions. This is a reasonable

assumption, as those are the subset of notaries that buyer and seller

trust. Inadvertently, they havemade {v̂k𝑖 }𝑖∈𝑁 ′ the identifier of their
relationship, which becomes a new vector of sensitive information

for the mixer to launch the intersection attack.

In summary, the setting of dynamical selection of notaries and

threshold requires further analysis, which we leave as an interesting

future work.

C Extended Preliminaries
To facilitate the reader the games to which we make our reduc-

tions in Appendix D, we restate the games required by the se-

curity properties of EUF-CMA for digital signatures [34], strong

full extractability and adaptability for adaptor signatures [18], the

IND-CPA [52] security property of witness encryption based on

signatures, correctness, one-wayness and verifiability for VWER

and the zero-knowledge [20] and knowledge soundness [8] for

NIZK. We also define the additional security property for the linear-

only encryption scheme, OMDL-LHE. We also restate the one more

discrete logarithm assumption, needed to prove OMDL-LHE

C.1 Digital Signature
Definition 8 (EUF-CMA). An digital signature scheme is said to of-
fer EUF-CMA if for all 𝜆 ∈ N, there exists a negligible function negl(𝜆)
such that for all PPT adversariesA, it holds that Pr[EUF − CMA(𝜆) =
1] ≤ negl, where EUF − CMA is defined in Fig. 11.

17

https://chain.link
https://supra.com

Castejon-Molina et al.

C.2 Adaptor Signatures
Regarding (strong) full extractability, note that we have added con-

dition 𝑏2, which does not exist in [18]. The reason for this is that

we consider an attack that the adversary is able to forge a signature

without querying the presignature oracle.

Definition 9 ((Strong) Full Extractability). An adaptor signature
scheme is said to offer (strong) full extractability if for all 𝜆 ∈ N, there
exists a negligible function negl(𝜆) such that for all PPT adversaries
A, it holds that Pr[(s)fext(𝜆) = 1] ≤ negl, where (s)fext is defined
in Fig. 12.

Definition 10 (Pre-Signature Adaptability). An adaptor signature
scheme is said to offer pre-signature adaptability if for all 𝜆 ∈ N, any
message 𝑚 ∈ {0, 1}∗, any statement and witness pair (X,w) ∈ R,
any public key such that vk ∈ SUPP(KGen) and any pre-signature
𝜎 ∈ {0, 1}∗ that satisfies PreVf (vk,𝑚, X,𝜎), we have that

Pr[Vf (vk,𝑚,Adapt(𝜎,w)) = 1] = 1.

C.3 Witness Encryption based on Signatures
Definition 11 (IND-CPA). A witness encryption based on signatures
scheme is said to offer IND-CPA if for all 𝜆 ∈ N, there exists a negli-
gible function negl(𝜆) such that for all PPT adversaries A, it holds
that Pr[IND-CPA(𝜆) = 1] ≤ 1

2
+ negl, where IND-CPA is defined

in Fig. 13.

C.4 Verifiable Witness Encryption for a
Relation

Here we present a variation of the primitive verifiable witness

encryption based on threshold signatures (VWETS) introduced

in [52]. We perform the following simplifications with respect to

the original primitive: (i) the encrypted value is not a signature,

but the logarithm of an element in a group where the discrete

logarithm problem is computationally hard; and (ii) we consider a

single oracle. This is done in order to facilitate the description of

UCP. In section Section 6 we discuss how to decentralize the trust

in the notary of UCP.

Definition 12 (Verifiable Witness Encryption for a Relation). A
Verifiable witness encryption for a relation is defined w.r.t. a relation
R and a signature scheme, D̂S = (�KGen, Ŝig, V̂f). It comprises three
algorithms (EncR, VfEncR and DecR), defined bellow:

• (𝑐, 𝜋) ← EncR((v̂k, m̂),w) : PPT algorithm EncR gets as input a
tuple, comprising a verification key v̂k and a message m̂, and a
witness w, and outputs the ciphertext tuple, containing ciphertext
and a proof (𝑐, 𝜋).

EUF − CMA

Q := ∅

(vk, sk) ← KGen(1𝜆)

(𝑚,𝜎) ← ASigO (vk)
return Vf (vk,𝑚, 𝜎) ∧𝑚 ∉ Q

SigO(𝑚)

𝜎 ← Sig(sk,𝑚)
Q := Q ∪𝑚
return 𝜎

Figure 11: Experiment for EUF-CMA.

fext(𝜆), sfext(𝜆)
Q𝑓 𝑒𝑥𝑡 := ∅ ; Q𝑠 𝑓 𝑒𝑥𝑡 := ∅ ; Q𝑠𝑡 := ∅
Q𝑝𝑆 := []

(vk, sk) ← KGen(1𝜆)

(𝑚∗, 𝜎∗) ← AOSig,OPreSig,OnewX (vk)
fext : assert𝑚∗ ∉ Q𝑓 𝑒𝑥𝑡

sfext : assert (𝑚∗, 𝜎∗) ∉ Q𝑠 𝑓 𝑒𝑥𝑡
𝑏0 := Vf (vk,𝑚∗, 𝜎∗)
𝑏1 := ∀(X, 𝜎) ∈ Q𝑝𝑆 [𝑚∗] 𝑠.𝑡 . X ∉ Q𝑠𝑡
(X, Extract(𝜎∗, 𝜎, X) ∉ R

𝑏2 := Q𝑝𝑆 [𝑚∗] = ⊥
return 𝑏0 ∧ (𝑏1 ∨ 𝑏2)

OSig(𝑚)
𝜎 ← Sig(sk,𝑚)
Q𝑓 𝑒𝑥𝑡 := Q𝑓 𝑒𝑥𝑡 ∪ {𝑚}
Q𝑠 𝑓 𝑒𝑥𝑡 := Q𝑠 𝑓 𝑒𝑥𝑡 ∪ { (𝑚,𝜎) }
return 𝜎

OPreSig(𝑚, X)
𝜎 ← PreSig(sk,𝑚, X)
Q𝑝𝑆 [𝑚] := Q𝑝𝑆 [𝑚] ∪ { (X, 𝜎) }
return 𝜎

OnewX ()
(X,w) ← createR(1𝜆)
Q𝑠𝑡 := Q𝑠𝑡 ∪ {X}
return X

Figure 12: Experiments for full extractability (fext(𝜆)) and
strong full extractability (sfext(𝜆))

IND-CPA(𝜆)
Q := ∅;

(v̂k, ŝk) ← �KGen(1𝜆)
(𝑚∗,m

0
,m

1
) ← AOŜig (vk)

𝑏
$← {0, 1}

𝑐𝑏 ← Enc((v̂k,𝑚∗),m
𝑏
)

𝑏′ ← AOŜig (𝑐𝑏)
𝑏0 := (𝑏 = 𝑏′)
𝑏1 :=𝑚∗ ∉ Q
return 𝑏0 ∧ 𝑏1

OŜig(𝑚)

𝜎 ← Ŝig(ŝk,𝑚)
Q := Q ∪ {𝑚}
return 𝜎

Figure 13: Experiment IND-CPA forwitness encryption based
on signatures.

• 1/0 ← VfEncR((𝑐, 𝜋), (v̂k, m̂),X) : DPT algorithm VfEncR gets
as input a tuple comprising a ciphertext 𝑐 and a proof 𝜋 , a tuple
comprising a public key v̂k and amessage m̂, and a public statement
X, and outputs 1 if it is a valid ciphertext, otherwise it outputs 0.
• w′ ← DecR(𝜎, (𝑐, 𝜋)) : DPT algorithm DecR gets as input a

signature 𝜎 and tuple comprising a ciphertext 𝑐 and a proof 𝜋 , and
outputs a witness w′.

18

MixBuy: Contingent Payment in the Presence of Coin Mixers

ExpOWA (𝜆)
Q := ∅

(v̂k, ŝk) ← �KGen(1𝜆)
(X,w) ← createR(1𝜆)

w∗ ← AOŜig,OEncR (v̂k, X)
𝑏 := (X,w∗) ∈ R
return 𝑏

OŜig(m̂)
if m̂ ∈ Q abort

Q := Q ∪ m̂

𝜎 ← Ŝig(ŝk, m̂)
return

OEncR(m̂)
if m̂ ∈ Q abort

Q := Q ∪ m̂

(𝑐, 𝜋) ← EncR((v̂k, m̂),w)
return (𝑐, 𝜋)

ExpVerA (𝜆)

(m̂, v̂k, 𝜎, 𝑐, 𝜋, X) ← A(1𝜆)
w∗ ← DecR(𝜎, (𝑐, 𝜋))

𝑏0 := VfEncR((𝑐, 𝜋), (v̂k, m̂), X) = 1

𝑏1 := V̂f (v̂k, m̂, 𝜎) = 1

𝑏2 := (X,w∗) ∉ R

return 𝑏0 ∧ 𝑏1 ∧ 𝑏2

Figure 14: Definition of the experiments ExpOW and ExpVer.

Definition 13 (VWER Correctness). A VWER is said to be correct
if for all 𝜆 ∈ N, all keys v̂k ∈ SUPP(�KGen(1𝜆)), all messages m̂, all
statement and witness (X,w) ∈ R, the following holds:
(1) Pr[VfEncR(EncR((v̂k, m̂),w), (v̂k, m̂), X) = 1] = 1

(2) If V̂f (v̂k, m̂, 𝜎) = 1, then:

Pr[(X,DecR(𝜎, EncR((v̂k, m̂),w))) ∈ R] = 1

Definition 14 (VWEROneWayness). AVWER is said to be one way
if there exists a negligible function negl(𝜆) such that for all 𝜆 ∈ N and
all PPT adversariesA it holds that Pr[ExpOWA (𝜆) = 1] ≤ negl(𝜆),
where ExpOWA is defined in Fig. 14.

Definition 15 (VWER Verifiability). A VWER is said to be verifiable
if there exists a negligible function negl(𝜆) such that for all 𝜆 ∈ N and
all PPT adversaries A it holds that Pr[ExpVerA (𝜆) = 1] ≤ negl(𝜆),
where ExpVerA is defined in Fig. 14.

C.5 NIZK
Definition 16 (Zero Knowledge). A non interactive zero knowledge
proof is said to offer zero knowledge if for all 𝜆 ∈ N, there exists a
negligible function negl(𝜆) and a PPT simulator S such that for all
PPT adversaries A, it holds that

Pr

𝑏 = 𝑏∗

�����
(crs, td) ← SetUp(1𝜆)
(X,w) ← A(crs)

𝑏 ←
$
{0, 1}

if 𝑏 = 0 : 𝜋 ← Prove(crs, X,w)
if 𝑏 = 1 : 𝜋 ← S(crs, X, td)

𝑏∗ ← A(X,𝜋)

≤ 1

2

+ negl

OMDL-LHEA (𝜆)
q := 0

(ek, dk) ← LHE.KGen(1𝜆)

{ (X𝑖 ,w𝑖) }𝑖∈ [0,𝑘] ← createR(𝑘+1) (1𝜆)
for 𝑖 ∈ [0, 𝑘] :

𝑐𝑖 ← LHE.Enc(ek,w𝑖){
w′𝑖

}
𝑖∈ [0,𝑘] ← A

ODec (ek, { (X𝑖 , 𝑐𝑖) }𝑖∈ [0,𝑘])
𝑏0 := ∀𝑖, w′𝑖 = w𝑖

𝑏1 := q < 𝑘

return 𝑏0 ∧ 𝑏1

ODec(𝑐, X)
q := q + 1

w := LHE.Dec(dk, 𝑐)
if (X,w) ∈ R

return w

else return ⊥

Figure 15: Definition of the OMDL-LHE experiment.

Definition 17 (Knowledge Soundness). A non interactive zero
knowledge proof is said to offer knowledge soundness if for all 𝜆 ∈ N,
there exists a negligible function negl(𝜆) and a extractor E such that
for all PPT adversaries A, it holds that

Pr

∧
𝑏0 := 1

𝑏1 := 1

�����
(crs, td) ← SetUp(1𝜆)
(X, 𝜋) ← A(crs)

𝑏0 := Vf (crs, X, 𝜋) = 1

𝑏1 := (X, E(td, X, 𝜋)) ∉ R

 ≤ negl

C.6 Linear-Only Homomorphic Encryption
Scheme.

We define an additional property called OMDL-LHE. Here, the chal-
lenger generates an encryption/decryption key pair and a list of

𝑘 + 1 (statement, witness) pairs. Then, encrypts all witnesses with

the encryption key and provides the encryption key, the statements

and ciphertexts to the adversary. The adversary has access to a

decryption oracle. If the adversary is able to return more valid wit-

nesses than queries to the decryption oracle, wins the game. As

stated in Lemma 1 a linear only encryption achieves OMDL-LHE
if OMDL holds. We formally prove Lemma 1 in Appendix F. We

introduce Lemma 1 because it becomes useful to prove the security

of our proposed construction in Section 5.

Definition 18 (OMDL-LHE). An encryption scheme is said to of-
fer OMDL-LHE security if for all 𝜆 ∈ N, there exists a negligible
function negl(𝜆) such that for all PPT adversaries A, it holds that
Pr[OMDL-LHE(𝜆) = 1] ≤ negl, where the experiment OMDL-LHE
is defined in Fig. 15.

One-More Discrete Logarithm Assumption. We recall the one-

more discrete logarithm (OMDL) [6, 7] assumption.

Definition 19 (One-More Discrete Logarithm (OMDL) Assump-

tion). Let G be a uniformly sampled cyclic group of prime order 𝑝
and let 𝑔 be a random generator of G. The OMDL assumption states
that for all 𝜆 ∈ N, there exists a negligible function negl(𝜆) such that
for all PPT adversaries A making at most 𝑞 queries to ODL, it holds
that:

Pr

∀𝑖 : 𝑥𝑖 = 𝑟𝑖

�������
𝑟1 ...𝑟𝑞+1

$← Z𝑞

∀𝑖 ∈ [1, 𝑞 + 1], ℎ𝑖 ← 𝑔
𝑟𝑖
𝑖

{𝑥𝑖 }𝑖∈ [1,𝑞+1] ← AODL ({ℎ𝑖 }𝑖∈ [1,𝑞+1])

 = 1

19

Castejon-Molina et al.

where ODL takes as input ℎ ∈ G and outputs 𝑥 s.t. ℎ = 𝑔𝑥 .

Lemma1. Let LHE be a linear-only homomorphic encryption scheme.
Assuming the hardness of the OMDL assumption, LHE is secure under
OMDL-LHE.

D Oracle-based Unlinkable Contingent
Payment Correctness, Security and Privacy
Proofs

Theorem 6 (O-UCP Correctness). Assume the adaptor signa-
ture scheme is correct, assume theWES encryption is correct, assume
that VWER is correct and that the linear only encryption scheme is cor-
rect. Then, our protocol in Fig. 10 offers O-UCP correctness according
to Definition 2.

Proof. We have to prove that

(i) BVfSet (v̂k,m
𝐵
, pek, aP

4
)) = 1;

(ii) Vf (vk𝐵,m𝐵
, 𝜎

𝐵
) = 1;

(iii) Vf (vk𝑀 ,m
𝑀
, 𝜎

𝑀
) = 1;

(iv) VfAttest(v̂k,m
𝐵
, 𝜏) = 1; and

(v) (pek, pdk′) ∈ R.
As described in Definition 2, we need to prove the previous con-

ditions for all 𝜆 ∈ N, (v̂k, ŝk) ∈ NGen(1𝜆), (ek, dk) ∈ MGen(1𝜆),
(vk𝑀 , sk𝑀) ∈ KGen(1𝜆), (vk𝐵, sk𝐵) ∈ KGen(1𝜆), (pek, pdk) ∈ R,
and a pair of messages (m

𝐵
,m

𝑀
).

Case BVfSet (v̂k,m
𝐵
, pek, aP

4
)) = 1: As defined in BVfSet, we

have that

BVfSet (v̂k,m𝐵, pek, aP4)) =

VWER.VfEncR(aP
4
, (v̂k,m𝐵), pek) =

VWER.VfEncR(VWER.EncR((v̂k,m𝐵), pdk), (v̂k,m𝐵), pek) = 1

Case Vf (vk𝐵,m𝐵
, 𝜎

𝐵
) = 1: This trivially holds from the correct-

ness of the digital signature scheme, namely

Vf (vk𝐵,m𝐵, Sig(sk𝐵,m𝐵)) = 1

Case Vf (vk𝑀 ,m
𝑀
, 𝜎

𝑀
) = 1: We analyze this case in two steps.

First, assume that the value w1 obtained in SSolve is the same value

w1 used inMSet1. Then, it holds that:

Vf (vk𝑀 ,m𝑀 , 𝜎𝑀) =
Vf (vk𝑀 ,m𝑀 ,ADP.Adapt(𝜎,w1)) =

Vf (vk𝑀 ,m𝑀 ,ADP.Adapt(ADP.PreSig(sk𝑀 ,m𝑀 , X1),w1) = 1

Now, we show that indeed the value w1 obtained in SSolve is

the same value w1 used inMSet1.

w1 = w2 − w𝑟

w1 = WES.Dec(𝜏, 𝑐3) − w𝑟

w1 = WES.Dec(D̂S.Ŝig(ŝk,m𝐵), 𝑐3) − w𝑟

w1 = WES.Dec(D̂S.Ŝig(ŝk,m𝐵),WES.Enc((v̂k,m𝐵),w
∗
2
)) − w𝑟

w1 = w∗
2
− w𝑟

w1 = LHE.Dec(dk, 𝑐2) − w𝑟

w1 = LHE.Dec(dk, 𝑐1 ◦ 𝑐𝑟) − w𝑟

w1 = LHE.Dec(dk, LHE.Enc(ek,w1) ◦ LHE.Enc(ek,w𝑟)) − w𝑟

w1 = LHE.Dec(dk, LHE.Enc(ek,w1 + w𝑟) − w𝑟

w1 = w1 + w𝑟 − w𝑟

Case VfAttest(v̂k,m
𝐵
, 𝜏) = 1: This trivially holds from the cor-

rectness of the digital signature scheme used for attestations, namely

D̂S.V̂f (v̂k,m𝐵, D̂S.Ŝig(ŝk,m𝐵)) = 1

Case (pek, pdk′) ∈ R: Recall that in the initial setting we have

that (pek, pdk) ∈ R. For this case, we prove that pdk′ = pdk, which
trivially implies that (pek, pdk′) ∈ R.

pdk′ = VWER.DecR(𝜏, 𝑐4, 𝜋4)

pdk′ = VWER.DecR(D̂S.Ŝig(ŝk,m𝐵),VWER.EncR((v̂k,m𝐵), pdk))
pdk′ = pdk

□

Theorem 1 (Mixer Security). Assume that NIZK is zero knowl-
edge, thatWES is IND-CPA, that adaptor signature is full extractable
and the linear only encryption scheme is OMDL-LHE. Then, our con-
struction offers mixer security according to Definition 3.

Proof. We require the following game hops in order to prove

our claim:

Game ExpM𝐺0 . : This game, formally defined in Fig. 16, corre-

sponds to the original game for ExpM defined in Definition 3 The

game is expanded with the interactions described in our implemen-

tation.

Game ExpM𝐺1 . : This game, formally defined in Fig. 17, works

exactly as 𝐺0 but with the highlighted grey line. The challenger

uses a simulator instead of the Prove algorithm to generate the

proof forMSet1.

Game ExpM𝐺2 . : This game, formally defined in Fig. 18, works

exactly as 𝐺1 but with the highlighted grey line. The challenger

uses a simulator instead of the Prove algorithm to generate the

proof forMSet3.

Game ExpM𝐺3 . : This game, formally defined in Fig. 19, works ex-

actly as𝐺2 but with the highlighted grey line. Instead of encrypting

w2, the challenger encrypts 0 in OMSet3.
20

MixBuy: Contingent Payment in the Presence of Coin Mixers

ExpM𝐺0

Q1 := ∅ ; Q2 := ∅ ; q := 0

(v̂k, ŝk) ← D̂S.�KGen(1𝜆)
(ek, dk) ← LHE.KGen(1𝜆){
vk𝑖𝑀 ,m𝑖

𝑀 , 𝜎𝑖
𝑀

}
𝑖∈ [0,q] ← A

OMSet1,OMSet3,OFull (ek, v̂k)

𝑏0 := ∃𝑖 ∈ [0, q] s.t. (vk𝑖𝑀 , ·) ∈ Q1
∧ (vk𝑖𝑀 ,m𝑖

𝑀) ∉ Q1 ∧ Vf (vk
𝑖
𝑀 ,m𝑖

𝑀 , 𝜎𝑖
𝑀) = 1

𝑏1 := ∀𝑖 ∈ [0, q], (vk𝑖𝑀 ,m𝑖
𝑀) ∈ Q1 ∧ Vf (vk

𝑖
𝑀 ,m𝑖

𝑀 , 𝜎𝑖
𝑀) = 1

𝑏2 := ∀𝑖, 𝑗 ∈ [0, q], 𝑖 ≠ 𝑗, (vk𝑖𝑀 ,m𝑖
𝑀 , 𝜎𝑖

𝑀) ≠ (vk
𝑗

𝑀
,m𝑗

𝑀
, 𝜎

𝑗

𝑀
)

return 𝑏0 ∨ (𝑏1 ∧ 𝑏2)

OMSet1 (m𝑀
)

(vk𝑀 , sk𝑀) ← KGen(1𝜆)

(X1,w1) ← createR(1𝜆)
𝜎 ← ADP.PreSig(sk𝑀 ,m𝑀 , X1)

𝑐1 ← LHE.Enc(ek,w1)

y := (𝑐1, ek, X1)
𝜋1 ← NIZK.ProveL1 (crs, y,w1)
rP

1
:= (𝜎, 𝑐1, 𝜋1, X1)

Q1 := Q1 ∪ (vk𝑀 ,m𝑀)
return (rP

1
, vk𝑀)

OMSet3 (m𝐵
, rP

2
)

if m𝐵 ∈ Q2 abort
Q2 := Q2 ∪ (m𝐵)
(𝑐2, X2) ↼ rP

2

w2 ← LHE.Dec(dk, 𝑐2)

𝑐3 ←WES.Enc((v̂k,m𝐵),w2)

y := (𝑐3, v̂k,m𝐵, X2)
𝜋3 ← NIZK.ProveL2 (crs, y,w2)
aP

3
:= (𝑐3, 𝜋3)

return (aP
3
)

OFull(m
𝐵
, rP

2
, 𝜎 , vk)

if m𝐵 ∈ Q2 abort
q := q + 1
Q2 := Q2 ∪ (m𝐵)
(𝑐2, X2) ↼ rP

2

w2 ← LHE.Dec(dk, 𝑐2)

𝑐3 ←WES.Enc((v̂k,m𝐵),w2)

y := (𝑐3, v̂k,m𝐵, X2)
𝜋3 ← NIZK.ProveL2 (crs, y,w2)
aP

3
:= (𝑐3, 𝜋3)

if Vf (vk,m𝐵, 𝜎) = 0 abort

𝜏 ← D̂S.Ŝig(ŝk,m𝐵)
return (aP

3
, 𝜏)

Figure 16: The mixer security game expanded with our implementation.

Game ExpM𝐺4 . : This game, formally defined in Fig. 20, works

exactly as 𝐺3 but with the highlighted grey lines. The challenger

has an additional memory Q′
1
to keep track of the presignatures and

statements provided in OMSet1. The game aborts if the adversary

wins with a signature on message that was not queried in OMSet1
or with a signature on a message queried in OMSet1 such that the

corresponding presignature does not provide the witness to the

statement.

Claim 1. Let Bad1 be the event that:���� Pr[ExpM𝐺0 (𝜆) = 1]
− Pr[ExpM𝐺1 (𝜆) = 1]

���� > negl

Assume that the NIZK for L1 is zero knowledge. Then Pr[Bad1 (1𝜆) =
1] ≤ negl(𝜆).

Proof. Assume by contradiction that Pr[Bad1 (1𝜆)] > negl(𝜆),
then there exists PPT distinguisher A such that:

Pr

𝑏 = 𝑏∗

����� 𝑏
$← {0, 1}

ExpM𝐺𝑏 (𝜆)
𝑏∗ ← A()

 >
1

2

+ negl

We can construct adversaryB that usesA to break zero knowledge

of L1 with the following steps:

• B initializes the challenger, who will flip a bit and decide if it

uses Prove or the simulator S. The simulator sets the crs that
will be used for the proofs related to L1. B initializes the crs for
L2.

• B runs D̂S.�KGen(1𝜆) and LHE.KGen(1𝜆) to obtain (v̂k, ŝk) and
(ek, dk).

• B invokes A on input v̂k and ek.
• A sends to B

{
vk𝑖

𝑀
,m𝑖

𝑀
, 𝜎𝑖

𝑀

}
𝑖∈[0,q] .

• B receives the guess 𝑏∗ from A, which B forwards to the chal-

lenger.

Regarding oracles OMSet3 and OFull, B knows all the private

information required to run them. However, regarding OMSet1,
instead of running either S or Prove, B will forward the statement

y and w1 to the challenger, who will provide the proof 𝜋1. Then, B
will place this proof in rP

1
.

Our adversary B perfectly simulates ExpM𝐺0
and ExpM𝐺1

toA.

Moreover, it is easy to see thatB is a PPT algorithm. If the adversary

can distinguish between the two gameswith probability higher than

1

2
+negl(𝜆), since the only difference between both games is whether

the challenger decided to use Prove or S when it was initialized

by B, the guess 𝑏∗ also wins the zero knowledge game with the

same probability. However, this contradicts the assumption that

21

Castejon-Molina et al.

ExpM𝐺1

Q1 := ∅ ; Q2 := ∅ ; q := 0

(v̂k, ŝk) ← D̂S.�KGen(1𝜆)
(ek, dk) ← LHE.KGen(1𝜆){
vk𝑖𝑀 ,m𝑖

𝑀 , 𝜎𝑖
𝑀

}
𝑖∈ [0,q] ← A

OMSet1,OMSet3,OFull (ek, v̂k)

𝑏0 := ∃𝑖 ∈ [0, q] s.t. (vk𝑖𝑀 , ·) ∈ Q1
∧ (vk𝑖𝑀 ,m𝑖

𝑀) ∉ Q1 ∧ Vf (vk
𝑖
𝑀 ,m𝑖

𝑀 , 𝜎𝑖
𝑀) = 1

𝑏1 := ∀𝑖 ∈ [0, q], (vk𝑖𝑀 ,m𝑖
𝑀) ∈ Q1 ∧ Vf (vk

𝑖
𝑀 ,m𝑖

𝑀 , 𝜎𝑖
𝑀) = 1

𝑏2 := ∀𝑖, 𝑗 ∈ [0, q], 𝑖 ≠ 𝑗, (vk𝑖𝑀 ,m𝑖
𝑀 , 𝜎𝑖

𝑀) ≠ (vk
𝑗

𝑀
,m𝑗

𝑀
, 𝜎

𝑗

𝑀
)

return 𝑏0 ∨ (𝑏1 ∧ 𝑏2)

OMSet1 (m𝑀
)

(vk𝑀 , sk𝑀) ← KGen(1𝜆)

(X1,w1) ← createR(1𝜆)
𝜎 ← ADP.PreSig(sk𝑀 ,m𝑀 , X1)

𝑐1 ← LHE.Enc(ek,w1)

y := (𝑐1, ek, X1)
𝜋1 ← SL1 (y)
rP

1
:= (𝜎, 𝑐1, 𝜋1, X1)

Q1 := Q1 ∪ (vk𝑀 ,m𝑀)
return (rP

1
, vk𝑀)

OMSet3 (m𝐵
, rP

2
)

if m𝐵 ∈ Q2 abort
Q2 := Q2 ∪ (m𝐵)
(𝑐2, X2) ↼ rP

2

w2 ← LHE.Dec(dk, 𝑐2)

𝑐3 ←WES.Enc((v̂k,m𝐵),w2)

y := (𝑐3, v̂k,m𝐵, X2)
𝜋3 ← NIZK.ProveL2 (crs, y,w2)
aP

3
:= (𝑐3, 𝜋3)

return (aP
3
)

OFull(m
𝐵
, rP

2
, 𝜎 , vk)

if m𝐵 ∈ Q2 abort
q := q + 1
Q2 := Q2 ∪ (m𝐵)
(𝑐2, X2) ↼ rP

2

w2 ← LHE.Dec(dk, 𝑐2)

𝑐3 ←WES.Enc((v̂k,m𝐵),w2)

y := (𝑐3, v̂k,m𝐵, X2)
𝜋3 ← NIZK.ProveL2 (crs, y,w2)
aP

3
:= (𝑐3, 𝜋3)

if Vf (vk,m𝐵, 𝜎) = 0 abort

𝜏 ← D̂S.Ŝig(ŝk,m𝐵)
return (aP

3
, 𝜏)

Figure 17: The mixer security game, identical to ExpM𝐺0 , except for the highlighted grey lines. Instead of running Prove for the
proof of MSet1, the challenger runs a simulator S.

the NIZK for L1 is zero knowledge. Thus, Pr[Bad1 (1𝜆)] ≤ negl(𝜆)
and this claim has been proven. Therefore, we can conclude that

ExpM𝐺0 ≈ ExpM𝐺1 □

Claim 2. Let Bad2 be the event that:���� Pr[ExpM𝐺1 (𝜆) = 1]
− Pr[ExpM𝐺2 (𝜆) = 1]

���� > negl

Assume that the NIZK for L2 is zero knowledge. Then Pr[Bad2 (1𝜆) =
1] ≤ negl(𝜆).

Proof. Assume by contradiction that Pr[Bad2 (1𝜆)] > negl(𝜆),
then there exists PPT distinguisher A such that:

Pr

𝑏 = 𝑏∗

����� 𝑏
$← {0, 1}

ExpM𝐺
1+𝑏 (𝜆)

𝑏∗ ← A()

 >
1

2

+ negl

We can construct adversaryB that usesA to break zero knowledge

of L2 with the following steps:

• B initializes the challenger, who will flip a bit and decide if it

uses Prove or the simulator S. The simulator sets the crs that
will be used for the proofs related to OMSet3. B initializes the

crs for L1.

• B runs D̂S.�KGen(1𝜆) and LHE.KGen(1𝜆) to obtain (v̂k, ŝk) and
(ek, dk).

• B invokes A on input v̂k and ek.
• A sends to B

{
vk𝑖

𝑀
,m𝑖

𝑀
, 𝜎𝑖

𝑀

}
𝑖∈[0,q] .

• B receives the guess 𝑏∗ from A, which B forwards to the chal-

lenger.

Regarding oracle OMSet1, B knows all the private information

required to run them. However, regarding OMSet3 and OFull, in-
stead of running either S or Prove, B will forward the statement y
and w2 to the challenger, who will provide the proof 𝜋3. Then, B
will place this proof in aP

3
.

Our adversary B perfectly simulates ExpM𝐺1
and ExpM𝐺2

toA.

Moreover, it is easy to see thatB is a PPT algorithm. If the adversary

can distinguish between the two gameswith probability higher than

1

2
+negl(𝜆), since the only difference between both games is whether

the challenger decided to use Prove or S when it was initialized

by B, the guess 𝑏∗ also wins the zero knowledge game with the

same probability. However, this contradicts the assumption that the

NIZK used in L2 is zero knowledge. Thus, Pr[Bad2 (1𝜆)] ≤ negl(𝜆)
and this claim has been proven. Therefore, we can conclude that

ExpM𝐺1 ≈ ExpM𝐺2 □

22

MixBuy: Contingent Payment in the Presence of Coin Mixers

ExpM𝐺2

Q1 := ∅ ; Q2 := ∅ ; q := 0

(v̂k, ŝk) ← D̂S.�KGen(1𝜆)
(ek, dk) ← LHE.KGen(1𝜆){
vk𝑖𝑀 ,m𝑖

𝑀 , 𝜎𝑖
𝑀

}
𝑖∈ [0,q] ← A

OMSet1,OMSet3,OFull (ek, v̂k)

𝑏0 := ∃𝑖 ∈ [0, q] s.t. (vk𝑖𝑀 , ·) ∈ Q1
∧ (vk𝑖𝑀 ,m𝑖

𝑀) ∉ Q1 ∧ Vf (vk
𝑖
𝑀 ,m𝑖

𝑀 , 𝜎𝑖
𝑀) = 1

𝑏1 := ∀𝑖 ∈ [0, q], (vk𝑖𝑀 ,m𝑖
𝑀) ∈ Q1 ∧ Vf (vk

𝑖
𝑀 ,m𝑖

𝑀 , 𝜎𝑖
𝑀) = 1

𝑏2 := ∀𝑖, 𝑗 ∈ [0, q], 𝑖 ≠ 𝑗, (vk𝑖𝑀 ,m𝑖
𝑀 , 𝜎𝑖

𝑀) ≠ (vk
𝑗

𝑀
,m𝑗

𝑀
, 𝜎

𝑗

𝑀
)

return 𝑏0 ∨ (𝑏1 ∧ 𝑏2)

OMSet1 (m𝑀
)

(vk𝑀 , sk𝑀) ← KGen(1𝜆)

(X1,w1) ← createR(1𝜆)
𝜎 ← ADP.PreSig(sk𝑀 ,m𝑀 , X1)

𝑐1 ← LHE.Enc(ek,w1)

y := (𝑐1, ek, X1)
𝜋1 ← SL1 (y)
rP

1
:= (𝜎, 𝑐1, 𝜋1, X1)

Q1 := Q1 ∪ (vk𝑀 ,m𝑀)
return (rP

1
, vk𝑀)

OMSet3 (m𝐵
, rP

2
)

if m𝐵 ∈ Q2 abort
Q2 := Q2 ∪ (m𝐵)
(𝑐2, X2) ↼ rP

2

w2 ← LHE.Dec(dk, 𝑐2)

𝑐3 ←WES.Enc((v̂k,m𝐵),w2)

y := (𝑐3, v̂k,m𝐵, X2)
𝜋3 ← SL2 (y)
aP

3
:= (𝑐3, 𝜋3)

return (aP
3
)

OFull(m
𝐵
, rP

2
, 𝜎 , vk)

if m𝐵 ∈ Q2 abort
q := q + 1
Q2 := Q2 ∪ (m𝐵)
(𝑐2, X2) ↼ rP

2

w2 ← LHE.Dec(dk, 𝑐2)

𝑐3 ←WES.Enc((v̂k,m𝐵),w2)

y := (𝑐3, v̂k,m𝐵, X2)
𝜋3 ← SL2 (y)
aP

3
:= (𝑐3, 𝜋3)

if Vf (vk,m𝐵, 𝜎) = 0 abort

𝜏 ← D̂S.Ŝig(ŝk,m𝐵)
return (aP

3
, 𝜏)

Figure 18: The mixer security game, identical to ExpM𝐺1 , except for the highlighted grey lines. Instead of running Prove for the
proof of MSet2, the challenger runs a simulator S.

Claim 3. Let Bad3 be the event that:���� Pr[ExpM𝐺2 (𝜆) = 1]
− Pr[ExpM𝐺3 (𝜆) = 1]

���� > negl

Assume that WES is IND-CPA secure. Then Pr[Bad3 (1𝜆) = 1] ≤
negl(𝜆).

Proof. Let 𝑞2 := |Q2 | denote the number of queries to oracle

OMSet3. We consider 𝑞2 sub-games such that for sub-game 𝑖 ∈
[1, 𝑞2] queries 1 to 𝑖 − 1 are answered by oracle OMSet3 of game

ExpM𝐺3
, while queries 𝑖 + 1 to 𝑞2 are answered by oracle OMSet3

of game ExpM𝐺2
. The intuition is that if Pr[Bad3 (1𝜆)] > negl(𝜆),

then there exists some PPT distinguisher A𝑖 , for 𝑖 ∈ [1, 𝑞2], that
it can determine with non-negligible probability whether it plays

game ExpM𝐺2
or game ExpM𝐺3

base on the 𝑖𝑡ℎ answer of oracle

OMSet3.
More precisely, assume by contradiction that Pr[Bad3 (1𝜆)] >

negl(𝜆), then there exists PPT distinguisher A𝑖∗ such that:

Pr

𝑏 = 𝑏∗

����� 𝑏
$← {0, 1}

ExpM𝑠𝑢𝑏𝐺𝑖∗ (𝜆)
𝑏∗ ← A𝑖∗ ()

 >
1

2

+ negl

We can construct adversary B that usesA𝑖∗ to break IND-CPA the

encryption used in OMSet3 with the following steps:

• B initializes the challenger, who sends v̂k.
• B runs (ek, dk) ← LHE.KGen(1𝜆).
• B invokes A on input v̂k and ek.
• OMSet3 queries are treated in the following manner:

– For 𝑗 ∈ [1, 𝑖∗−1],B computesWES.Enc((v̂k,m
𝐵
) and assigns

the result to 𝑐3, 𝑗 .

– For 𝑗 ∈ [𝑖∗ + 1, 𝑞2], B computesWES.Enc((v̂k,m
𝐵
),w2) and

assigns the result to 𝑐3, 𝑗 .

– For 𝑗 = 𝑖∗, B sets �̂�∗ := m
𝐵
, 𝑚0 := w2 and 𝑚1 := 0 and

forwards the tuple (�̂�∗,𝑚0,𝑚1) to the challenger to obtain 𝑐𝑏
which in turn B assigns as 𝑐3, 𝑗 .

• B forwards 𝑐3, 𝑗 to A.

• Thereafter A𝑖∗ outputs
{
vk𝑖

𝑀
,m𝑖

𝑀
, 𝜎𝑖

𝑀

}
𝑖∈[0,q] .

• B receives the guess 𝑏∗ from A𝑖∗ , which B forwards to the

challenger.

Regarding oracle OMSet1, B knows all the private information

required to run it. Regarding OFull, B can run up to Ŝig. When

arriving at this line, B forwards the query to OSig of theWES IND-
CPA oracle, which returns 𝜏 . Note that this means that memory

23

Castejon-Molina et al.

ExpM𝐺3

Q1 := ∅ ; Q2 := ∅ ; q := 0

(v̂k, ŝk) ← D̂S.�KGen(1𝜆)
(ek, dk) ← LHE.KGen(1𝜆){
vk𝑖𝑀 ,m𝑖

𝑀 , 𝜎𝑖
𝑀

}
𝑖∈ [0,q] ← A

OMSet1,OMSet3,OFull (ek, v̂k)

𝑏0 := ∃𝑖 ∈ [0, q] s.t. (vk𝑖𝑀 , ·) ∈ Q1
∧ (vk𝑖𝑀 ,m𝑖

𝑀) ∉ Q1 ∧ Vf (vk
𝑖
𝑀 ,m𝑖

𝑀 , 𝜎𝑖
𝑀) = 1

𝑏1 := ∀𝑖 ∈ [0, q], (vk𝑖𝑀 ,m𝑖
𝑀) ∈ Q1 ∧ Vf (vk

𝑖
𝑀 ,m𝑖

𝑀 , 𝜎𝑖
𝑀) = 1

𝑏2 := ∀𝑖, 𝑗 ∈ [0, q], 𝑖 ≠ 𝑗, (vk𝑖𝑀 ,m𝑖
𝑀 , 𝜎𝑖

𝑀) ≠ (vk
𝑗

𝑀
,m𝑗

𝑀
, 𝜎

𝑗

𝑀
)

return 𝑏0 ∨ (𝑏1 ∧ 𝑏2)

OMSet1 (m𝑀
)

(vk𝑀 , sk𝑀) ← KGen(1𝜆)

(X1,w1) ← createR(1𝜆)
𝜎 ← ADP.PreSig(sk𝑀 ,m𝑀 , X1)

𝑐1 ← LHE.Enc(ek,w1)

y := (𝑐1, ek, X1)
𝜋1 ← SL1 (y)
rP

1
:= (𝜎, 𝑐1, 𝜋1, X1)

Q1 := Q1 ∪ (vk𝑀 ,m𝑀)
return (rP

1
, vk𝑀)

OMSet3 (m𝐵
, rP

2
)

if m𝐵 ∈ Q2 abort
Q2 := Q2 ∪ (m𝐵)
(𝑐2, X2) ↼ rP

2

w2 ← LHE.Dec(dk, 𝑐2)

𝑐3 ←WES.Enc((v̂k,m
𝐵
), 0)

y := (𝑐3, v̂k,m𝐵, X2)
𝜋3 ← SL2 (y)
aP

3
:= (𝑐3, 𝜋3)

return (aP
3
)

OFull(m
𝐵
, rP

2
, 𝜎 , vk)

if m𝐵 ∈ Q2 abort
q := q + 1
Q2 := Q2 ∪ (m𝐵)
(𝑐2, X2) ↼ rP

2

w2 ← LHE.Dec(dk, 𝑐2)

𝑐3 ←WES.Enc((v̂k,m𝐵),w2)

y := (𝑐3, v̂k,m𝐵, X2)
𝜋3 ← SL2 (y)
aP

3
:= (𝑐3, 𝜋3)

if Vf (vk,m𝐵, 𝜎) = 0 abort

𝜏 ← D̂S.Ŝig(ŝk,m𝐵)
return (aP

3
, 𝜏)

Figure 19: The mixer security game, identical to ExpM𝐺2 , except for the highlighted grey line. Instead of running encrypting w3

in OMSet2, the challenger encrypts 0.

Q3 and the memory of IND-CPA are synchronized. As already

described, B knows all the private information required to run

oracle OMSet3.
Our adversary B perfectly simulates the sub-game ExpM𝑠𝑢𝑏𝐺𝑖∗

to A𝑖∗ . Moreover, it is easy to see that B is a PPT algorithm. If

adversary A𝑖∗ can win the sub-game ExpM𝑠𝑢𝑏𝐺𝑖∗ with probability

higher than
1

2
+ negl(𝜆), since the only difference between games

ExpM𝐺2
and ExpM𝐺3

is the 𝑖∗th query of OMSet3 that was for-

warded to the challenger and since Q2 and Q3 intersection has to

be empty, A𝑖∗ has not made a query to the same message of the

challenger ciphertext in OFull, which satisfies that the sign oracle

was not queried on the same message of the challenge. Therefore,

the bit forwarded by A𝑖∗ can also be used to differentiate in the

IND-CPA game. However, this contradicts the assumption that the

WES used is IND-CPA.

Our adversary B chooses which sub-game 𝑖∗ to play with prob-

ability
1

𝑞2
. Thus, Pr[Bad3 (1𝜆)] ≤ negl(𝜆)

𝑞2
≤ negl(𝜆) and this claim

has been proven. Therefore, we can conclude that ExpM𝐺2 ≈
ExpM𝐺3 □

Claim 4. Let Bad4 be the event that ExpM𝐺4 aborts because 𝑏0 or
𝑏3 is satisfied. Assume that the adaptor signature scheme provides
full extractability. Then Pr[Bad4 (1𝜆) = 1] ≤ negl(𝜆).

Proof. Assume by contradiction that there exists a PPT ad-

versary A such that Pr[Bad4 (1𝜆)] > negl(𝜆). We can construct

adversary B that uses A to break full extractability of the adaptor

signature used in OMSet1 with the following steps:

• B runs D̂S.�KGen(1𝜆) and LHE.KGen(1𝜆) to obtain (v̂k, ŝk) and
(ek, dk).

• B initializes the challenger and obtains the public key of the

challenger, vk.
• B invokes A on input v̂k and ek.
• A sends to B

{
vk𝑖

𝑀
,m𝑖

𝑀
, 𝜎𝑖

𝑀

}
𝑖∈[0,q] .

• B searches for a triplet of vk𝑖
𝑀
,m𝑖

𝑀
, 𝜎𝑖

𝑀
such that 𝑏0 or 𝑏4 hold.

If vk𝑖
𝑀

= vk, then B forwards (m𝑖
𝑀
, 𝜎𝑖

𝑀
) to the challenger. If

vk𝑖
𝑀

≠ vk, B samples a signature from the signature space and

forwards it to the challenger.

Regarding oracle OMSet3 and OFull, B knows all the private

information required to run them. Regarding OMSet1, B samples

24

MixBuy: Contingent Payment in the Presence of Coin Mixers

ExpM𝐺4

Q1 := ∅ ; Q2 := ∅ ; q := 0

Q′
1
:= []

(v̂k, ŝk) ← D̂S.�KGen(1𝜆)
(ek, dk) ← LHE.KGen(1𝜆){
vk𝑖𝑀 ,m𝑖

𝑀 , 𝜎𝑖
𝑀

}
𝑖∈ [0,q] ← A

OMSet1,OMSet3,OFull (ek, v̂k)

𝑏0 := ∃𝑖 ∈ [0, q] s.t. (vk𝑖𝑀 , ·) ∈ Q1
∧ (vk𝑖𝑀 ,m𝑖

𝑀 , ·) ∉ Q1 ∧ Vf (vk𝑖𝑀 ,m𝑖
𝑀 , 𝜎𝑖

𝑀) = 1

𝑏1 := ∀𝑖 ∈ [0, q], (vk𝑖𝑀 ,m𝑖
𝑀) ∈ Q1 ∧ Vf (vk

𝑖
𝑀 ,m𝑖

𝑀 , 𝜎𝑖
𝑀) = 1

𝑏2 := ∀𝑖, 𝑗 ∈ [0, q], 𝑖 ≠ 𝑗, (vk𝑖𝑀 ,m𝑖
𝑀 , 𝜎𝑖

𝑀) ≠ (vk
𝑗

𝑀
,m𝑗

𝑀
, 𝜎

𝑗

𝑀
)

𝑏3 := ∃𝑖 ∈ [0, q] s.t. (vk𝑖𝑀 ,m𝑖
𝑀
) ∈ Q1 ∧ (𝜎𝑖 , X𝑖

1
) ↼ Q′

1
[m𝑖

𝑀
]

∧ Vf (vk𝑖
𝑀
,m𝑖

𝑀
, 𝜎𝑖

𝑀
) = 1 ∧ (X𝑖

1
, Extract(𝜎𝑖

𝑀
, 𝜎𝑖 , X𝑖

1
)) ∉ R

if 𝑏0 ∨ 𝑏3 abort
return 𝑏0 ∨ (𝑏1 ∧ 𝑏2)

OMSet1 (m𝑀
)

(vk𝑀 , sk𝑀) ← KGen(1𝜆)

(X1,w1) ← createR(1𝜆)
𝜎 ← ADP.PreSig(sk𝑀 ,m𝑀 , X1)

𝑐1 ← LHE.Enc(ek,w1)

y := (𝑐1, ek, X1)
𝜋1 ← SL1 (y)
rP

1
:= (𝜎, 𝑐1, 𝜋1, X1)

Q1 := Q1 ∪ (vk𝑀 ,m𝑀)
Q′
1
[m

𝑀
] := (𝜎, X1)

return (rP
1
, vk𝑀)

OMSet3 (m𝐵
, rP

2
)

if m𝐵 ∈ Q2 abort
Q2 := Q2 ∪ (m𝐵)
(𝑐2, X2) ↼ rP

2

w2 ← LHE.Dec(dk, 𝑐2)

𝑐3 ←WES.Enc((v̂k,m𝐵), 0)

y := (𝑐3, v̂k,m𝐵, X2)
𝜋3 ← SL2 (y)
aP

3
:= (𝑐3, 𝜋3)

return (aP
3
)

OFull(m
𝐵
, rP

2
, 𝜎 , vk)

if m𝐵 ∈ Q2 abort
q := q + 1
Q2 := Q2 ∪ (m𝐵)
(𝑐2, X2) ↼ rP

2

w2 ← LHE.Dec(dk, 𝑐2)

𝑐3 ←WES.Enc((v̂k,m𝐵),w2)

y := (𝑐3, v̂k,m𝐵, X2)
𝜋3 ← SL2 (y)
aP

3
:= (𝑐3, 𝜋3)

if Vf (vk,m𝐵, 𝜎) = 0 abort

𝜏 ← D̂S.Ŝig(ŝk,m𝐵)
return (aP

3
, 𝜏)

Figure 20: The mixer security security game, works exactly as𝐺3 but with the highlighted grey lines. The challenger has an
additional memory Q′

1
to keep track of the presignatures and statements provided in OMSet1. The game aborts if the adversary

wins with a signature on message that was not queried in OMSet1 or with a signature on a message queried in OMSet1 such
that the corresponding presignature does not provide the witness to the statement.

fresh keys with each query. However, for one the queries, B gener-

ates a public statement X and uses it together with the message from

A as input for OPreSig of the fext game to obtain a presignature.

The rest of OMSet1 runs normally.

Our adversary B perfectly simulates ExpM𝐺4
toA. Moreover, it

is easy to see that B is a PPT algorithm. Now, the only differences

between ExpM𝐺3
and ExpM𝐺4

are the change in the memory of

B and the abort condition. Since we assume that A is successful

in aborting ExpM𝐺4
, this means that A satisfies either 𝑏0 or 𝑏3.

If A satisfies 𝑏0, this means that one of the signatures was done

for a message that was not queried in OMSet1. If the forgery is

valid for the challenger’s public key vk, but not for the other keys
generated with OMSet1, it holds that: (i) B did not queried OSig of
fext; (ii) the signature verifies for vk; and (iii)m𝑖

𝑀
was not queried in

OPreSig. Therefore, ifA forges a signature for vk without querying
OMSet1 for m𝑖

𝑀
, B wins fext. Alternatively, if A satisfies 𝑏3, this

means that m𝑖
𝑀

was queried in OMSet1, but the signature and

the presignature do not output a valid witness. If the forgery is

valid for the challenger’s public key vk, but not for the other keys
generated with OMSet1, it holds that: (i) B did not queried OSig
of fext; (ii) the signature verifies for vk; (iii) the public statement

was not queried in OnewX; and (iv) extract gives a witness not in

the relation. Therefore, if A satisfies 𝑏3, B also breaks fext. We

only need to quantify the probability thatA sends a forgery for vk
instead of any other key generated with queries to OMSet1.A is a

polynomial-time adversary, which means that the 𝑘 queries made to

OMSet1 are polynomially bounded. We assume that A satisfies 𝑏0
or 𝑏3 with a non negligible probability 𝜖 . Then, the probability that

the forgery presented to B is on vk is 𝜖/𝑘 . Therefore, if B forwards

the forgery to the challenger, the probability of winning fext is
Pr[Bad4 (1𝜆) = 1]/𝑘 . Since 𝑘 is polynomial and Pr[Bad4 (1𝜆) = 1]
is non negligible, B wins with non negligible probability. However,

this contradicts the assumption that the adaptor signature scheme

offers full extractability. Thus, Pr[Bad4 (1𝜆)] ≤ negl(𝜆) and this

25

Castejon-Molina et al.

claim has been proven. Therefore, we can conclude that ExpM𝐺3 ≈
ExpM𝐺4 □

Claim 5. Assume the encryption scheme is OMDL-LHE. Then:

Pr[ExpM𝐺4 (1𝜆) = 1] ≤ negl(𝜆)

Proof. Assume by contradiction that there exists a PPT adver-

sary A such that Pr[ExpM𝐺4 (1𝜆)] > negl(𝜆). We can construct

adversary B that uses A to break OMDL-LHE of the encryption

used in OMSet1 with the following steps:

• B initializes the challenger.

• B, receives ek and {(X𝑖 , 𝑐𝑖)}𝑖∈[0,𝑘] from the challenger.

• B runs (v̂k, ŝk) ← D̂S.�KGen(1𝜆).
• B invokes A on input v̂k and ek.
• A sends to B

{
vk𝑖

𝑀
,m𝑖

𝑀
, 𝜎𝑖

𝑀

}
𝑖∈[0,q] .

• Since we assume that A wins ExpM𝐺4
, then 𝑏0 and 𝑏3 are not

satisfied.

• For each of the tuples vk𝑖
𝑀
,m𝑖

𝑀
, 𝜎𝑖

𝑀
, B gets 𝜎𝑖 and X𝑖

1
from Q′

1

and extracts w𝑖
1
. Note that (X𝑖

1
,w𝑖

1
) ∈ R, as otherwise B would

abort because of 𝑏3. Also note that due to conditions 𝑏1 and 𝑏2,

all witnesses are different. Parameter 𝑘 from OMDL-LHE corre-

sponds to the number of queries for OMSet1, while Parameter

𝑞 from OMDL-LHE corresponds to the number of queries for

OFull. For the witnesses remaining between the q+1 witnesses

obtained from A until the k+1 that must be forwarded to the

challenger, B calls k-q times ODec of OMDL-LHE. Finally, B
sends all k+1 witnesses to the challenger.

Regarding oracle OMSet3, since 𝑐3 encrypts zero, there is no

need to decrypt rP
2
, so B can run the oracle with the information

in their hands. Regarding OFull, B forwards the decryption query

to the decryption oracle of OMDL-LHE, while the rest of the oracle
remains the same. Note that this ensures that the counter for both

oracles is the same. Finally, regarding OMSet1, B uses for each

query a different pair of X𝑖 , 𝑐𝑖 received from the challenger to make

𝜎 and 𝑐1.

Our adversary B perfectly simulates ExpM𝐺4
to A. Moreover,

it is easy to see that B is a PPT algorithm. Since we assume thatA
is successful in winning ExpM𝐺4

, this implies that the adversary is

able to produce one signature more than the q signatures he has

had access to. Since the adversary wins the game, it does not abort

on 𝑏0 or 𝑏4, which ensures that all of the witnesses extracted for all

𝑖 ∈ [0, q] are valid. Finally, since the messages of all tuples sent by

A are in the memory of Q1, and they are one more in number that

the counter of q, this implies that the decryption oracle has not been

called for at least one of the witnesses extracted by B. Note that the
counters of both games are synchronized and that B is only using

the pairs X𝑖 , 𝑐𝑖 sent by the challenger to run OMSet1. Therefore,
when B forwards all the witnesses to the challenger, the set of

witnesses also wins the OMDL-LHE. However, this contradicts the
assumption that the encryption scheme satisfies OMDL-LHE, and
so A does not exist. □

We have proved that ExpM𝐺0 ≈ ExpM𝐺4
. We have also proven

that Pr[ExpM𝐺4 (1𝜆) = 1] ≤ negl(𝜆). Therefore, Theorem 1 has

been proven. □

ExpS𝐺0

Q := []

(v̂k, ŝk) ← D̂S.�KGen(1𝜆)
(pek, pdk) ← createR(1𝜆)

(ek, vk𝑀 ,m𝐵,m𝑀 , rP
1
) ← AONAttest (v̂k, pek)

(𝜎, 𝑐1, 𝜋1, X1) ↼ rP
1

y := (𝑐1, ek, X1)
if NIZK.VfL1 (crs, y, 𝜋1) = 0 abort

if ADP.PreVf (vk𝑀 ,m𝑀 , X1, 𝜎) = 0 abort

(X𝑟 ,w𝑟) ← createR(1𝜆)
X2 := X𝑟 ⊗ X1

𝑐𝑟 ← LHE.Enc(ek𝑀 ,w𝑟)
𝑐2 := 𝑐1 ◦ 𝑐𝑟
rP

2
:= (𝑐2, X2)

st𝑆 := (X2, X𝑟 ,w𝑟)

aP
3
← AONAttest (rP

2
)

(𝑐3, 𝜋3) ↼ aP
3

y := (𝑐3, v̂k,m𝐵, X2)
if NIZK.VfL2 (crs, y, 𝜋3) = 0 abort

(𝑐4, 𝜋4) ← VWER.EncR((v̂k,m𝐵), pdk)
aP

4
:= (𝑐4, 𝜋4)

pdk′ ← AONAttest (aP
4
)

if Q[m𝐵] = ⊥
𝑏0 := (pek, pdk′) ∈ R

else

𝜏 ← Q[m𝐵]
w2 ←WES.Dec(𝜏, 𝑐3)
w1 := w2 − w𝑟

𝜎𝑀 ← ADP.Adapt(𝜎,w1)

𝑏1 := D̂S.V̂f (v̂k,m𝐵, 𝜏) = 1

𝑏2 := Vf (vk𝑀 ,m𝑀 , 𝜎𝑀) = 0

return 𝑏0 ∨ (𝑏1 ∧ 𝑏2)

ONAttest (vk,m, 𝜎)
if Vf (vk,m, 𝜎) = 0 abort

𝜏 ← D̂S.Ŝig(ŝk,m𝐵)
Q[m] := 𝜏

return 𝜏

Figure 21: Seller security expanded with the interactions
described in our implementation.

Theorem 2 (Seller Security). Assume the VWER is one way,
NIZK is knowledge-sound and adaptor signature scheme is adaptable.
Then, our construction offers seller security according to Definition 4.

26

MixBuy: Contingent Payment in the Presence of Coin Mixers

ExpS𝐺1

Q := []

(v̂k, ŝk) ← D̂S.�KGen(1𝜆)
(pek, pdk) ← createR(1𝜆)

(ek, vk𝑀 ,m𝐵,m𝑀 , rP
1
) ← AONAttest (v̂k, pek)

(𝜎, 𝑐1, 𝜋1, X1) ↼ rP
1

y := (𝑐1, ek, X1)
if NIZK.VfL1 (crs, y, 𝜋1) = 0 abort

if ADP.PreVf (vk𝑀 ,m𝑀 , X1, 𝜎) = 0 abort

(X𝑟 ,w𝑟) ← createR(1𝜆)
X2 := X𝑟 ⊗ X1

𝑐𝑟 ← LHE.Enc(ek𝑀 ,w𝑟)
𝑐2 := 𝑐1 ◦ 𝑐𝑟
rP

2
:= (𝑐2, X2)

st𝑆 := (X2, X𝑟 ,w𝑟)

aP
3
← AONAttest (rP

2
)

(𝑐3, 𝜋3) ↼ aP
3

y := (𝑐3, v̂k,m𝐵, X2)
if NIZK.VfL2 (crs, y, 𝜋3) = 0 abort

(𝑐4, 𝜋4) ← VWER.EncR((v̂k,m𝐵), pdk)
aP

4
:= (𝑐4, 𝜋4)

pdk′ ← AONAttest (aP
4
)

if Q[m𝐵] = ⊥
𝑏0 := (pek, pdk′) ∈ R
if 𝑏0 abort

else

𝜏 ← Q[m𝐵]
w2 ←WES.Dec(𝜏, 𝑐3)
w1 := w2 − w𝑟

𝜎𝑀 ← ADP.Adapt(𝜎,w1)

𝑏1 := D̂S.V̂f (v̂k,m𝐵, 𝜏) = 1

𝑏2 := Vf (vk𝑀 ,m𝑀 , 𝜎𝑀) = 0

return 𝑏0 ∨ (𝑏1 ∧ 𝑏2)

Figure 22: Seller security game, identical to ExpS𝐺0 , except
for the highlighted grey lines. If condition 𝑏0 is satisfied, the
game aborts. The oracle is the same as in Fig. 21.

Proof. We require the following game hops in order to prove

our theorem:

Game ExpS𝐺0 . : This game, formally defined in Fig. 21, corre-

sponds to the original game for ExpS defined in Definition 4 The

game is expanded with the interactions described in our implemen-

tation.

Game ExpS𝐺1 . : This game, formally defined in Fig. 22, works

exactly as 𝐺0 but with the highlighted grey line. If condition 𝑏0 is

satisfied, the game aborts.

ExpS𝐺2

Q := []

(v̂k, ŝk) ← D̂S.�KGen(1𝜆)
(pek, pdk) ← createR(1𝜆)

(ek, vk𝑀 ,m𝐵,m𝑀 , rP
1
) ← AONAttest (v̂k, pek)

(𝜎, 𝑐1, 𝜋1, X1) ↼ rP
1

y := (𝑐1, ek, X1)
if NIZK.VfL1 (crs, y, 𝜋1) = 0 abort

if ADP.PreVf (vk𝑀 ,m𝑀 , X1, 𝜎) = 0 abort

(X𝑟 ,w𝑟) ← createR(1𝜆)
X2 := X𝑟 ⊗ X1

𝑐𝑟 ← LHE.Enc(ek𝑀 ,w𝑟)
𝑐2 := 𝑐1 ◦ 𝑐𝑟
rP

2
:= (𝑐2, X2)

st𝑆 := (X2, X𝑟 ,w𝑟)

aP
3
← AONAttest (rP

2
)

(𝑐3, 𝜋3) ↼ aP
3

y := (𝑐3, v̂k,m𝐵, X2)
if NIZK.VfL2 (crs, y, 𝜋3) = 0 abort

(𝑐4, 𝜋4) ← VWER.EncR((v̂k,m𝐵), pdk)
aP

4
:= (𝑐4, 𝜋4)

pdk′ ← AONAttest (aP
4
)

if Q[m𝐵] = ⊥
𝑏0 := (pek, pdk′) ∈ R
if 𝑏0 abort

else

𝜏 ← Q[m𝐵]
w2 ←WES.Dec(𝜏, 𝑐3)
if (X2,w2) ∉ R abort

w1 := w2 − w𝑟

𝜎𝑀 ← ADP.Adapt(𝜎,w1)

𝑏1 := D̂S.V̂f (v̂k,m𝐵, 𝜏) = 1

𝑏2 := Vf (vk𝑀 ,m𝑀 , 𝜎𝑀) = 0

return 𝑏0 ∨ (𝑏1 ∧ 𝑏2)

Figure 23: Seller security game, identical to ExpS𝐺1 , except
for the highlighted grey lines. If w1 is not the R of X1, the
game aborts.The oracle is the same as in Fig. 21.

Game ExpS𝐺2 . : This game, formally defined in Fig. 23, works

exactly as𝐺1 but with the highlighted grey line. If (X2,w2) ∉ R the

game aborts.

Game ExpS𝐺3 . : This game, formally defined in Fig. 24, works

exactly as𝐺2 but with the highlighted grey line. If (X1,w1) ∉ R the

game aborts.

27

Castejon-Molina et al.

ExpS𝐺3

Q := []

(v̂k, ŝk) ← D̂S.�KGen(1𝜆)
(pek, pdk) ← createR(1𝜆)

(ek, vk𝑀 ,m𝐵,m𝑀 , rP
1
) ← AONAttest (v̂k, pek)

(𝜎, 𝑐1, 𝜋1, X1) ↼ rP
1

y := (𝑐1, ek, X1)
if NIZK.VfL1 (crs, y, 𝜋1) = 0 abort

if ADP.PreVf (vk𝑀 ,m𝑀 , X1, 𝜎) = 0 abort

(X𝑟 ,w𝑟) ← createR(1𝜆)
X2 := X𝑟 ⊗ X1

𝑐𝑟 ← LHE.Enc(ek𝑀 ,w𝑟)
𝑐2 := 𝑐1 ◦ 𝑐𝑟
rP

2
:= (𝑐2, X2)

st𝑆 := (X2, X𝑟 ,w𝑟)

aP
3
← AONAttest (rP

2
)

(𝑐3, 𝜋3) ↼ aP
3

y := (𝑐3, v̂k,m𝐵, X2)
if NIZK.VfL2 (crs, y, 𝜋3) = 0 abort

(𝑐4, 𝜋4) ← VWER.EncR((v̂k,m𝐵), pdk)
aP

4
:= (𝑐4, 𝜋4)

pdk′ ← AONAttest (aP
4
)

if Q[m𝐵] = ⊥
𝑏0 := (pek, pdk′) ∈ R
if 𝑏0 abort

else

𝜏 ← Q[m𝐵]
w2 ←WES.Dec(𝜏, 𝑐3)
if (X2,w2) ∉ R abort

w1 := w2 − w𝑟

if (X1,w1) ∉ R abort

𝜎𝑀 ← ADP.Adapt(𝜎,w1)

𝑏1 := D̂S.V̂f (v̂k,m𝐵, 𝜏) = 1

𝑏2 := Vf (vk𝑀 ,m𝑀 , 𝜎𝑀) = 0

return 𝑏0 ∨ (𝑏1 ∧ 𝑏2)

Figure 24: Seller security game, identical to ExpS𝐺1 , except
for the highlighted grey lines. If w3 is not the R of X3, the
game aborts.The oracle is the same as in Fig. 21.

Claim 6. Let Bad1 be the event that ExpS𝐺1 aborts because 𝑏0 is
satisfied. Assume that the VWER is one way. Then Pr[Bad1 (1𝜆) =
1] ≤ negl(𝜆).

Proof. Assume by contradiction that there exists a PPT ad-

versary A such that Pr[Bad1 (1𝜆)] > negl(𝜆). We can construct

adversary B that uses A to break one wayness of VWER with the

following steps:

• B initializes the challenger of ExpOWA game and obtains v̂k
and pek.

• B invokes A on input v̂k and pek.
• A sends (ek, vk𝑀 ,m

𝐵
,m

𝑀
, rP

1
) to B.

• B parses rP
1
as (𝜎, 𝑐1, 𝜋1, X1) and sets y := (𝑐1, ek, X1).

• B checks the NIZK and the presignature. Since we assume that

A aborts on 𝑏0 and has all the information required to generate

valid proofs, B does not abort here.

• B computes (X𝑟 ,w𝑟) ← createR(1𝜆) and X2 := X2 ⊗ X1
• B computes 𝑐𝑟 ← LHE.Enc(ek𝑀 ,w𝑟) and 𝑐2 := 𝑐𝑟 ◦ 𝑐2.
• B sets rP

2
:= (𝑐2, X2) and st

𝑆
:= (X2, X𝑟 ,w𝑟).

• B invokesA on input rP
2
to obtain aP

3
, whichB parses to obtain

(𝑐3, 𝜋3).
• B checks the NIZK. Since we assume that A aborts on 𝑏0 and

has all the information required to generate valid proofs, B does

not abort here.

• B queries OEncR on message m
𝐵
to obtain (𝑐4, 𝜋4), which is

assigned as aP
4
.

• B invokesA on input aP
4
to obtain pdk′, which is forwarded to

the challenger.

Regarding ONAttest,B does not know ŝk and cannot run D̂S.Ŝig.
Therefore, B forwards these queries to OŜig. Note that this ensures
that the messages queried in both oracles are the same.

Our adversary B perfectly simulates ExpS𝐺1
to A. Moreover, it

is easy to see that B is a PPT algorithm. Now, if A is successful

in aborting in 𝑏0, this means that m
𝐵
is not on the memory of

Q, which implies that it is also not in the memory of OŜig. In
addition, only m

𝐵
is on the memory of OEncR. This ensures that

the intersection of the two memories is an empty set. Note that

condition 𝑏0 is equivalent to condition 𝑏1 of ExpOWA . Since our
assumption is that A aborts with no negligible probability, this

means that B wins ExpOWA with the same probability. However,

this contradicts our assumption that VWER is one way, so this

adversary does not exist. This claim has been proven and we can

conclude that ExpS𝐺0 ≈ ExpS𝐺1 □

Claim 7. Let Bad2 be the event that ExpS𝐺2 aborts because the
pair (X2,w2) ∉ R. Assume that the NIZK for L2 is secure under
knowledge-soundness. Then Pr[Bad2 (1𝜆) = 1] ≤ negl(𝜆).

Proof. Assume by contradiction that there exists a PPT ad-

versary A such that Pr[Bad2 (1𝜆)] > negl(𝜆). We can construct

adversary B that uses A to break break knowledge-soundness of

NIZK for L2 with the following steps:

• B initializes the challenger who sets the crs.
• B runs D̂S.�KGen(1𝜆) and createR(1𝜆) to obtain (v̂k, ŝk) and
(pek, pdk).

• B invokes A on input v̂k and pek.
• A sends (ek, vk𝑀 ,m

𝐵
,m

𝑀
, rP

1
) to B.

• B parses rP
1
as (𝜎, 𝑐1, 𝜋1, X1) and sets y := (𝑐1, ek, X1).

• B checks the NIZK and the presignature. Since we assume that

A aborts on the highlighted grey line and has all the information

required to generate valid proofs, B does not abort here.

• B computes (X𝑟 ,w𝑟) ← createR(1𝜆) and X2 := X2 ⊗ X1
• B computes 𝑐𝑟 ← LHE.Enc(ek𝑀 ,w𝑟) and 𝑐2 := 𝑐𝑟 ◦ 𝑐2.

28

MixBuy: Contingent Payment in the Presence of Coin Mixers

• B sets rP
2
:= (𝑐2, X2) and st

𝑆
:= (X2, X𝑟 ,w𝑟).

• B invokesA on input rP
2
to obtain aP

3
, whichB parses to obtain

(𝑐3, 𝜋3).
• B checks the NIZK. Since we assume that A aborts on 𝑏0 and

has all the information required to generate valid proofs, B does

not abort here.

• B computes VWER.EncR((v̂k,m
𝐵
), pdk), and assigns the result-

ing (𝑐4, 𝜋4) to aP
4
.

• B invokes A on input aP
4
to obtain pdk′.

• B extracts 𝜏 from Q[m
𝐵
] and uses it to decrypt 𝑐3 and obtain

w2.

• B forwards 𝑐3, v̂k, m𝐵
, X2 and 𝜋3 to the challenger.

Regarding ONAttest, B has all the information required to sim-

ulate it to A. Our adversary B perfectly simulates ExpS𝐺2
to A.

Moreover, it is easy to see that B is a PPT algorithm. Now, if A
makes the challenger abort on the grey line with non-negligible

probability, this means that the zero knowledge proof for L2 was
done for ((𝑐3, v̂k,m𝐵

, X2),w2) ∉ L2, while NIZK.VfL2
(crs, (𝑐3, v̂k,

m
𝐵
, X2), 𝜋3) = 1. However, this contradicts our assumption that

the NIZK used for L2 is knowledge sound, so this adversary does

not exist. This claim has been proven and we can conclude that

ExpS𝐺1 ≈ ExpS𝐺2
. □

Claim 8. Let Bad3 be the event that ExpS𝐺3 aborts because the
pair (X1,w1) ∉ R. Assume that the NIZK for L1 is secure under
knowledge-soundness. Then Pr[Bad3 (1𝜆) = 1] ≤ negl(𝜆).

Proof. Assume by contradiction that there exists a PPT ad-

versary A such that Pr[Bad3 (1𝜆)] > negl(𝜆). We can construct

adversary B that uses A to break knowledge-soundness of NIZK

for L1 with the following steps:

• B initializes the challenger who sets the crs.
• B runs D̂S.�KGen(1𝜆) and createR(1𝜆) to obtain (v̂k, ŝk) and
(pek, pdk).

• B invokes A on input v̂k and pek.
• A sends (ek, vk𝑀 ,m

𝐵
,m

𝑀
, rP

1
) to B.

• B parses rP
1
as (𝜎, 𝑐1, 𝜋1, X1) and sets y := (𝑐1, ek, X1).

• B checks the NIZK for L1 and the presignature. Since we as-

sume that A aborts on the highlighted grey line and has all the

information required to generate valid proofs, B does not abort

here.

• B computes (X𝑟 ,w𝑟) ← createR(1𝜆) and X2 := X2 ⊗ X1
• B computes 𝑐𝑟 ← LHE.Enc(ek𝑀 ,w𝑟) and 𝑐2 := 𝑐𝑟 ◦ 𝑐2.
• B sets rP

2
:= (𝑐2, X2) and st

𝑆
:= (X2, X𝑟 ,w𝑟).

• B invokesA on input rP
2
to obtain aP

3
, whichB parses to obtain

(𝑐3, 𝜋3).
• B checks the NIZK for L2. Since we assume that A aborts on

the grey line and has all the information required to generate

valid proofs, B does not abort here.

• B computes VWER.EncR((v̂k,m
𝐵
), pdk), and assigns the result-

ing (𝑐4, 𝜋4) to aP
4
.

• B invokes A on input aP
4
to obtain pdk′.

• B extracts 𝜏 from the memory using m
𝐵
as key. Uses 𝜏 as de-

cryption key for 𝑐3 to obtain w2. Since we assume that B aborts

because (X1,w1) ∉ R, this means that (X2,w2) ∈ R.

• B computes w1 := w2 − w𝑟 . Note that w1 is the same as A
encrypted in 𝑐1 for the same reasons as outlined in Theorem 6

since X2, 𝑐2 and X𝑟 are created by B honestly.

• B forwards 𝑐1, ek, X1 and 𝜋1 to the challenger.

Regarding ONAttest, B has all the information required to sim-

ulate it to A. Our adversary B perfectly simulates ExpS𝐺3
to A.

Moreover, it is easy to see that B is a PPT algorithm. Now, if A
makes the challenger abort on the grey line with non-negligible

probability, this means that the zero knowledge proof for L1 was
done for ((𝑐1, ek, X1),w1) ∉ L1, while NIZK.VfL1

(crs, (𝑐1, ek,
X1), 𝜋1) = 1. However, this contradicts our assumption that the

NIZK used for L1 is knowledge sound, so this adversary does

not exist. This claim has been proven and we can conclude that

ExpS𝐺2 ≈ ExpS𝐺3
. □

Claim 9. Assume that the adaptor signature scheme is secure under
adaptability. Then Pr[ExpS𝐺3 (1𝜆) = 1] ≤ negl(𝜆).

Proof. Assume by contradiction that there exists a PPT adver-

saryA such that Pr[ExpS𝐺3 (1𝜆) = 1] > negl(𝜆). We can construct

adversary B that usesA to break adaptability of the adaptor signa-

ture scheme with the following steps:

• B runs D̂S.�KGen(1𝜆) and createR(1𝜆) to obtain (v̂k, ŝk) and
(pek, pdk).

• B invokes A on input v̂k and pek.
• A sends (ek, vk𝑀 ,m

𝐵
,m

𝑀
, rP

1
) to B.

• B parses rP
1
as (𝜎, 𝑐1, 𝜋1, X1) and sets y := (𝑐1, ek, X1).

• B checks the NIZK forL1 and the presignature. Since we assume

that A wins the game and has all the information required to

generate valid proofs, B does not abort here.

• B computes (X𝑟 ,w𝑟) ← createR(1𝜆) and X2 := X2 ⊗ X1
• B computes 𝑐𝑟 ← LHE.Enc(ek𝑀 ,w𝑟) and 𝑐2 := 𝑐𝑟 ◦ 𝑐2.
• B sets rP

2
:= (𝑐2, X2) and st

𝑆
:= (X2, X𝑟 ,w𝑟).

• B invokesA on input rP
2
to obtain aP

3
, whichB parses to obtain

(𝑐3, 𝜋3).
• B checks the NIZK for L2. Since we assume that A wins the

game and has all the information required to generate valid

proofs, B does not abort here.

• B computes VWER.EncR((v̂k,m
𝐵
), pdk), and assigns the result-

ing (𝑐4, 𝜋4) to aP
4
.

• B invokes A on input aP
4
to obtain pdk′.

• B extracts 𝜏 from the memory using m
𝐵
as key. Uses 𝜏 as de-

cryption key for 𝑐3 to obtain w2

• B obtains w1 using w𝑟 and w2.

• B forwards X1, w1, 𝜎 , m𝑀
, vk𝑀 to the challenger.

Regarding ONAttest, B has all the information required to sim-

ulate it to A. Our adversary B perfectly simulates ExpS𝐺3
to A.

Moreover, it is easy to see that B is a PPT algorithm. Now, the

presignature is valid, as otherwise B would have aborted. How-

ever, since A wins the game with non-negligible probability, this

means that Adapt(𝜎,w1) produces a signature that does not verify
for m

𝑀
and vk𝑀 . Therefore, if B forwards X1, w1, 𝜎 , m𝑀

, vk𝑀 to

the challenger, this wins the adaptability game with non-negligible

probability. However, this contradicts our assumption that the adap-

tor signature scheme guarantees adaptability, so this adversary does

not exist. This claim has been proven. □

29

Castejon-Molina et al.

ExpB𝐺0

Q := []

(v̂k, ŝk) ← D̂S.�KGen(1𝜆)
(vk𝐵, sk𝐵) ← KGen(1𝜆)

(𝜎∗𝐵, pek,m𝐵, aP4) ← A
OSigNAttest (vk𝐵, v̂k)

if Q[m𝐵] = ⊥
𝑏0 := (Vf (vk𝐵,m𝐵, 𝜎

∗
𝐵) = 1)

else

𝜏 ← Q[m𝐵]
(𝑐4, 𝜋4) ↼ aP

4

pdk := VWER.DecR(𝜏, 𝑐4, 𝜋4)

𝑏1 := VWER.VfEncR(𝑐4, 𝜋4, (v̂k,m𝐵), pek)

𝑏2 := D̂S.V̂f (v̂k,m𝐵, 𝜏)
𝑏3 := (pek, pdk) ∉ R

return 𝑏0 ∨ (𝑏1 ∧ 𝑏2 ∧ 𝑏3)

OSigNAttest (m)
𝜎𝐵 ← Sig(sk𝐵,m)

𝜏 ← D̂S.Ŝig(ŝk,m𝐵)
Q[m] := 𝜏

return (𝜎𝐵, 𝜏)

Figure 25: Buyer security expanded with the interactions
described in our implementation.

We have proved that ExpS𝐺0 ≈ ExpS𝐺3
. We have also proved

that Pr[ExpS𝐺3 (1𝜆) = 1] ≤ negl(𝜆). Therefore, Theorem 2 has

been proven. □

Theorem 3 (Buyer Security). Assume the signature scheme is
EUF-CMA and VWER provides VWER verifiability. Then, our con-
struction offers buyer security according to Definition 5.

Proof. We consider the following game hops:

Game ExpB𝐺0
: This game, formally defined in Fig. 25, corre-

sponds to the original game for ExpB defined in Definition 5. The

game is expanded with the interactions described in our implemen-

tation.

Game ExpB𝐺1
: This game, formally defined in Fig. 26, works ex-

actly as𝐺0 but with highlighted grey line. If the adversary satisfies

condition 𝑏0, the game aborts.

Claim 10. Let Bad1 be the event that ExpB𝐺1 aborts on the high-
lighted grey line. Assume that the digital signature scheme is unforge-
able. Then Pr[Bad1 (1𝜆) = 1] ≤ negl(𝜆).

Proof. Assume by contradiction that there is a PPT adversary

A such that Pr[Bad1 (1𝜆)] > negl(𝜆), then we can construct a PPT

adversary B that usesA to break unforgeability of digital signature

with the following steps:

• B receives vk𝐵 from challenger.

ExpB𝐺1

Q := []

(v̂k, ŝk) ← D̂S.�KGen(1𝜆)
(vk𝐵, sk𝐵) ← KGen(1𝜆)

(𝜎∗𝐵, pek,m𝐵, aP4) ← A
OSigNAttest (vk𝐵, v̂k)

if Q[m𝐵] = ⊥
𝑏0 := (Vf (vk𝐵,m𝐵, 𝜎

∗
𝐵) = 1)

if 𝑏0 abort

else

𝜏 ← Q[m𝐵]
(𝑐4, 𝜋4) ↼ aP

4

pdk := VWER.DecR(𝜏, 𝑐4, 𝜋4)

𝑏1 := VWER.VfEncR(𝑐4, 𝜋4, (v̂k,m𝐵), pek)

𝑏2 := D̂S.V̂f (v̂k,m𝐵, 𝜏)
𝑏3 := (pek, pdk) ∉ R

return 𝑏0 ∨ (𝑏1 ∧ 𝑏2 ∧ 𝑏3)

OSigNAttest (m)
𝜎𝐵 ← Sig(sk𝐵,m)

𝜏 ← D̂S.Ŝig(ŝk,m𝐵)
Q[m] := 𝜏

return (𝜎𝐵, 𝜏)

Figure 26: Buyer security game, identical to ExpB𝐺0 , except
for the highlighted grey line. If condition 𝑏0 is satisfied, the
game aborts.

• B runs (v̂k, ŝk) ← D̂S.�KGen(1𝜆).
• B invokes A on input v̂k and vk𝐵 .
• A sends (𝜎∗

𝐵
, pek,m

𝐵
, aP

4
) to B.

• B forwards 𝜎∗
𝐵
and m

𝐵
to the challenger.

To simulate OSigNAttest, B needs to invoke oracle OSig of the

EUF-CMA challenger. This ensures that Q and the memory of EUF-

CMA are synchronized. For the other signature, D̂S.Ŝig, B can

generate the 𝜏 locally.

Our adversaryB perfectly simulates ExpB𝐺1
toA. Moreover, it is

easy to see thatB is a PPT algorithm. Now, ifA has Pr[Bad1 (1𝜆)] >
negl(𝜆), this means that Vf (vk𝐵,m𝐵

, 𝜎∗
𝐵
) = 1 and that m

𝐵
has

not been queried in OSigNAttest. Since the memories of oracles

OSigNAttest and OSig are synchronized, these two conditions are

equivalent to the wining conditions of EUF-CMA game. However,

this contradicts our assumption that the signature scheme is EUF-

CMA secure, so A does not exist and this claim has been proven.

We can conclude that ExpB𝐺0 ≈ ExpB𝐺1 □

Claim 11. Assume that VWER satisfies VWER Verifiability. Then
Pr[ExpB𝐺1 (1𝜆) = 1] ≤ negl.

Proof. Assume by contradiction that there is a PPT adversary

A such that Pr[ExpB𝐺1 (1𝜆) = 1] > negl(𝜆), then we can construct

30

MixBuy: Contingent Payment in the Presence of Coin Mixers

a PPT adversary B that uses A to break VWER Verifiability of

VWER with the following steps:

• B runs (v̂k, ŝk) ← D̂S.�KGen(1𝜆).
• B runs (vk𝐵, sk𝐵) ← KGen(1𝜆).
• B invokes A on input v̂k and vk𝐵 .
• A sends (𝜎∗

𝐵
, pek,m

𝐵
, aP

4
) to B.

• B extracts (𝑐4, 𝜋4) from aP
4
and 𝜏 from Q[m

𝐵
].

• B runs pdk← VWER.DecR(𝜏, 𝑐4, 𝜋4).
• B forwards (m

𝐵
, v̂k, 𝜏, 𝑐4, 𝜋4, pek) to the challenger.

To simulate OSigNAttest, B uses ŝk and sk𝐵 .
Our adversary B perfectly simulates ExpB𝐺1

to A. Moreover, it

is easy to see that B is a PPT algorithm. Now, if A wins ExpB𝐺1

with no negligible probability, this means that (𝑐4, 𝜋4) verifies
(VWER.VfEncR) for(v̂k,m

𝐵
, pek), the attestation 𝜏 is valid for mes-

sage m
𝐵
and the notary’s key v̂k; and (pek, pdk) ∉ R. Note that

these three conditions are the same conditions as those in ExpVerA ,
therefore, winning ExpB𝐺1

with no negligible probability implies

winning ExpVerA also with no negligible proability. However, this

contradicts our assumption that the VWER achieves VWER verifia-

bility, so A does not exist and this claim has been proven. □

We have proved that ExpB𝐺0 ≈ ExpB𝐺1
. We have also proved

that Pr[ExpB𝐺1 (1𝜆) = 1] ≤ negl(𝜆). Therefore, Theorem 3 has

been proven. □

Theorem 5 (Unlinkability). Assume that createR samples at
random from a uniform distribution. Then, our construction offers
unlinkability according to Definition 7.

Proof. We consider the following game hops:

Game ExpLink𝐺0 . : This game, formally defined in Fig. 27, corre-

sponds to the original game for unlinkability defined in Definition 7

The game is expanded with the interactions described in our imple-

mentation.

Game ExpLink𝐺1 . : This game, formally defined in Fig. 28, works

exactly as 𝐺0 but the adversary provides the bit after receiving the

signatures from the buyer.

Game ExpLink𝐺2 . : This game, formally defined in Fig. 29, works

exactly as𝐺1 but with highlighted grey lines. Instead of randomiz-

ing the ciphertexts with a randomly sampledwitnesses, 𝑐2 is directly

calculated as the encryption of a randomly sampled element from

a uniform distribution.

Claim 12. Let Bad1 be the event that:���� Pr[ExpLink𝐺0 (𝜆) = 1]
− Pr[ExpLink𝐺1 (𝜆) = 1]

���� > negl

Proof. The difference between the games is that in ExpLink𝐺0

the challenger provides the pair (𝜎0
𝑀
, 𝜎1

𝑀
) or ⊥ to the adversary,

while in ExpLink𝐺1
, this information is not shared with the adver-

sary. However, note that the adversary knows w0

1
and w1

1
and has

generated the presignatures using X0
1
and X1

1
. Therefore, in both

games the adversary is able to generate on its own the same pair

(𝜎0
𝑀
, 𝜎1

𝑀
) that the challenger would have provided. Therefore, the

ExpLink𝐺0

(vk0𝐵, sk
0

𝐵) ← KGen(1𝜆) ; (vk1𝐵, sk
1

𝐵) ← KGen(1𝜆)

(ek, v̂k, vk0𝑀 , vk1𝑀 , rP0
1
, rP1

1
, (m0

𝑀 ,m0

𝐵), (m
1

𝑀 ,m1

𝐵)) ← A(vk
0

𝐵, vk
1

𝐵)
𝑏 ← {0, 1}
(𝜎0, 𝑐0

1
, 𝜋0

1
, X0

1
) ↼ rP0

1
; (𝜎1, 𝑐1

1
, 𝜋1

1
, X1

1
) ↼ rP1

1

if NIZK.VfL1 (crs, (𝑐
0

1
, ek, X0

1
), 𝜋0

1
) = 0 abort

if NIZK.VfL1 (crs, (𝑐
1

1
, ek, X1

1
), 𝜋1

1
) = 0 abort

if ADP.PreVf (vk0𝑀 ,m0

𝑀 , X0
1
, 𝜎0) = 0 abort

if ADP.PreVf (vk1𝑀 ,m1

𝑀 , X1
1
, 𝜎1) = 0 abort

(X0𝑟 ,w0

𝑟) ← createR(1𝜆) ; (X1𝑟 ,w1

𝑟) ← createR(1𝜆)
X0
2
:= X0𝑟 ⊗ X0

1
; X1

2
:= X1𝑟 ⊗ X1

1

𝑐0𝑟 ← Enc(ek𝑀 ,w0

𝑟) ; 𝑐1𝑟 ← Enc(ek𝑀 ,w1

𝑟)
𝑐0
2
:= 𝑐0

1
◦ 𝑐0

2
; 𝑐1

2
:= 𝑐1

1
◦ 𝑐1

2

rP0
2
:= (𝑐0

2
, X0

2
) ; rP1

2
:= (𝑐1

2
, X1

2
)

st0𝑆 := (X0
2
, X0𝑟 ,w

0

𝑟) ; st1𝑆 := (X1
2
, X1𝑟 ,w

1

𝑟)

(aP0
3
, aP1

3
) ← A(rP0⊕𝑏

2
, rP1⊕𝑏

2
)

(𝑐0
3
, 𝜋0

3
) ↼ aP0

3
; (𝑐1

3
, 𝜋1

3
) ↼ aP1

3

if NIZK.VfL2 (crs, (𝑐
0

3
, v̂k,m0

𝐵, X
0⊕𝑏
2

, 𝜋0⊕𝑏
3
) = 0) abort

if NIZK.VfL2 (crs, (𝑐
1

3
, v̂k,m1

𝐵, X
1⊕𝑏
2

, 𝜋1⊕𝑏
3
) = 0 abort

𝜎0

𝐵 ← Sig(sk0𝐵,m
0

𝐵) ; 𝜎
1

𝐵 ← Sig(sk1𝐵,m
1

𝐵)
(𝜏0, 𝜏1) ← A(𝜎0

𝐵, 𝜎
1

𝐵)

w0⊕𝑏
2
←WES.Dec(𝜏0, 𝑐0

3
) ; w1⊕𝑏

2
←WES.Dec(𝜏1, 𝑐1

3
)

w0⊕𝑏
1

:= w0⊕𝑏
2
− w0⊕𝑏

𝑟 ; w1⊕𝑏
1

:= w1⊕𝑏
2
− w1⊕𝑏

𝑟

𝜎0⊕𝑏
𝑀
← ADP.Adapt(𝜎0⊕𝑏 ,w0⊕𝑏

1
)

𝜎1⊕𝑏
𝑀
← ADP.Adapt(𝜎1⊕𝑏 ,w1⊕𝑏

1
)

if (Vf (vk0𝑀 ,m0

𝑀 , 𝜎0

𝑀) = 0) ∨ (Vf (vk1𝑀 ,m1

𝑀 , 𝜎1

𝑀) = 0)
𝜎0

𝑀 = 𝜎1

𝑀 = ⊥
𝑏′ ← A(𝜎0

𝑀 , 𝜎1

𝑀)
return (𝑏 = 𝑏′)

Figure 27: unlinkability property expanded with the interac-
tions described in our implementation.

adversary in ExpLink𝐺0
and ExpLink𝐺1

has the same information,

so ExpLink𝐺0 ≈ ExpLink𝐺1
. □

Claim 13. Let Bad2 be the event that:���� Pr[ExpLink𝐺1 (𝜆) = 1]
− Pr[ExpLink𝐺2 (𝜆) = 1]

���� > negl

Assume that createR randomly samples from a uniform distribution.
Then Pr[Bad2 (1𝜆) = 1] ≤ negl(𝜆).

Proof. The difference between the two games is whether w2

was randomly sampled from a uniform distribution or if it is w1

31

Castejon-Molina et al.

ExpLink𝐺1

(vk0𝐵, sk
0

𝐵) ← KGen(1𝜆) ; (vk1𝐵, sk
1

𝐵) ← KGen(1𝜆)

(ek, v̂k, vk0𝑀 , vk1𝑀 , rP0
1
, rP1

1
, (m0

𝑀 ,m0

𝐵), (m
1

𝑀 ,m1

𝐵)) ← A(vk
0

𝐵, vk
1

𝐵)
𝑏 ← {0, 1}
(𝜎0, 𝑐0

1
, 𝜋0

1
, X0

1
) ↼ rP0

1
; (𝜎1, 𝑐1

1
, 𝜋1

1
, X1

1
) ↼ rP1

1

if NIZK.VfL1 (crs, (𝑐
0

1
, ek, X0

1
), 𝜋0

1
) = 0 abort

if NIZK.VfL1 (crs, (𝑐
1

1
, ek, X1

1
), 𝜋1

1
) = 0 abort

if ADP.PreVf (vk0𝑀 ,m0

𝑀 , X0
1
, 𝜎0) = 0 abort

if ADP.PreVf (vk1𝑀 ,m1

𝑀 , X1
1
, 𝜎1) = 0 abort

(X0𝑟 ,w0

𝑟) ← createR(1𝜆) ; (X1𝑟 ,w1

𝑟) ← createR(1𝜆)
X0
2
:= X0𝑟 ⊗ X0

1
; X1

2
:= X1𝑟 ⊗ X1

1

𝑐0𝑟 ← Enc(ek𝑀 ,w0

𝑟) ; 𝑐1𝑟 ← Enc(ek𝑀 ,w1

𝑟)
𝑐0
2
:= 𝑐0

1
◦ 𝑐0

2
; 𝑐1

2
:= 𝑐1

1
◦ 𝑐1

2

rP0
2
:= (𝑐0

2
, X0

2
) ; rP1

2
:= (𝑐1

2
, X1

2
)

st0𝑆 := (X0
2
, X0𝑟 ,w

0

𝑟) ; st1𝑆 := (X1
2
, X1𝑟 ,w

1

𝑟)

(aP0
3
, aP1

3
) ← A(rP0⊕𝑏

2
, rP1⊕𝑏

2
)

(𝑐0
3
, 𝜋0

3
) ↼ aP0

3
; (𝑐1

3
, 𝜋1

3
) ↼ aP1

3

if NIZK.VfL2 (crs, (𝑐
0

3
, v̂k,m0

𝐵, X
0⊕𝑏
2

, 𝜋0⊕𝑏
3
) = 0) abort

if NIZK.VfL2 (crs, (𝑐
1

3
, v̂k,m1

𝐵, X
1⊕𝑏
2

, 𝜋1⊕𝑏
3
) = 0 abort

𝜎0

𝐵 ← Sig(sk0𝐵,m
0

𝐵) ; 𝜎
1

𝐵 ← Sig(sk1𝐵,m
1

𝐵)
𝑏′ ← A(𝜎0

𝐵
, 𝜎1

𝐵
)

return (𝑏 = 𝑏′)

Figure 28: unlinkability game, identical to ExpLink𝐺0 , except
for the highlighted grey lines: the adversary provides the bit
after receiving the signatures from the buyer.

masked with w𝑟 , which is randomly sampled from the same uni-

form distribution. If we assume that createR samples from a uni-

form distribution, both instances are statistically indistinguish-

able. Therefore, Pr[Bad2 (1𝜆) = 1] ≤ negl(𝜆) and ExpLink𝐺1 ≈
ExpLink𝐺2

. □

Since ExpLink𝐺0 ≈ ExpLink𝐺2
, we only have left to quantify

the probability of winning ExpLink𝐺2
. The probability of winning

ExpLink𝐺2
is equivalent to distinguish in which order to uniformly

random elements were sampled from a uniform distribution. There-

fore, Pr[ExpLink𝐺2 = 1] ≤ 1

/2 + negl(𝜆), which satisfies the unlink-

ability notion as defined in Definition 7. This concludes the proof

for Theorem 5. □

E Construction and Security Proofs of VWER
Here we present a concrete construction of VWER encrypting the

discrete logarithm of a group element. Our construction relies on

the following cryptographic blocks:

• A digital signature scheme D̂S = (�KGen, Ŝig, V̂f) instantiated as

the BLS digital signature scheme.

ExpLink𝐺2

(vk0𝐵, sk
0

𝐵) ← KGen(1𝜆) ; (vk1𝐵, sk
1

𝐵) ← KGen(1𝜆)

(ek, v̂k, vk0𝑀 , vk1𝑀 , rP0
1
, rP1

1
, (m0

𝑀 ,m0

𝐵), (m
1

𝑀 ,m1

𝐵)) ← A(vk
0

𝐵, vk
1

𝐵)
𝑏 ← {0, 1}
(𝜎0, 𝑐0

1
, 𝜋0

1
, X0

1
) ↼ rP0

1
; (𝜎1, 𝑐1

1
, 𝜋1

1
, X1

1
) ↼ rP1

1

if NIZK.VfL1 (crs, (𝑐
0

1
, ek, X0

1
), 𝜋0

1
) = 0 abort

if NIZK.VfL1 (crs, (𝑐
1

1
, ek, X1

1
), 𝜋1

1
) = 0 abort

if ADP.PreVf (vk0𝑀 ,m0

𝑀 , X0
1
, 𝜎0) = 0 abort

if ADP.PreVf (vk1𝑀 ,m1

𝑀 , X1
1
, 𝜎1) = 0 abort

(X0𝑟 ,w0

𝑟) ← createR(1𝜆) ; (X1𝑟 ,w1

𝑟) ← createR(1𝜆)

(X0
2
,w0

2
) ← createR(1𝜆) ; (X1

2
,w1

2
) ← createR(1𝜆)

𝑐0
2
← Enc(ek𝑀 ,w0

2
) ; 𝑐1

2
← Enc(ek𝑀 ,w1

2
)

rP0
2
:= (𝑐0

2
, X0

2
) ; rP1

2
:= (𝑐1

2
, X1

2
)

st0𝑆 := (X0
2
, X0𝑟 ,w

0

𝑟) ; st1𝑆 := (X1
2
, X1𝑟 ,w

1

𝑟)

(aP0
3
, aP1

3
) ← A(rP0⊕𝑏

2
, rP1⊕𝑏

2
)

(𝑐0
3
, 𝜋0

3
) ↼ aP0

3
; (𝑐1

3
, 𝜋1

3
) ↼ aP1

3

if NIZK.VfL2 (crs, (𝑐
0

3
, v̂k,m0

𝐵, X
0⊕𝑏
2

, 𝜋0⊕𝑏
3
) = 0) abort

if NIZK.VfL2 (crs, (𝑐
1

3
, v̂k,m1

𝐵, X
1⊕𝑏
2

, 𝜋1⊕𝑏
3
) = 0 abort

𝜎0

𝐵 ← Sig(sk0𝐵,m
0

𝐵) ; 𝜎
1

𝐵 ← Sig(sk1𝐵,m
1

𝐵)
𝑏′ ← A(𝜎0

𝐵, 𝜎
1

𝐵)
return (𝑏 = 𝑏′)

Figure 29: unlinkability game, identical to ExpLink𝐺1 , except
for the highlighted grey lines. Instead of randomizing the
ciphertext received by the adversary, the new plaintext that
are encrypted and sent are sampled directly from a uniform
distribution.

• A witness encryption based on signatures WES := (Enc, Dec)
presented in [52].

We provide the details of the construction in Fig. 30. 𝐻 denotes

the random oracle used in The Fiat-Shamir heuristic, 𝛾 is the statis-

tical parameter defining the numbers of ciphertexts required by the

cut-and-choose techinque, 𝑆op and 𝑆unop denote the set of opened

and unopened values outputted by algorithm EncR, respectively.

E.1 Correctness and Security Proofs
Theorem 7. Our VWER construction is correct according to Defi-

nition 13.

Proof. Let (𝑐, 𝜋) ← EncR((v̂k, m̂),w). To prove correctness we
first need to show that

Pr[VfEncR(𝑐, 𝜋, (v̂k, m̂), X) = 1] = 1

Note that algorithm VfEncR will output 0 if one of the following

occurs.

(1) If 𝑏𝑖 = 1 and 𝑐𝑖 ≠ WES.Enc((v̂k, m̂), 𝑟𝑖 ; 𝑟 ′𝑖). Provided the en-

cryption is done correctly, this cannot occur.

32

MixBuy: Contingent Payment in the Presence of Coin Mixers

Public parameters: (G, 𝑔, 𝑞,𝛾, 𝐻)

EncR((v̂k, m̂),w)
𝑆op := ∅ ; 𝑆unop := ∅
for 𝑖 ∈ [1, 𝛾] :

𝑟𝑖
$← Z𝑞 ; 𝑅𝑖 := 𝑔𝑟𝑖

𝑐𝑖 := WES.Enc((v̂k, m̂), 𝑟𝑖 ; 𝑟 ′𝑖)
// where 𝑟 ′𝑖 are the random coins used inWES.Enc.

(𝑏1, 𝑏2, ..., 𝑏𝛾) := 𝐻 ((𝑐𝑖 , 𝑅𝑖)𝑖∈ [1,𝛾])
for 𝑖 ∈ [1, 𝛾] :
if 𝑏𝑖 = 1 then

𝑆op := 𝑆op ∪ { (𝑖, 𝑟𝑖 , 𝑟 ′𝑖) }
if 𝑏𝑖 = 0 then

𝑠𝑖 := 𝑟𝑖 + w
𝑆unop := 𝑆unop ∪ { (𝑖, 𝑠𝑖 , 𝑐𝑖) }

return 𝑐 := {𝑐𝑖 }𝑖∈ [1,𝛾] , 𝜋 := {𝑆op, 𝑆unop, {𝑅𝑖 }𝑖∈ [1,𝛾] }

VfEncR(𝑐, 𝜋, (v̂k, m̂), X)
{𝑐𝑖 }𝑖∈ [1,𝛾] ↼ 𝑐 ; {𝑆op, 𝑆unop, {𝑅𝑖 }𝑖∈ [1,𝛾] } ↼ 𝜋

(𝑏1, 𝑏2, ..., 𝑏𝛾) := 𝐻 ((𝑐𝑖 , 𝑅𝑖)𝑖∈ [1,𝛾])
for 𝑖 ∈ [1, 𝛾] :

if 𝑏𝑖 = 1 then

Check that (𝑖, 𝑟𝑖 , 𝑟 ′𝑖) ∈ 𝑆op
Check that 𝑐𝑖 = WES.Enc((v̂k, m̂), 𝑟𝑖 ; 𝑟 ′𝑖)

if 𝑏𝑖 = 0 then

Check that (𝑖, 𝑠𝑖 , 𝑐𝑖) ∈ 𝑆unop
Check that 𝑔𝑠𝑖 = 𝑅𝑖 ⊗ X

if Any of the checks fail return 0, else return 1

DecR(𝜎, 𝑐, 𝜋)
{𝑐𝑖 }𝑖∈ [1,𝛾] ↼ 𝑐 ; {𝑆op, 𝑆unop, {𝑅𝑖 }𝑖∈ [1,𝛾] } ↼ 𝜋

foreach (𝑖, 𝑠𝑖 , 𝑐𝑖) ∈ 𝑆unop
𝑟𝑖 := WES.Dec(𝜎, 𝑐𝑖)

There exists at least one 𝑟𝑎 s.t. 𝑅𝑎 = 𝑔𝑟𝑎

w∗ := 𝑠𝑎 − 𝑟𝑎
return w∗

Figure 30: Construction for VWER.

(2) If 𝑏𝑖 = 0 and 𝑔𝑠𝑖 ≠ 𝑅𝑖 ⊗ X. By construction we have 𝑠𝑖 := 𝑟𝑖 +w.

This implies 𝑔𝑠𝑖 = 𝑔𝑟𝑖 ⊗ 𝑔w = 𝑅𝑖 ⊗ X and therefore this case

never occurs.

Next we need to show that if we have V̂f (v̂k, m̂, 𝜎) = 1, then

Pr[(X,DecR(𝜎, 𝑐, 𝜋)) ∈ R] = 1

We are given that V̂f (v̂k, m̂, 𝜎) = 1. For all 𝑏𝑖 = 0 we have

𝑟𝑖 := WES.Dec(𝜎, 𝑐𝑖). By the correctness property ofWES we can
correctly compute all 𝑟𝑖 . Each 𝑟𝑖 is associated to a tuple (𝑖, 𝑠𝑖 , 𝑐𝑖). By
construction it is guaranteed that 𝑅𝑖 = 𝑔𝑟𝑖 . Pick any 𝑟𝑖 and let’s call

ExpOW𝐺0

A
Q := Q := ∅

(v̂k, ŝk) ← �KGen(1𝜆)
(X,w) ← createR(1𝜆)

w∗ ← AOŜig,OEncR (v̂k, X)
𝑏 := (X,w∗) ∈ R
return 𝑏

OŜig(m̂)
if m̂ ∈ Q abort

Q := Q ∪ m̂

𝜎 ← Ŝig(ŝk, m̂)
return

OEncR(m̂)
if m̂ ∈ Q abort

Q := Q ∪ m̂
𝑆op = 𝑆unop := ∅
for 𝑖 ∈ [0, 𝛾] :

𝑟𝑖
$← Z𝑞 ; 𝑅𝑖 := 𝑔𝑟𝑖

𝑐𝑖 := WES.Enc((v̂k, m̂), 𝑟𝑖 ; 𝑟 ′𝑖)
(𝑏1, 𝑏2, ..., 𝑏𝛾) := 𝐻 ((𝑐𝑖 , 𝑅𝑖)𝑖∈ [0,𝛾])
for 𝑖 ∈ [0, 𝛾] :

if 𝑏𝑖 = 1 then

𝑆op := 𝑆op ∪ { (𝑖, 𝑟𝑖 , 𝑟 ′𝑖) }
if 𝑏𝑖 = 0 then

𝑠𝑖 := 𝑟𝑖 + w
𝑆unop := 𝑆unop ∪ { (𝑖, 𝑠𝑖 , 𝑐𝑖) }

𝑐 := {𝑐𝑖 }𝑖∈ [0,𝛾]
𝜋 := {𝑆op, 𝑆unop, {𝑅𝑖 }𝑖∈ [0,𝛾] }
return (𝑐, 𝜋)

Figure 31: Definition of the experiment ExpOW𝐺0

A .

it 𝑟𝑎 , since by construction 𝑠𝑎 := 𝑟𝑎 + w, we can always compute

w∗ := 𝑠𝑎 − 𝑟𝑎 . Therefore, (X,w∗) ∉ R never occurs. □

Theorem 8. Assume thatWES is IND-CPA and the discrete loga-
rithm problem is hard. Then our protocol offers VWER one wayness
according to Definition 14.

Proof. We require the following game hops in order to prove

our claim:

Game ExpOW𝐺0

A : This game, formally defined in Fig. 31, corre-

sponds to the original game for VWER one wayness defined in Def-

inition 14. The game is expanded with the interactions described

in our construction.

33

Castejon-Molina et al.

ExpOW𝐺1

A
Q := Q := ∅

(v̂k, ŝk) ← �KGen(1𝜆)
(X,w) ← createR(1𝜆)

w∗ ← AOŜig,OEncR (v̂k, X)
𝑏 := (X,w∗) ∈ R
return 𝑏

OŜig(m̂)
if m̂ ∈ Q abort

Q := Q ∪ m̂

𝜎 ← Ŝig(ŝk, m̂)
return

OEncR(m̂)
if m̂ ∈ Q abort

Q := Q ∪ m̂
𝑆op = 𝑆unop := ∅
for 𝑖 ∈ [0, 𝛾] :

𝑟𝑖
$← Z𝑞 ; 𝑅𝑖 := 𝑔𝑟𝑖

𝑐𝑖 := WES.Enc((v̂k, m̂), 𝑟𝑖 ; 𝑟 ′𝑖)
(𝑏1, 𝑏2, ..., 𝑏𝛾) ← {0, 1}𝛾

for 𝑖 ∈ [0, 𝛾] :
if 𝑏𝑖 = 1 then

𝑆op := 𝑆op ∪ { (𝑖, 𝑟𝑖 , 𝑟 ′𝑖) }
if 𝑏𝑖 = 0 then

𝑠𝑖 := 𝑟𝑖 + w
𝑆unop := 𝑆unop ∪ { (𝑖, 𝑠𝑖 , 𝑐𝑖) }

𝑐 := {𝑐𝑖 }𝑖∈ [0,𝛾]
𝜋 := {𝑆op, 𝑆unop, {𝑅𝑖 }𝑖∈ [0,𝛾] }
return (𝑐, 𝜋)

Figure 32: Definition of the experiment ExpOW𝐺1

A .

Game ExpOW𝐺1

A : This game, formally defined in Fig. 32, works

exactly as 𝐺0 but with the highlighted grey line. For the oracle

query OEncR the random oracle 𝐻 is simulated by lazy sampling,

a random bit string (𝑏1, 𝑏2, ..., 𝑏𝛾) is sampled and the output of the

random oracle on the ciphertexts 𝑐𝑖 and 𝑅𝑖 is set to it. Since the

output of the random oracle is supposed to be random, ExpOW𝐺0

A
and ExpOW𝐺1

A are indistinguishable.

Game ExpOW𝐺2

A : This game, formally defined in Fig. 33, works

exactly as𝐺0 but with the highlighted grey line. For the oracle query

OEncR, for the ciphertexts 𝑐𝑖 of 𝑆unop (i.e., 𝑏𝑖 = 0) are replaced by

encryptions of 0.

Game ExpOW𝐺3

A : This game, formally defined in Fig. 34, works

exactly as 𝐺1 but with the highlighted grey line. Fore the oracle

ExpOW𝐺2

A
Q := Q := ∅

(v̂k, ŝk) ← �KGen(1𝜆)
(X,w) ← createR(1𝜆)

w∗ ← AOŜig,OEncR (v̂k, X)
𝑏 := (X,w∗) ∈ R
return 𝑏

OŜig(m̂)
if m̂ ∈ Q abort

Q := Q ∪ m̂

𝜎 ← Ŝig(ŝk, m̂)
return

OEncR(m̂)
if m̂ ∈ Q abort

Q := Q ∪ m̂
𝑆op = 𝑆unop := ∅
for 𝑖 ∈ [0, 𝛾] :

𝑟𝑖
$← Z𝑞 ; 𝑅𝑖 := 𝑔𝑟𝑖

(𝑏1, 𝑏2, ..., 𝑏𝛾) ← {0, 1}𝛾

for 𝑖 ∈ [0, 𝛾] :
if 𝑏𝑖 = 1 then

𝑐𝑖 := WES.Enc((v̂k, m̂), 𝑟𝑖 ; 𝑟 ′𝑖)
𝑆op := 𝑆op ∪ { (𝑖, 𝑟𝑖 , 𝑟 ′𝑖) }

if 𝑏𝑖 = 0 then

𝑠𝑖 := 𝑟𝑖 + w

𝑐𝑖 := WES.Enc((v̂k, m̂), 0)
𝑆unop := 𝑆unop ∪ { (𝑖, 𝑠𝑖 , 𝑐𝑖) }

𝑐 := {𝑐𝑖 }𝑖∈ [0,𝛾]
𝜋 := {𝑆op, 𝑆unop, {𝑅𝑖 }𝑖∈ [0,𝛾] }
return (𝑐, 𝜋)

Figure 33: Definition of the experiment ExpOW𝐺2

A .

query OEncR, 𝑏𝑖 = 0 the variables 𝑠𝑖 are randomly smapled as

𝑠𝑖 ← Z𝑞 and 𝑅𝑖 is computed as 𝑅𝑖 :=
𝑔𝑠𝑖

X . The distribution of 𝑠𝑖 and

𝑅𝑖 are identical to the previous hybrid and therefore ExpOW𝐺2

A and

ExpOW𝐺2

A are indistinguishable.

Claim 14. Let Bad1 be the event that:����� Pr[ExpOW𝐺1

A (𝜆) = 1]
− Pr[ExpOW𝐺2

A (𝜆) = 1]

����� > negl

Assume that WES used in OEncR is IND-CPA secure. Then:

Pr[Bad1 (1𝜆) = 1] ≤ negl(𝜆)
34

MixBuy: Contingent Payment in the Presence of Coin Mixers

ExpOW𝐺3

A
Q := Q := ∅

(v̂k, ŝk) ← �KGen(1𝜆)
(X,w) ← createR(1𝜆)

w∗ ← AOŜig,OEncR (v̂k, X)
𝑏 := (X,w∗) ∈ R
return 𝑏

OŜig(m̂)
if m̂ ∈ Q abort

Q := Q ∪ m̂

𝜎 ← Ŝig(ŝk, m̂)
return

OEncR(m̂)
if m̂ ∈ Q abort

Q := Q ∪ m̂
𝑆op = 𝑆unop := ∅
for 𝑖 ∈ [0, 𝛾] :
(𝑏1, 𝑏2, ..., 𝑏𝛾) ← {0, 1}𝛾

for 𝑖 ∈ [0, 𝛾] :
if 𝑏𝑖 = 1 then

𝑟𝑖
$← Z𝑞 ; 𝑅𝑖 := 𝑔𝑟𝑖

𝑐𝑖 := WES.Enc((v̂k, m̂), 𝑟𝑖 ; 𝑟 ′𝑖)
𝑆op := 𝑆op ∪ { (𝑖, 𝑟𝑖 , 𝑟 ′𝑖) }

if 𝑏𝑖 = 0 then

𝑠𝑖
$← Z𝑞 ; 𝑅𝑖 :=

𝑔𝑠𝑖

X

𝑐𝑖 := WES.Enc((v̂k, m̂), 0)
𝑆unop := 𝑆unop ∪ { (𝑖, 𝑠𝑖 , 𝑐𝑖) }

𝑐 := {𝑐𝑖 }𝑖∈ [0,𝛾]
𝜋 := {𝑆op, 𝑆unop, {𝑅𝑖 }𝑖∈ [0,𝛾] }
return (𝑐, 𝜋)

Figure 34: Definition of the experiment ExpOW𝐺3

A .

Proof. Let 𝑞𝐸 := |Q| denote the number of queries to oracle

OEncR. We consider 𝑞𝐸 sub-games such that in sub-game 𝑗 ∈
[1, 𝑞𝐸], for queries 1 to 𝑗 − 1 to oracle OEncR ciphertexts 𝑐𝑖 , for

𝑖 ∈ [1, 𝛾], of 𝑆unop encrypt 0 (i.e., as in game ExpOW𝐺2

A); while for

queries 𝑗 + 1 to 𝑞𝐸 ciphertexts 𝑐𝑖 for 𝑖 ∈ [1, 𝛾] of 𝑆unop encrypt 𝑟𝑖
(i.e., as in game ExpOW𝐺2

A). The intuition is that if Pr[Bad1 (1𝜆)] >
negl(𝜆), then there exixts some PPT distinguisher A𝑖 , for 𝑖 ∈
[1, 𝑞𝐸], that it can determine with non-negligible probability if it

plays game ExpOW𝐺1

A or game ExpOW𝐺2

A based on the 𝑖𝑡ℎ answer

of oracle OEncR.

More specifically, assume by contradiction that Pr[Bad1 (1𝜆)] >
negl(𝜆), then there exists PPT distinguisher A 𝑗∗ such that:

Pr

𝑏 = 𝑏∗

����� 𝑏
$← {0, 1}

ExpOW
𝑠𝑢𝑏𝐺 𝑗∗
A (𝜆)

𝑏∗ ← A 𝑗∗ ()

 >
1

2

+ negl

We can construct adversary B that uses A𝑖∗ to break IND-CPA

the encryption used in OEncR with the following steps:

• B initializes the challenger, who sends v̂k.
• B runs (X,w) ← createR(1𝜆).
• B invokes A𝑖∗ on input v̂k and X.
• OEncR queries are treated in the following manner:

– For 𝑗 ∈ [1, 𝑗∗ − 1], B computes 𝑐𝑖 := WES.Enc((v̂k, m̂), 𝑟 𝑗 ; 0)
for 𝑏𝑖 = 0.

– For 𝑗 ∈ [𝑗∗+1, 𝑞𝐸],B computes 𝑐𝑖 := WES.Enc((v̂k, m̂), 𝑟 𝑗 ; 𝑟 ′𝑗).
– For 𝑗 = 𝑗∗, B chooses at random 𝑖∗ such that 𝑏𝑖∗ = 0 and

sets �̂�∗ := �̂�,𝑚0 := 𝑟𝑖∗ and𝑚1 := 0 and forwards the tuple

(�̂�∗,𝑚0,𝑚1) to the challenger to obtain 𝑐𝑏 which in turn B
forwards to A 𝑗∗ as 𝑐𝑖∗ .

• Thereafter A 𝑗∗ outputs w∗.
• B receives the guess 𝑏∗ from A 𝑗∗ .

• B forwards 𝑏∗ to the challenger.

As already described, B knows all the private information re-

quired to run oracle OEncR. Regarding oracle OŜig, B forwards

the query to OSig of the WES oracle, which returns 𝜎 . Note that

this means that memory Q and the memory of WES oracle are

synchronized.

Our adversaryB perfectly simulates the sub-game ExpOW
𝑠𝑢𝑏𝐺 𝑗∗
A

toA 𝑗∗ . Moreover, it is easy to see thatB is a PPT algorithm. If adver-

sary A 𝑗∗ outputs 𝑏
∗ = 𝑏 with probability higher than

1

2
+ negl(𝜆),

since the only difference between games ExpOW𝐺1

A and ExpOW𝐺2

A
is the ciphertext 𝑐𝑖∗ of the 𝑗

∗
th query to OEncR that was forwarded

to the challenger, the bit forwarded by A can also be used to dif-

ferentiate in the IND-CPA game. However, this contradicts the

assumption that theWES used is IND-CPA.

Our adversary B chooses which sub-game 𝑗∗ to play with prob-

ability
1

𝑞𝐸
. Moreover, B chooses which ciphertext 𝑐𝑖∗ to forward to

the challenger with probability
1

𝛾 Thus, Pr[Bad1 (1𝜆)] ≤ negl(𝜆)
𝛾𝑞𝐸

≤
negl(𝜆) and this claim has been proven. Therefore, we can conclude

that ExpOW𝐺1

A ≈ ExpOW𝐺1

A □

Claim 15. Assume that the discrete logarithm problem is hard. Then
Pr[ExpOW𝐺3

A (1
𝜆) = 1] ≤ negl(𝜆).

Proof. Assume by contradiction that there exists PPT adversary

A such that Pr[ExpOW𝐺3

A (1
𝜆) = 1] > negl(𝜆). We can construct

adversary B that uses A to solve the discrete logarithm problem

with the following steps:

• B initializes the challenger, who sends X.
• B runs (v̂k, ŝk) ← �KGen(1𝜆).
• B invokes A on input v̂k and X to obtain w∗.
• B forwards w∗ to the challenger.

Regarding oracles OŜig and OEncR, B knows all the private

information required to simulate them.

35

Castejon-Molina et al.

Our adversary B perfectly simulates ExpOW𝐺3

A toA. Moreover,

it is easy to see that B is a PPT algorithm. Now if A wins with

Pr[ExpOW𝐺3

A (1
𝜆) = 1] > negl(𝜆), this means that (X,w∗) ∈ R,

therefore winning ExpOW𝐺3

A with non-negligible probability im-

plies solving the discrete logarithm problem with non-negligible

probability. However, this contradicts the assumption that the dis-

crete logarithm problem is hard, thus such an A cannot exist and

this claim has been proven. □

We have shown that ExpOW𝐺0

A ≈ ExpOW𝐺3

A . We have also

shown that Pr[ExpOW𝐺3

A (1
𝜆) = 1] ≤ negl(𝜆). Therefore Theo-

rem 8 has been proven. □

Theorem 9. Assume D̂S is signature schemes that satisfy unforge-
ability andWES be a secure witness encryption based on signatures
scheme. Then, our protocol offers VWER Verifiability according to Def-
inition 15.

Proof. Assume that an adversary A breaks the verifiability

of the protocol. This implies that A message m̂ outputs oracle

verification key v̂k, oracle signature 𝜎 on message m̂ , outputs

(𝑐, 𝜋) of EncR and a public statement X such that:

(1) 𝜎 is a valid signature, i.e., V̂f (v̂k, m̂, 𝜎) = 1.

(2) The output of EncR is valid, i.e., VfEncR(𝑐, 𝜋, (v̂k, m̂), X) = 1.

(3) The final outputted witnessw∗ ← DecR(𝜎, 𝑐, 𝜋) is not in a hard
relation with the public statement X, i.e., (X,w∗) ∉ R.

We will now show that if the first and second conditions hold

true, then algorithm DecR will output a witness w∗ so that it holds

that (w∗, X) ∈ R except with negligible probability.

Recall that (m̂, v̂k) is associated with 𝛾-many ciphertexts (𝑐1, 𝑐2,
..., 𝑐𝛾) that encrypt random values (𝑟1, 𝑟2, ..., 𝑟𝛾). Note that algorithm
DecR decrypts these ciphertexts in order to get the encrypted values

(𝑟1, 𝑟2, ..., 𝑟𝛾).
Next, recall that since algorithm VfEncR outputs 1, we are guar-

anteed that: 𝑔𝑠𝑖 = 𝑅𝑖 ⊗ X, for 𝑖 ∈ [0, 𝛾], where 𝑅𝑖 = 𝑔𝑟𝑖 . Thus, the

following equation is satisfied in the exponent, 𝑠𝑖 = 𝑟𝑖 + w.

Setting the total number of ciphertexts 𝛾 sufficiently large, then

the probability of all (𝑟1, 𝑟2, ..., 𝑟𝛾) be invalid is negligible according
to theorem 2 of [14]. More precisely, we are guaranteed that there

exists at least one 𝑟𝑖 such that 𝑐𝑖 := WES.Enc((v̂k, m̂), 𝑟𝑖 ; 𝑟 ′𝑖) and
𝑅𝑖 = 𝑔𝑟𝑖 (recall that 𝑅𝑖 was part of 𝜋). This implies that a valid

witness w∗ can be computed as w∗ = 𝑠𝑖 − 𝑟𝑖 . Hence, giving the

property of verifiability. □

F Proof of Lemma 1
In [32], Lemma 4.8 is very similar to Lemma 1. They prove that

the following property, called one more CCA A2L (OM-CCA-A2L)

(Fig. 35) holds if the OMDL assumption holds. Instead of proving

directly against OMDL, we will prove Lemma 1 by contradiction

against OM-CCA-A2L.

Claim 16. Assume that OM-CCA-A2L holds. Then:

Pr[OMDL-LHE(1𝜆) = 1] ≤ negl(𝜆)

Proof. Assume by contradiction that there exists a PPT adver-

sary A such that Pr[OMDL-LHE(1𝜆) = 1] ≤ negl(𝜆). We can

OM-CCA-A2L

q := 0

(ek, dk) ← KGen(1𝜆)

(X𝑖 ,w𝑖) ← createR(1𝜆)

𝑐𝑖 ← Enc(ek,w𝑖){
w′𝑖

}
𝑖∈ [0,𝑘] ← A

OA2L (ek, { (X𝑖 , 𝑐𝑖) }𝑖∈ [0,𝑘])
𝑏0 := ∀𝑖,w′𝑖 = w𝑖

𝑏1 := q < 𝑘

return 𝑏0 ∧ 𝑏1

OA2L(vk,m, X, 𝑐, �̂�)
if vk ∉ (ADP.KGen(1𝜆)) abort

w ← Dec(dk, 𝑐)
if PreVf (X,m, vk, �̂�) ∧ (X,w) ∈ R
q := q + 1
return w

else return ⊥

Figure 35: One more CCA-A2L

construct adversary B that uses A to break OM-CCA-A2L with

the following steps:

• B initializes the challenger.

• B receives B with ek and {(X𝑖 , 𝑐𝑖)}𝑖∈[0,𝑘] from the challenger.

• B invokes A on input ek and {(X𝑖 , 𝑐𝑖)}𝑖∈[0,𝑘] .
• B receives

{
w′
𝑖

}
𝑖∈[0,𝑘] from A.

• B sends

{
w′
𝑖

}
𝑖∈[0,𝑘] to the challenger.

Regarding oracle OMDL-LHE, for every query that B receives, he

will run (vk, sk) ← ADP.KGen and sample a message m. Then he

generates a presignature using the X queried by A. Now, he will

run the query to oracle OA2L using c and X as received from A,

together with the generated vk, messagem and presignature. Since

the presignature check of OA2L will always pass, OA2L will only

return ⊥ if c is not encrypting the DL of X. This ensures that q of

both oracles is the same.

Our adversary B perfectly simulates OMDL-LHE to A. More-

over, it is easy to see that B is a PPT algorithm. Now, since the

count of both oracles is synchronized and the k is the same in both

games, if

{
w′
𝑖

}
𝑖∈[0,𝑘] wins OMDL-LHE, it also wins OM-CCA-A2L.

However, this contradicts the assumption that OM-CCA-A2L holds.

Therefore, A does not exist. □

36

	Abstract
	1 Introduction
	1.1 Related Work
	1.2 Our Goal and Contributions

	2 Technical Overview
	2.1 Unlinkable Contingent Payment Overview
	2.2 Towards our Solution
	2.3 Overview of MixBuy

	3 Preliminaries
	4 MixBuy: Our Approach for UCP
	4.1 Protocol Definition

	5 Our Cryptographic Construction
	5.1 Security Analysis
	5.2 Performance Evaluation

	6 Discussion
	7 Conclusions
	Acknowledgments
	References
	A Why Did We Opt for the Notary Setting?
	B Dynamic Selection of Notary Set and Threshold
	C Extended Preliminaries
	C.1 Digital Signature
	C.2 Adaptor Signatures
	C.3 Witness Encryption based on Signatures
	C.4 Verifiable Witness Encryption for a Relation
	C.5 NIZK
	C.6 Linear-Only Homomorphic Encryption Scheme.

	D Oracle-based Unlinkable Contingent Payment Correctness, Security and Privacy Proofs
	E Construction and Security Proofs of VWER
	E.1 Correctness and Security Proofs

	F Proof of Lemma 1

