
 

 
 
 
 
 

Panagidi, K., Anagnostopoulos, C., Chalvatzaras, A. and Hadjietfthymiades, S. 

(2020) To transmit or not to transmit: controlling the communications in the mobile 

IoT domain. ACM Transactions on Internet Technology, 20(3), 22. 

 

   

There may be differences between this version and the published version. You are 

advised to consult the publisher’s version if you wish to cite from it. 
 

© Association for Computing Machinery 2020. This is the author's version of the 

work. It is posted here for your personal use. Not for redistribution. The definitive 

Version of Record was published in ACM Transactions on Internet Technology, 

20(3), 22. http://dx.doi.org/10.1145/3369389.  
 
 

http://eprints.gla.ac.uk/201902/  
     

 
 
 
 
 

 
Deposited on: 29 October 2019 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Enlighten – Research publications by members of the University of Glasgow 

http://eprints.gla.ac.uk 

http://dx.doi.org/10.1145/3369389
http://eprints.gla.ac.uk/201902/
http://eprints.gla.ac.uk/
http://eprints.gla.ac.uk/


To Transmit or Not to Transmit: Controlling
Communications in the Mobile IoT Domain

K. PANAGIDI, Department of Informatics & Telecommunications, University of Athens
C. ANAGNOSTOPOULOS, School of Computing Science, University of Glasgow
A. CHALVATZARAS, Department of Informatics & Telecommunications, University of Athens
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The Mobile IoT domain has been significantly expanded with the proliferation of drones and unmanned
robotic devices. In this new landscape, the communication between the resource-constrained device and
the fixed infrastructure is similarly expanded to include new messages of varying importance, control, and
monitoring. To efficiently and effectively control the exchange of such messages subject to the stochastic nature
of the underlying wireless network, we design a time-optimized, dynamic, and distributed decision making
mechanism based on the principles of the Optimal Stopping and Change Detection theories. The findings
from our experimentation platform are promising and solidly supportive to a vast spectrum of real-time and
latency-sensitive applications with quality of service requirements in mobile IoT environments.
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works → Network reliability.

Additional Key Words and Phrases: Real-time Decision Making, Mobile IoT, Optimal Stopping Theory, Change-
point Detection, Unmanned Vehicles
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1 INTRODUCTION
In the last decade, we have been witnessing significant advancements and evolution of the Internet
of Things (IoT). Going a step further to the IoT infrastructure, resource-constrained nodes are
enhanced with mobility capabilities forming the Mobile IoT (MIoT) networks; noticeably, huge
growth has been witnessed in the Unmanned Vehicles research area. We can consider a drone as
a mobile computing and sensing node deployed to different locations tailored to specific tasks.
The fundamental features that ‘transform’ Unmanned Vehicles to popular mobile IoT nodes are
the ability to autonomously make decisions (i.e., without human intervention), the capability of
carrying additional application-specific payloads, the endurance, capability of re-programmability,

Authors’ addresses: K. Panagidi, kakiap@di.uoa.gr, Department of Informatics & Telecommunications, University of
Athens, Panepistimioupolis, Ilissia, Athens, 15784; C. Anagnostopoulos, School of Computing Science, University of
Glasgow, Clasgow, G12 8QQ, christos.anagnostopoulos@glasgow.ac.uk; A. Chalvatzaras, Department of Informatics &
Telecommunications, University of Athens, Panepistimioupolis, Ilissia, Athens, 15784, achalv@di.uoa.gr; S. Hadjiefthymiades,
Department of Informatics & Telecommunications, University of Athens, Panepistimioupolis, Ilissia, Athens, 15784, shadj@
di.uoa.gr.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2019 Association for Computing Machinery.
XXXX-XXXX/2019/10-ART $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

, Vol. 1, No. 1, Article . Publication date: October 2019.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn


2 K. Panagidi, C. Anagnostopoulos, A. Chalvatzaras, and S. Hadjiefthymiades

and capacity to stream locally sensed/captured multimedia content. As Unmanned Vehicles become
more advanced in terms of computational capabilities, they are expected to present greater value
in application cases of e.g., environmental surveillance and monitoring, and supporting crisis
management activities. For instance, consider the use case where drones equipped with video
camera and various sensors, like air-quality, humidity and temperature, are programmed to cruise
over forests and spot fires at an early stage.

The ultimate target of an Unmanned Vehicle, also coined as UxV, where ‘x’ can stand for either
‘A’ aerial, or ‘G’ ground, or ‘S’ surface vehicle, is the successful execution of a pre-programmed
mission. A mission is often described as a trajectory with specific way-points that the UxV is
tasked to approach and collect various measurements, e.g., from on-board sensors, or capture
images or video, e.g., from on-board cameras. The way-points along with the various commands are
determined from a control unit, i.e., a Ground Control Station (GCS). A GCS is a remote coordinator
(master) node responsible for contextual data acquisition and real-time control and monitoring
of the progress of the UxVs missions. The communication between UxV and GCS is realised in a
wireless manner. The UxVs themselves can be either involved in a mission as single/individual units
or as groups, i.e., swarm of UxVs. A swarm of UxVs forms a remote sensing system and can be treated
as Mobile Wireless Sensor Network (MWSN) of highly dynamic topology. More importantly, the on-
board computing & sensing elements of the UxVs enhance the in-network embedded intelligence
of the swarm. This allows complex local computational and analytics tasks to be realized in a
highly distributed fashion, thus, balancing computational load across the infrastructure and render
communications much more energy efficient. In this MIoT environment of UxV-driven distributed
computing, we are facing the following research and technical challenges:

Challenge 1: Real-time Monitoring. Real-time surveillance and monitoring applications, e.g.,
detection of forest fires, require control messages to be delivered from a swarm of UxVs to the GCS
with the minimal delay and high accuracy. These missions typically involve rural areas, where the
network connectivity is expected to be poor [12]. Moreover, radio paths between the UxVs and GCS
are anticipated to be obstructed, overloaded or to suffer from high packet loss rate. It is challenging
to predict these network variations in these environments. Hence, it is deemed crucial, during a
mission, an UxV to autonomously decide when to pause telemetry/control measurements that are
not currently prioritized as ‘important’ and save network resources.

Challenge 2: Secure UxV Control & Actuation. The connectivity among UxVs and GCS
needs to take into consideration the mobility factor. This factor adds up a new degree of freedom to
their operation, since the GCS sends control commands to UxVs while UxVs are moving for further
local actuation. The control messages and their acknowledgements must be securely delivered in
order to guarantee safe and successful missions. The usual approach to emergency cases, when
a UxV loses the connection to GCS, is that the UxV returns to its initial position abandoning the
mission. This means that the mission is cancelled, even if the UxV could be really close to the
mission’s end or objective leading to significant waste of time and resources.

In this work, we cope with the above-mentioned challenges by proposing an on-line stochastic-
driven decision making scheme that leverages the transmission functionality of UxVs and GCS
by being adaptive to changes in network quality. This is designed and developed by our novel
suppression control of telemetry and control messages model based on the principles of the Optimal
Stopping Theory (OST). Our time-optimized control mechanism achieves the optimal delivery of
critical information from UxVs to GCS and vice-versa. Our rationale is that should the network
be performing properly, then the transmission control can be ‘relaxed’ to exploit the available
resources in the resource-constrained UxV. Our model introduces two sequential optimal stopping
time decisionmakingmechanisms based on the Change Detection theory and an application-specific
discounted reward process.
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We consider the case where a UxV operator desires to execute a mission and consider the setting
where two main components are provided: a GCS and an Unmanned Ground Vehicle (UGV). The
mission instructions could be consolidated in a domain-specific script, e.g., the mission scripts
compiled through our experimentation platform for UxVs RAWFIE [17]. The RAWFIE1 platform
is briefly presented in Section 4.3. The mission script defined by the operator includes (among
others) the UxV trajectory way-points in the field area to control the device in space and time and
the sensing components involved (sensors) to collect in-field measurements. The main goal of the
two components is the monitoring of an area to detect fire based on camera stream and on-board
environmental sensors. This use case was also conducted during the RAWFIE project lifetime.

The baseline solution/establishment for the UGV’s mission is as follows: The GCS sends specific
commands (directives) to the UGV as indicated in an experimentation script, e.g., “Go-to-Point”,
“Pause” on a specific point, or “Abort” the mission and return home (RTL). The UGV sends sensor
measurements streams, e.g., temperature, humidity, video and its geo-spatial position (GPS) to GCS
with a predefined frequency. Both GCS and UGV have as a goal the successful completion of the
monitoring of the area. Both UGV and GCS monitor the quality of the network. The quality of the
network can be classified as proposed in [14] and is crucial for the mission because significant
commands (down-link from GCS to UGV) or sensor values/measurements (up-link from UGV to
GCS) can be occasionally lost due to the stochastic network behavior.

We propose a real-time control mechanism to adapt to changes in network quality by dynamically
pausing control telemetry and control messages based on optimal sequential decision making rules.
This is expected to ensure the trouble-free delivery of critical information subject to the dynamic
network status that UxVs encounter while dispatching a certain mission.

Remark 1. Overall, our scheme can be applied in all cases where connections are competing for
stochastically varying network resource and optimally manage their relative priorities.

This paper is organized as follows: In Section 2, we present the related work, while in Section 3,
we present the preliminaries for our problem formulation, the proposed optimized information
flow model and our two optimal stopping problem solutions. Section 4 presents our comprehensive
experiments with real UxV settings, where our mechanisms performances are followed by the
conclusions in Section 5.

2 RELATEDWORK & CONTRIBUTION
2.1 Related Work
The challenge of optimizing contextual information flow delivery among UxVs is non trivial
given the network circumstances and status. To our knowledge, there is no prior holistic work
addressing the problem of time-optimized information flow. In the literature, research has been
extensively focused on message-routing protocol employed on UxVs. Opportunistic networks have
been proposed as long as they are capable of maintaining efficient operation in a wide range
of network density and mobility conditions [26],[19]. By classifying the diversity of topological
conditions in networking environments, one end of the spectrum corresponds to almost static
dense topologies. In this case, conventional topology-based protocols [20] function best by using
node labels / identities. As the nodal density decreases and / or the mobility increases, and up to a
point where the connectivity status between pairs of nodes remains stable, position-based families
of protocols [19], [11] become more suitable.

Additionally, in networks of low nodal density, intense mobility becomes a prerequisite for the
creation of contact opportunities. For such topologies, protocols based on the ‘carry’ action [26],
1http://www.rawfie.eu/about
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Table 1. Nomenclature

Notation Description

DMP Decision Making Process
TOCP Time-Optimized Change Point DMP
DRP Optimal Discounted Reward DMP
QNI Quality Network Indicator
p(xn , f ) Probability Density Function with parametric density f
fi Normal distribution N(µi ,σi )
H0 No-Change-point Hypothesis
H1 Change-point Hypothesis
FAR False Alarm Rate
Nd Detection Change time
α Detection threshold: 0 ≤ α ≤ FAR
γ ∈ [0, 1] Discounted factor at DRP policy
r (γ ,N ) ∈ {1, . . . ,N } Stopping time in DRP policy up to time N
t∗,τ ∗, r ∗ Optimal stopping times in generic OST, Change-point Detection,

and DRP policy, respectively
Th Maximum horizon where a UxV can be paused
Lx (n) Log-likelihood ratio at time n for random variable X

[15], i.e., the spatial transposition of the message due to the physical movement of the carrier node,
perform efficiently. The aforementioned routing protocols have been designed to accommodate a
restricted set of possible network conditions, corresponding to a particular sub-range and yield
satisfactory performance only under these conditions.
Opportunistic Networking is also an open and an active field of research where OST can be

applied at routing delivery protocols. A proposal for opportunistic networks (OppNet) [7] is studied
in which the authors present Softwarecast as a general delivery scheme for group communications
based on mobile code. This software code and a delivery state is the main input to persist refined
delivery-decision making methods based on OST to implement complex decisions. In [10], the
authors present the Relcast, a composite routing-delivery scheme that used OST-based delivery
strategies to route messages to profiles which are defined by delivery functions such as best
maximum and over-the-average. If we go a step further, we define a routing delivery protocol
to social OppNet like influencers’ networks. The [9] refer to an OST-based solution to deliver
messages in highly connected networks. However, the proposed solutions are based on metrics like
low latency, while the authors in [8] proposed a solution of broadcast protocols for OppNet based
on efficiency, preventing unrestrained propagation of messages.
All the proposed delivery routing protocols are based on variations of the Secretary Problem

[13] like the called rank-based selection and cardinal payoffs variation of the secretary problem [6].
However a unique strategy cannot be applied to sequences with abrupt changes where each state
shall be treated differently. Other research efforts are focused on delay-tolerant methodologies,
where mobile sinks (e.g., data aggregation nodes) ‘patrol’ a number of static sensor nodes and
collect data [18], [29]. Nonetheless, due to their delay-tolerant principle for data delivery, they
cannot be directly applied to real-time applications like disaster management.
Methods based on the principles of dynamic stochastic optimization frameworks, like Optimal

Stopping Theory, have been successfully applied to information dissemination in ad-hoc networks.
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The authors in [12] add mobility into wireless network infrastructure, i.e., WiFi access points (AP)
on wheels, which move to optimize user performance. The Roomba devices equipped with network
interfaces move independently around areas in order to maximize the wireless capacity in this
area. However, the mobile devices are moving based on a grid at the floor to predefined paths.
In [25], researchers apply Optimal Stopping Theory based on Change Detection only in-network
statistics. This method is only applied to pause the generation of telemetry messages. Pausing
period stops when a time threshold is reached and for this period framework is agnostic to network
state. Researchers’ method is compared with our proposed model in Section 4.3 applied on real
UxVs. Contextual data delivery mechanisms have been studied in the literature though from a
different ‘perspective’ in mobile ad-hoc networks. The contextual data delivery mechanisms in [4],
[2], [24] and [3] deal with the delivery of quality information to context-aware applications in static
and mobile ad-hoc networks, respectively, assuming epidemic-based information dissemination
schemes. In [4], the authors propose optimal decision making approaches on the collection of
contextual data from WSNs. The mechanism in [2] is based on the probabilistic extension of
the well-known Secretary Problem introduced in [13] merged with an optimal on-line stochastic
optimization problem. The authors in [1] tackle the task offloading decision making problem by
adopting the principles of optimal stopping theory (OST) to minimize the execution delay in a
sequential decision manner. Their approach significantly minimizes the execution delay for task
execution and the results are closer to the optimal solution than other deterministic offloading
methods. The authors in [24] study a dynamic video encoder that detects scene changes and tunes
the synthesis of Groups-of-Pictures (GoP) accordingly based on an ‘Black-Jack’ like application of
Optimal Stopping Theory. The proposed MPEG encoder tracks the error between the sequential
frames in a Group-of-Pictures (GOPs) and optimally creates GOP sizes which are content-based
with the minimum waste of the resources.

2.2 Contribution
Our problem deals with poor network performance during a UxV predefined mission. The online
control of UxVs mission is highly connected with two types of paths: geo-spatial and network. The
union of localization and network factors concludes to safe mission with accurate data reports. It
is apparent that the mobility factor adds up new complexity to the aforementioned solutions in
literature that handle message forwarding or routing topologies for stationary sensor networks.
Furthermore, our framework is independent of the UxVs technologies and can be applied to

different kind of UxVs (aerial, sea, ground) and to their on-board software like ROS [28] or Ardupilot
[5]. Mostly in literature, the UxV solutions are targeted to problems with a specific type of UxVs.
However, our work in this article does not depend on the type of UxV. Our decision making process
handles the control of contextual flow in a mission based on the quality network statistics with
no-prior knowledge of the environment and the category of the device, i.e., aerial, ground or surface
vehicles. This real-time decision making framework is based on two Optimal Stopping Time Policies
that optimally schedule context delivery (control messages and values) and deliver messages with
minimum loss of packets in poor or saturated networks.

Our specific technical contribution of this work is:

(1) A stochastic optimization mechanism for on-line network quality change detection;
(2) A hybrid sequential decision making mechanism for optimal control commands from the GCS

to UxV based on the Optimal Stopping Theory;
(3) Proof of optimality of the two proposed mechanisms in UxV MIoT environments;
(4) Comprehensive performance evaluation, sensitivity analysis of the major parameters, and

comparative assessment of the proposed mechanisms in a real-testbed UxVs platform.
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Table 2. Rules of State Transitions

Component Network State ‘Good’ Network State ‘Bad’

UxV - High priority sensors ON ON
GCS - High Priority Messages ON OFF
UxV - Low priority sensors ON OFF

3 TIME-OPTIMIZED DECISION MAKING MODEL FOR UNMANNED VEHICLES
3.1 Rationale
The main contribution of this paper is to establish an in-network/on-device lightweight sequential
Decision Making Process (DMP) that leverages the on-line derived network statistics to efficiently
control the progress of a UxV mission. Each UxV is equipped with a number of sensors and at
least one network interface. Our DMP is capturing network related information, e.g., packet error
rate, and controls the transmission of messages on both UxV to GCS and GCS to UxV, dynamically.
Fundamentally, based on the real-time captured network statistics, our DMP makes transitions
during the UxV mission between two states: active and passive state as shown in Figure 1. The
time duration for staying in each state and the transition from one state to another are optimally
determined by two real-time decision making mechanisms as will be discussed in the following
paragraphs.

All messages exchanged between UxV and GCS are categorized in ‘high’ and ‘low’ priority. High
priority message is considered (i) the minimum necessary systemic instructions to carry out a
mission and (ii) sensor data defined by the UxV operator as highly important. When the UxV/GCS
is in active state then the DMP sends constantly messages for telemetry and control. In the passive
state, the DMP sends only high priority messages. For instance, the position reporting from the
UxV is a prerequisite for the safe execution of the mission. In this case, high-priority commands are
being sent constantly. Low priority messages, e.g., temperature values captured locally from the
UxV sensors, can be delayed until the network exhibits better performance. The message priority at
the GCS is the inverse, i.e., significant messages are to be delayed in order to safely reach the UxV.
The described rules of state transitions based on the network state, the UxV and GCS are shown in
Table 2.

The DMP runs locally on the UxV and on the GCS, enriched with a Time-Optimized Change-Point
Decision Making Process (TOCP). The TOCP is triggered when a change on network performance
occurs; the TOCP is discussed extensively in Section 3.3. This will enable the UxV and the GCS to
transit from the active state to the passive state. When the DMP concludes on the ‘passive’ state,
then a Discounted Reward Decision Making Process (DRP) is activated, as will be discussed in
Section 3.4. The rationale is that the DRP sequentially ranks the network quality measurements
from the relatively worst to the relatively best and, then optimally, it delays its pause interval for the
(stochastically) globally best network observation to resume from the pausing period as dictated
by the TOCP. The pausing period has a maximum deadline, hereinafter referred to as the pausing
horizon Thmax . This indicates the maximum time interval the UxV waits without receiving any
command and ACK messages from the GCS. To sum up, we propose a mechanism for temporal
control of the transmission of the messages to and from the UxV. This mechanism is based on
a network condition model that transits from good to bad and vice versa. All these transitions
are monitored and validated through our system using the principles of the change detection and
optimal stopping theory.
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Fig. 1. UxV State Transition Model

3.2 Preliminaries in Optimal Stopping Theory & Change Detection Theory
Before elaborating on our problem formulation and the proposed time-optimized mechanisms, we
provide the fundamentals and principles adopted from the OST and the change-detection theory.

3.2.1 Optimal Stopping Theory. The first studied optimal stopping problem is related with the
problem of choosing a time to take a given action based on a sequentially observed random variables
in order to maximize an expected payoff. In addition our stopping time problem has a finite horizon,
i.e., there is an upper bound on the number of stages at which we may stop.

Let Fn be defined as the σ -algebra generated by the random variables Y1,Y2, · · · , Yn in a proba-
bility space (Ω,F, P ). We envisage Fn as the filtration (information) observed up to (discrete) time
instance n by collecting the realization values of the random variables up to n. For instance, in our
context Y1,Y2, · · · , Yn are considered the observed Quality of Network Indicator (QNI) values in
discrete timesteps t = 1, . . .n. A stopping rule or stopping time is defined as the random variable
τ with realization values in a set of natural numbers such that {τ = n ∈ Fn} for n = 1, 2, . . .
and probability P(τ < ∞) = 1. We denote withM(n,N ) the class of all stopping rules τ in which
P(n ≤ τ ≤ N ) = 1 for any n = 1, 2, . . . and N > 0. The real-valued pay off function is then defined
as the mappingW : R→ R being a Borel measurable function which valuesW (y) interpret the
pay off of a decision maker when it stops the Markov chain (Yn ,Fn) at the state y ∈ R. In our case,
the reward can be defined as the selection of the best network metric (QNI value) reached so far.
Assume now that for a given state y and for a given stopping rule τ , the expectation of the

reward (pay-off) function is E[W (Yτ )|Y1 = y] exists. Then, the expected pay off E[W (Yτ )|Y1 = y]
corresponding to a chosen stopping rule τ exists for all states y ∈ R, which refers to the reward
value of the stopping problem. Based on the principles of optimality the reward value VN (y) is the
supremum of the expected pay off of all the stopping rules belonging toM(1,N ), i.e.,

VN (y) = sup
τ ∈M(1,N )

E[W (Yτ )|Y1 = y], (1)

where the supremum is taken for all stopping rules τ ∈ M(1,N ) for which the expectation
E[W (Yτ )|Y1 = y] exists for all y ∈ R. Based on the optimal value VN (y), where the supremum in (1)
is attained, the optimal stopping rule t∗ ∈ M(1,N ) should satisfy the condition:

VN (y) = E[W (Y ∗t )|Y1 = y],∀y ∈ R. (2)

It is then clear that the optimal value VN (y) is the maximum possible excepted reward to be
obtained observing the random variables Y1, . . . ,YN up to the N -th observation.
Consider also that the expectations E[W (Yτ )|Y1 = y] exist for all y ∈ R and, based on the

principles of optimality. Let us then introduce the operator Q over the reward functionW ∈ R
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8 K. Panagidi, C. Anagnostopoulos, A. Chalvatzaras, and S. Hadjiefthymiades

such that:

QW (y) = max{W (y),E[W (Y ∗t )|Y1 = y]}. (3)

Then, the optimal stopping rule t∗, which attains the optimal value in (2), is estimated by the
Theorem 3.1:

Theorem 3.1. Assume thatW ∈ R. Then:
• Vn(y) = Q

nW (y), n = 1.2, . . .;
• Vn(y) = max{W (y),E[Vn−1(Y1)]}, where V0(y) =W (y);
• the optimal stopping time t∗n is evaluated as:

t∗n = min{0 ≤ k ≤ n : Vn−k (y) =W (y)}, (4)

This refers to an optimal stopping rule inM(1,n). If E[|W (Yk )|] < ∞, for k = 1, . . . ,n, then the
stopping rule t∗n in (4) is optimal in the classM(1,n).

Proof. Please refer to [13]. □

3.2.2 Change Point Detection Theory. The second category of the optimal stopping problem is the
detection of a change point. Consider that we are monitoring a sequence of a sequence random
variables, like values of the QNI, {Y1,Y2, . . .Yn} with a known distribution f0. At some pointm in
time, unknown to us, the distribution changes to another known distribution f1. Our goal is to
detect the change as soon as it occurs. Let Fn , n ≥ 1 be the σ -algebra generated by the random
variables {Y1,Y2, . . .Yn}. A sequential change point detection rule is then derived by the stopping
time τ of the observed values. The stopping time τ for the change point detection has the following
characteristics:
• Average Run Length (ARL): ARL, proposed in [22], is defined as the expected number of
observed values before a change decision is taken, where Nd is the detection time and f is
assumed to be constant, i.e., ARL = E[Nd ]

• The Detection Delay Dn is the average detection delay corresponding to the observed
{Y1,Y2, . . .Yn} needed before a detection change occurs. Therefore, this quantity has to
be as small as possible to minimize the reaction time of the algorithm.
• The False Alarm Rate FAR [16] is calculated as the ratio between the number of negative
events wrongly categorized as changes.

In the following, we describe the two in-network/on-device optimal stopping rule mechanisms
running on the UxV; the same mechanisms also run on the GCS.

3.3 Time-Optimized Change-Point Decision Making Process
3.3.1 Problem Formulation. In this section we introduce the TOCP, which reflects the behavior of
the UxV being in the active state. Specifically, consider the network quality readings x1,x2, . . . ,xn
as a discrete random signal with independent and identically distributed (i.i.d.) random variables
observed sequentially in real time. Consider also that the network readings follow a probability
density function p(xn , fi ). In our case, fi expresses the normal distribution with mean value µi
and variance σi . To estimate p(xn , fi ), a probability density function comparison method has been
adopted to derive the closest distribution to our Quality Network Indicator (QNI) values.

The QNI derives from the normalization of the basic network metrics: Packet Error Rate (PER),
Signal-to-Noise Ration (SNR), and the interference quality indicator (Q). The SNR is defined as the
ratio of signal power to the noise power. The PER is calculated as the rate between the lost packets
and the total packets sent through the network. The interference quality indicator Q is exported
by an access point in the scale [0, 100] and depends on the level of contention or interference,
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Fig. 2. (Upper) a. The probability density function f0 and (lower) b. the f1 model fitting for good and bad
quality of QNI values, respectively.

like the bit or frame error rate, or other hardware metric. The holistic QNI at time n indicates the
quality of the current network connectivity defined as the weighted sum of the (normalized) quality
indicators:

QNIn = a1 ˆPERn + a2 ˆSNRn + a3Q̂n , (5)

where the QNI is affine combination of PER, SNQ and Q in [0, 100] such that
∑3

i=1 ai = 1, ai ∈
[0, 1],∀i .

We consider the incoming QNI values as an adapted strong Markov process (Xn)n←0 defined by
the filtered probability space p(xn , f0). The estimation of the p(xn , fi ) is based on model fitting of
all the parametric probability distributions to the QNI. The output of this model fitting is shown
in Figure 2a for p(xn , f0) and Figure 2b for p(xn , f1). The list of examined probability distributions
is extensive. We are based our decisions and reasoning on the fundamental NLogL (Negative of
the Log Likelihood) and the BIC (Bayesian Information Criterion) metrics. For each distribution
examined, we derived the corresponding NLogL and BIC values provided in Table 3. As it is shown
in Figure 2a and Figure 2b, the best distribution fitting to our experimental data is the Normal
Distribution.
We further studied an abrupt change from good to bad network conditions. In this case, we

performed experiments in which the network conditions changed at timem. As shown in Figure 3,
before timem, the QNI follows the distribution p(xn , f0), and after timem, the QNI follows p(xn , f1).
Under these experimental observations, the QNI distribution observed between the first sample x0
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Table 3. NLogL and BIC metrics for the probability distributions.

Examined Distribution NLogL BIC

Normal (N) 1876.5 3765.5
Gamma (Γ) 1904.2 3820.8
Log-logistic 1909.3 3831
Inverse Gaussian (IG) 1919.4 3851.2
Rayleigh 2366.6 4739.5
Exponential (Exp) 2700.7 54076

and the current xk sample takes two forms, where H0 represents No-Change-Point Hypothesis and
H1 represents the Change-Point Hypothesis:

p(x) =

{∏k
n=0 p(xn , f0), No-Change-Point Hypothesis H0;∏m−1
n=0 p(xn , f0)

∏k
n=m p(xn , f1), Change-Point Hypothesis H1

(6)

The challenge is to decide between the two hypotheses H0,H1 w.r.t. QNI, and to approximate
efficiently and timely the potential change point timem. A feasible solution derived by the change-
point detection theory adopts the minmax approach in [23].

Let us define the conditional expected detection delay by

EH1[(Nd −m + 1)+ |n = 0, 1 . . . ,m − 1], (7)

as defined in [23], where the expectation is taken under one change hypothesis H1. The minimax
performance criterion is given by its supremum taken over. Specifically, the worst-case detection
delay is estimated as:

Dn(τ ) = sup
n≥1

ess supEk [(τ − k + 1)+ |Fk−1], (8)

with x+ =max{x , 0}. Based on this objective, we formulate the change-point detection Problem 1:

Problem 1. The UxV should determine an optimal change-point detection time τ that minimizes
the worst-case detection delay in (8).

3.3.2 Solution for TOCP. Let us first denote the FAR defined as [16]:

FAR(τ ) =
1
E∞[τ ]

.

Based on our examined distribution fitting, we introduce the instantaneous log-likelihood ratio at
time n by:

Lx (n) = ln
p(x(n), f0)

p(x(n), f1)
= ln

σ 2
1

σ 2
0
+
(x − µ1)

2

2σ 2
1
−
(x − µ0)

2

2σ 2
0
, (9)

and its cumulative summation of the ratios from 0 to n:

S(n) =
n∑

k=0
Lx (k). (10)

The expectation E∞[τ ] defines the expected time between false alarms. A false alarm in our case
is defined when the DMP mechanism detects a change for state transition to passive, while the
network quality is characterized as good. Under the Lorden criterion, our objective is to find the
stopping rule that minimizes the worst-case delay subject to an upper bound on the FAR. The
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decision function in our problem in a change between good and severe network conditions is
shown in Figure 3b.
The optimal solution to (8) was determined in [21], which is provided by the Cumulative Sum

(CUSUM) test [22]. A presentation of the CUSUM approach applied to our problem can be found in
Appendix C and its description is shown in Algorithm 1. The optimal stopping time for detecting
the change point is given by:

τ ∗ = min{n ≥ 1, max
1≤k≤n

n∑
i=k

Lx (i) ≥ α } (11)

Let the detection threshold α be chosen such that the ARL to false alarm derives FAR ≥ α > 0.
Clearly, this condition is equivalent to limit the rate of false detection by a given maximum value.
When α →∞, the CUSUM algorithm minimizes the worst case detection delay EH1[Nd ]. The value
of this delay can be approximated by using Kullback-Leibler (KL) divergence. The KL captures the
discrimination between the post and pre-change hypotheses and measures the detectability of the
change, which is proved to be:

EH1[Nd ] =
lnα

log(σ1
σ0
) +

σ 2
0 +(µ0−µ1)2

2σ 2
1

− 1
2

. (12)

See Appendix B for the derivation of the expectation EH1[Nd ].
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Fig. 3. The behavior of the QNI and the cumulative log-likelihood ratio corresponding to a change from a
‘good’ network state to a ‘bad’ network state.

3.4 Discounted Reward Decision Making Process
3.4.1 Problem Formulation. We propose a hybrid solution based on the change-point detection
and a Discounted Reward Process (DRP) with Linear Discount Function (LDF). The reason is that
the UxV cannot pause forever to send commands or to send telemetry messages. The UxV has a
hard limit for sending message to GCS in order to report that it is alive and active. The same stands
for GCS, i.e., the GCS cannot leave a UxV with no control messages. Therefore, the pausing period
when a UxV decides whether to start again the streaming of commands can be treated as a finite
horizon problem as will be described here.
It is assumed that when the pausing period starts, the UxV receives a QNI value xk at a time

instance k . The objective is to seek a stopping rule that will maximize the probability of choosing
the best (maximum) QNI value xk indicating the best possible network condition.
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Let us define a random variable uk , which represents the LDF reward if the kth QNI observation
is chosen, that is:

uk =

{
1 − γ

N k if xk = max{xl , l = 1, . . . ,k − 1}
0 otherwise (13)

The parameter γ ∈ [0, 1] denotes the discount factor. The discount factor γ represents the
modeling abstraction where UxV focuses on selecting the best QNI value of the N received QNI
values. The LDF in (13) indicates that the UxV has to report at least one QNI value observing at
most N QNI values. The higher the discount factor γ is, the higher the penalty gets until a reception
of a better QNI value. The UxV receives the reward uk if the kth observation is chosen and refers
to the highest QNI value among all N QNI values; otherwise uk is zero.

Problem 2. Given a fixed time horizon N , the UxV has to determine a optimal stopping rule
r , 1 ≤ r ≤ N , which maximizes the expectation E[ur ].

3.4.2 Solution for DRP. For solving Problem 2, consider first receiving the kth observation of the
QNI value xk . We can then define the random variable zk = j (1 ≤ j ≤ k), which denotes the
relative ranking of the QNI value xk among the first k observations of the UxV. The assignment
zk = 1 means that the kth QNI value refers to the highest QNI value among the first k QNI values
seen. We state then the optimal policy for a UxV w.r.t. LDF in (13) as follows in our optimal policy.

Remark 2. Optimal Policy: There exists a time r ∗(1 ≤ r ∗ ≤ N ) such that the UxV observes the QNI
values of the first r ∗ − 1 QNI values without accepting any of them. Then for r ∗ ≤ k ≤ N the UxV
accepts xk if zk = 1. In case of zk > 1,∀r ∗ ≤ k < N , or r ∗ = N , then the UxV accepts xN , which is the
last observed QNI value, with uN = 1 − γ .

Let ωk (j) be the conditional expected reward of the kth observation given that zk = j, that is,
ωk (j) = E[uk |zk = j]. The probability of finding the maximum QNI value xk , i.e., (j = 1), at the kth
observation is:

P(uk = 1|zk = j) =
P(uk = 1, zk = j)

P(zk = j)
=

{ k
N if j = 1,
0 otherwise.

Hence, we have for the ωk (j) that:

ωk (j) =

{ k
N (1 −

γ
N k) if j = 1,

0 otherwise. (14)

The value ωk (j) = 0 for j , 1 indicates that there is no reward if the best quality network state is
not chosen.

For each r = 1, . . . ,N let ξ (r ) denote a stopping rule, that is the first r −1 QNI values are observed
and the next QNI value, which exceeds all of its predecessors, is accepted. If none of the first N − 1
QNI values is reported then the last one is reported. Then, we obtain that:

P(ξ (r ) = k) =
r − 1

k(k − 1)
, (15)

thus, the corresponding expected payoff ϕ(r ;γ ,N ) w.r.t. to the reward function in (13) is

ϕ(r ;γ ,N ) = E[uξ (r )] =
N∑
k=r

ωk (1)P(ξ (r ) = k) =
r − 1
N

N∑
k=r

(
1 − γ

N k

k − 1

)
(16)
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(a) The expected payoff ϕ(r∗,γ ,N ) for different
values of discount factor γ and N=200.

(b) The optimal stopping rules for different values of dis-
count factor γ and N = 200. The arrows depict the earli-
est (optimal) stopping times r∗ such that λ(r∗;γ ,N ) ≤ 0.

Fig. 4. Analysis of LDF based on different values of discount factor γ .

It follows that the r ∗ of the proposed optimal policy that maximizes the expected payoff ϕ(r ;γ ,N )
in (16) is the optimal stopping rule. The ϕ(r ∗;γ ,N ) is the maximum probability of finding the best
QNI value on the UxV.

Theorem 3.2. There exists a r ∗ (1 ≤ r ∗ ≤ N ) which maximizes ϕ(r ;γ ,N ) over 1, 2, . . . ,N . Then,
the optimal stopping rule r ∗ satisfies the following:

r ∗ = r ∗(γ ,N ) = min

{
r ≥ 1|λ(r ;γ ,N ) =

N−1∑
k=r

1
k
+ r

2 γ
N

1 − γ
N

−
1 + γ
1 − γ

N

≤ 0

}
(17)

Proof. See Appendix D. □

The implementation of the optimal stopping time r ∗ is shown in Algorithm 2. For γ = 0 and a
large N , we obtain the classical optimal stopping rule r ∗ = N

e . Figure 4b depicts the value λ(r ;γ ,N )
and the optimal stopping rules r ∗ for which λ(r ∗;γ ,N ) ≤ 0 for different values of γ and N = 200.
As γ → 0 then r ∗ → N

e as illustrated in Figure 4b (for γ = 10−5, r ∗ = 74 ≈ N /e). The UxV reports y
at observation k ≥ r ∗ for which xk > max{xl : l = 1, . . . , r ∗}.

In Figure 4a we illustrate the value of the maximum probability of choosing the best QNI value
ϕ(r ∗;γ ,N ). For γ = 0 we obtain the classical secretary problem, i.e., ϕ(r ∗; 0,N ) ≈ 1/e = 0.3678 for
large N . As the discount factor increases the maximum expected payoff decreases for large N . This
indicates that we obtain a low likelihood (close to 0.161 for N = 200) in accepting the best QNI
value once γ = 1, and this is the highest probability of achieving this. Moreover, in Figure 4b we
show the optimal stopping rules for different values of discount factor γ and N = 200. The arrows
depict the earliest (optimal) stopping times r ∗ such that λ(r ∗;γ ,N ) ≤ 0.

Remark 3. For 0 < γ1 < γ2 ≤ 1 the corresponding optimal stopping rule r ∗1 > r ∗2 . This indicates
that the UxV finds a QNI value earlier (stops the process earlier) when the discount factor is higher.
Furthermore, as the discount factor is low then the UxV accepts a QNI value later in N ; note also that
the initial value of r ∗ → N

e as γ → 0 for all N .
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Algorithm 1 TOCP-DRP Algorithm
1: n ← 0
2: Th ← maximum threshold interval
3: r ← number of observations
4: α ← Change point detection threshold
5: active ← TRUE
6: counter ← 0
7: (x∗, r ∗) = LDSOST (r ,γ )
8: while the algorithm is not stopped do
9: if active then /* CUSUM Algorithm described in Appendix C */
10: measure the current QNI xn
11: sn = ln p(x (n),f0)

p(x (n),f1)
12: Sn =

∑n
k=0 sk

13: Gn = Sn −min1≤k≤n{Sk−1}

14: if Gn > α then /*A change point is detected; DRP is activated*/
15: Nd ← n
16: n̂ ← arg min1≤k≤n Sk−1
17: Change occurs
18: active ← FALSE
19: Reset
20: n = n + 1
21: else
22: if n == Th then /* maximum pausing time is reached Th */
23: active ← TRUE;
24: break
25: else[x∗, stopped,m] = LDSF (n, r ∗,xn ,x

∗) /* invocation of DRP*/
26: if stopped == TRUE then
27: active ← TRUE;
28: break
29: n = n + 1

Table 4. Model Parameters for the Experiments.

Parameter Names Values

Change point detection threshold α [0,1]
DRP discount factorγ [1 10]
Maximum pause horizon Th 60

4 PERFORMANCE EVALUATION
We evaluate a complete functional ground UxV that operates on two different missions, i.e., scanning
search for a specific value and exhaustive scan of a certain location. We focus on the latency and
the quality of the network during the mission and the impact of various parameters like mobility.
We begin with a brief description of our experiment methodology.
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Algorithm 2 DRP Procedures
1: function LDSOST (r ,γ )
2: for 1 < n < r do
3: y(n) = LDS(n,γ , r )

4: return y

5:
6: function LDSF (k, r ∗,x ,x∗)
7: stopped ← FALSE
8: position ← −1
9: if k < r ∗ then
10: if x > x∗ then
11: x∗ = x
12: else
13: if x > x∗ then
14: x∗ = x
15: stopped ← TRUE
16: position = k

17: return x∗, stopped,position

18:
19: function LDS(x , r ,γ )
20: s ← 0
21: for x < i < γ do
22: s = s + 1

x

y = y + r
2 γ
N

1− γ
N
−

1+γ
1− γ

N
23: return y

4.1 Experimental Platform & Methodology
The open-source TurtleBot device was used as ground UxV, i.e. UGV, in our experiments as shown
in Figure 6. The TurtleBot uses a camera with depth sensor, i.e., XBOX Kinect for mapping purposes.
ROS (Robotic Operating System) is the main operating system, which is an open-source, meta-
operating system executing on a Raspberry Pi, as shown in Figure 6. UGV receives movement
commands from the GCS in order to approach the given trajectory’s way-points and finally reaches
the objective waypoint. The UGV creates a map of the environment and, simultaneously, localizes
itself in it, which is commonly known as the SLAM (Simultaneous Localization and Mapping)
technology. This is also required to safely navigate within open spaces and proceed with informed
decisions about the exploration targets. The Rviz [27] software was used to illustrate the mapping
instance created by the UGV in Figure 8.
The communication spine between GCS and UxV is a message bus platform based on Apache

Kafka, as shown in 5. The ROS publish-subscribe message pattern facilitates the interoperability
with Apache Kafka, which is basically a messaging system where clients publish messages and
from where consumers ’consume’ them. The main advantages of the Apache Kafka are i) the high
performance in delivering messages and ii) the ability to scale out by distributing the workload
among different servers, therefore, supporting a cluster-based architecture. As such, it can be used
for transmitting UGV measurements that will be routed from producers i.e., UxVs, to the consumers
i.e., the GCS for monitoring, control, etc.
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Fig. 5. The TOCP-DRP proposed architecture for the UxV Management.

(a) (b)

Fig. 6. The Turtlebot UGV with XBOX Kinect and Raspberry Pi computing modules.

4.2 Model Parameters & Real Datasets
Prior to the real experimentation of our DMP and TOCP mechanisms, we consider a large-scale
experiment generated randomly as a combination of real-life datasets. The real-life datasets were
generated after multiple runs of different network conditions. We can categorize the scenarios as
follows:
(1) Good dataset, experiencing no disconnections, i.e., QNI values range in (60, 100];
(2) Medium dataset, indicating a saturated network where the QNI values range in [40, 70];
(3) Bad dataset with several disconnections experienced, i.e., the QNI values range in [20, 50].

The randomly selected blocks of all the three datasets are producing a dynamic QNI for each run of
the experiment. Based on the produced dynamic QNI, we run a number of experiments in order
to study the three design parameters of TOCP and DRP optimal model, i.e. α , γ , and r number of
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Fig. 7. The detection delay function Dn vs. (a) different α values; (b) different γ values; and (c) different
observations r ).

observations. We consider equal weights in equation 5 for all network parameters, i.e. ai = 1
3 . We

run 100 experiments with specific threshold Thmax and the maximum number of Cmax . Figure 7a
shows the detection delay function Dn against different α values. The Dn is more adaptive to QNI
changes while α values are decreasing. The detected changes in the interval [0,0.02] are 50% more
than that of α ≥ 0.1. For the DRP model, γ is a discount factor, i.e. Dn stops earlier with higher γ
values as shown in Figure 7b. DRP adopts the LDF function in the ‘passive’ state. Therefore we can
observe frequent changes from passive to the active state as expected.

We further investigate the behavior of the detection delay function Dn as r approaches infinity.
As shown in Figure 7c, for small values of r , the Dn is sensitive even to small changes in network.
While r is working in higher intervals, Dn is more reluctant to DRP phase. However, the probability
of waiting for a large number of observations r to report a change in network quality tends to zero
as shown in Figure 7c.
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4.3 Experiments: Performance & Comparative Assessment
We report on the experimental evaluation of our framework and mechanisms to examine their
performance. We also provide a comparative assessment with models found in the literature. The
UxV and GCS are part of the Road-, Air- andWater based Future Internet Experimentation (RAWFIE)
platform, which offers an experimentation framework for interconnecting numerous testbeds over
which remote experimentation can be realized.

The RAWFIE platform has been developed in the context of H2020 EU-funded (FIRE+ initiative)
project, which focuses on the MIoT paradigm and provides research and experimentation facilities
through the ever growing domain of UxVs. The RAWFIE platform is device agnostic, promoting
the experimentation under different technologies of UxVs that are equipped with different sensors,
cameras and network interfaces. Any UxV is managed by a central controlling entity which is
programmed per case and fully overview/drive the operation of the respective mechanisms (e.g.,
auto-pilots, remote controlled ground vehicles), as shown in Figure 5. The basic requirement is that
each UxV shall be able to receive/send and decode/encode the incoming/outgoing messages from
the testbed and deliver them to the relevant on-board component.

Our TOCP-DRP optimal mechanisms extended the functionalities of RAWFIE and can be applied
to anyMIoT device, i.e. UAV, UGV and USV. The used UGV in our experiments offers the convenience
to make multiple repetitions of the same experiment in the campus of the University of Athens,
Greece, unaffected from weather conditions and with real users.

The UGV was used in two real case applications: (1) scanning search for a specific sensor value
or a detection of an event designed by a user (mission 1-M1) and (2) exhaustive scan of a room
(mission 2-M2). In both missions, the user creates a path as shown in Figure 8 and the UGV should
follow the way-points in order to reach the final destination. The depicted area is an amphitheater
of the Department of Informatics & Telecommunications of the University of Athens and a corridor
outside. During the execution of the experiments, the area is used from students and staff members
that are moving around and their mobile devices are connected to the same WiFi network.
We performed 100 runs of 10 mins duration each, where each run involves sampling for more

than N = 100 observations for every sensor integrated on UGV. The comparative assessment
is based on four different policies of decision making: (i) the no-policy model, (ii) the heuristic
threshold-based model, in which the transmission of messages is paused when QNI falls below
a threshold, (iii) TOCP model based on [25], which applies a change detection policy triggering
the ‘pause’ mode operation (the passive mode lasts for Th and then it is activated again) and (iv)
the hybrid TOCP-DRP model applied on both UGV and GCS. The performance metrics are QNI
measured, Packet Error Rate (PER), based on packets sent and packets lost, and the end-to-end
message latency.

4.3.1 Expected Performance in Mission M1. Figure 9 plots the QNI performance of the four policies.
We can observe that in mission M1, two areas of poor connectivity exist in time-steps [35-45] and
[75-90]. The no-policy, the threshold-based policy and TOCP policy reach QNI values less than 50%,
while our TOCP-DRP policy has a mean value close to 68%. In addition, for N > 60 the TOCP-DRP
is more intolerant to network changes with mean values around [70-85].

The PER maximum values are for all the policies: {no − policy, threshold − based policy, TOCP ,
and TOCP − DRP} are {25, 45, 15, 10}, respectively, with TOCP-DRP achieving the minimum PER,
i.e., we obtain up to 20% less PER compared with the other policies. The TOCP-DRP has better
performance than the TOCP policy because TOCP overviews network data only in active mode
and TOCP-DRP monitors QNI in both active and passive mode. The deactivation of passive mode
in TOCP happens when the threshold is reached and this means that the algorithm is triggered in
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Fig. 8. Real time monitoring of the robot while executing "Mission 1-Path exploration" and "Mission 2-
Scanning of an area"
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Fig. 9. The QNI for all the compared policies regarding the mission M1: Exploration of a Path.

random time-steps independently of the network status. This is the reason for observing relatively
small PER values every 50 steps when the algorithm recognizes a change detection.

4.3.2 Expected Performance in Mission M2. Figure 10 shows the QNI performance of the four
comparison policies for scanning missions. The M2 mission is performed indoors where areas of
low connectivity and objects exist as obstacles to the UGV. The QNI has greater fluctuation in
this mission relative to the M1 mission. Our TOCP-DRP mechanisms from the early beginning of
mission M2, where UGV is positioned in one random corner of an amphitheater, outperforms the
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Fig. 10. The QNI for all the compared policies regarding the mission M2: Scanning of an unknown Area.

other policies. The average values of QNI for all policies: {no − policy, threshold − based policy,
TOCP , and TOCP − DRP} are {68.4446, 70.8197, 65.8525, 76.3498}, respectively.

The performance of the PER is similar to the M1mission. The PER is minimized in our TOCP-DRP
policy, where the maximum value is 10% in observations. In the remaining policies, the PER achieve
values between 20% and 30% .

4.3.3 Expected Latency in Missions M1 & M2. We plot the latency of the no-policy and our TOCP-
DRP policy in Figure 11a(a) and Figure 11a(b) for the missions M1 and M2, respectively. The
TOCP-DRP policy is considered more efficient than the no-policy for all the observations in both
missions. In particular, in M1 we can measure 24% less end-to-end message latency compared to the
original no-policy decision making of UGV. Moreover, the TOCP-DRP policy achieves systematically
a message latency value which is close to 9% less of the original message latency. We can conclude
that the double hybrid optimal stopping model in the two phases of the network, i.e., active and
passive, based on the network assessment monitoring results to missions with low end-to-end
latency and low expected PER.

5 CONCLUSIONS
We propose an in-network/on-device time-optimized decision making model of real-time control
adaptive to changes of the network quality. This adaptive model dynamically pauses telemetry
and control messages based on derived optimal stopping rules in order to assess in real-time
the trade-off between the delivery of the messages and the network quality statistics. Our DMP
policy optimally schedules critical information delivery to a back-end system. This policy uses two
optimal stopping theory mechanisms based on change-detection theory and the linear discounted
secretary problem. When the quality of the network significantly changes, the UxV and the GCS can
decide in real-time to pause/start the transmission of telemetry in order not to overload a saturated
network, or to risk to lose completely the messages. Our experimental performance evaluation and
comparison assessment showed the successful delivery of messages in poor network conditions
and the moderate production of messages so as not to burden an already saturated network.
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Fig. 11. The latency (ms) measured during the no-policy and the TOCP-DRP policy in mission M1 (a) and
mission M2 (b).

Our future research agenda includes the adoption of our TOCP-DRP model in a swarm of UxVs
in order to handle the offloading of the services / tasks, e.g., generation of telemetry, between the
swarm entities. We also plan to apply our TOCP-DRP mechanism in other types of UxVs to assess in
more detail the challenges in the air and/or the sea dealing with higher network quality variability.
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A APPENDIX
Proof. The function L∗(·) of the log-likelihood ratio between f̄0 and f̄1 is continuous over the

support of f̄1 and has an extremum. The proof is based on the first derivative test:
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For µ0 > µ1 and σ1 > σ0, we obtain that x∗ = µ1σ 2
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Fig. 12. Monotony analysis of L
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□

B APPENDIX
Proof. The KL divergence captures the discrimination between the post and pre-change hy-

potheses and is a measure of the tractability of the change:
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C APPENDIX
In the CUSUM algorithm, we further define the generalized log-likelihood ratio Gx

Gx [k] = max1≤m≤kLx [k,m] =max1≤m≤k

k∑
n=m

ln
p(,x(n)f0)

p(,x(n)f1)
,

= S[k] −min1≤m≤kS[m − 1],

where m̂ is defined as
m̂ = arg min

1≤m≤k
S[m − 1] (20)

Equation 20 shows that the decision function G[k] is the current value of the cumulative sum
S[k] minus its current minimum value. Equation 20 shows that the change time estimate is the
time following the current minimum of the cumulative sum. Therefore, each step composing the
whole algorithm relies on the same quantity: the cumulative sum S[k]. This explains the name of
cumulative sum or CUSUM algorithm.
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D APPENDIX
Proof. The expected payoff of the stopping rule r is ϕ(;γ ,N ). Hence, we find the first optimal

stopping rule r ∗ for which it holds true that ϕ(r ;γ ,N ) − ϕ(r + 1;γ ,N ) ≥ 0, to stop at r given
the conditional expectation of the reward at r + 1 after observing the relative rankings up to r .
Specifically, since the conditional expectation at r + 1 is

ϕ(r + 1;γ ,N ) =
r

N

N∑
k=r+1

1 − γ
N k

k − 1
(21)

we can derive that:

ϕ(r ;γ ,N ) =
r − 1
N
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N k

k − 1
=
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N r

N
+ ϕ(r + 1;γ ,N ) −

1
N

N∑
k=r+1

1 − γ
N k

k − 1
.

Hence, in order to stop at the first r , which satisfies that:
ϕ(r ;γ ,N ) − ϕ(r + 1;γ ,N ) ≥ 0, (22)

we obtain that:

(1 −
γ

N
r ) +

γ

N
(N − r ) − (1 −

γ

N
)

N−1∑
k=r

1
k
≥ 0 (23)

which concludes
N−1∑
k=r

1
k
+ r

2 γ
N

1 − γ
N

−
1 + γ
1 − γ

N

≤ 0. (24)

Hence, the optimal stopping time r ∗ is obtained at the first r ≥ 1, where the above equation turns
non-positive. □
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