Europe PMC

This website requires cookies, and the limited processing of your personal data in order to function. By using the site you are agreeing to this as outlined in our privacy notice and cookie policy.

Abstract 


Fibronectin exists in a compact or extended conformation, depending upon environmental pH and salt concentration. Using recombinant fragments expressed in bacteria and baculovirus, we determined the domains responsible for producing fibronectin's compact conformation. Our velocity and equilibrium sedimentation data show that FN2-14 (a protein containing FN-III domains 2 through 14) forms dimers in low salt. Experiments with smaller fragments indicates that the compact conformation is produced by binding of FN12-14 of one subunit to FN2-3 of the other subunit in the dimer. The binding is weakened at higher salt concentrations, implying an electrostatic interaction. Furthermore, segment FN7-14+A, which contains the alternatively spliced A domain between FN11 and 12, forms dimers, whereas FN7-14 without A does not. Segment FN12-14+A also forms dimers, but the isolated A domain does not. These data imply an association of domain A with FN12-14, and the presence of A may favor an open conformation by competing with FN2-3 for binding to FN12-14.

Citations & impact 


Impact metrics

Jump to Citations

Citations of article over time

Article citations


Go to all (108) article citations

Funding 


Funders who supported this work.

NCI NIH HHS (1)