Europe PMC

This website requires cookies, and the limited processing of your personal data in order to function. By using the site you are agreeing to this as outlined in our privacy notice and cookie policy.

Abstract 


We present a kinetic analysis of the membrane fusion activity of tick-borne encephalitis (TBE) virus and TBE-derived recombinant subviral particles (RSPs) in a liposomal model system. Fusion was monitored using a fluorescence assay involving pyrene-labeled phospholipids. Fusion was strictly dependent on low pH, with the optimum being at pH 5.3-5.5 and the threshold at pH 6.8. Fusion did not require a protein or carbohydrate receptor in the target liposomes. Preexposure to low pH of the virus alone resulted in inactivation of its fusion activity. At the optimum pH for fusion and 37 degrees C, the rate and extent of fusion were very high, with more than 50% of the virus fusing within 2 s and the final extent of fusion being 70%. Lowering of the temperature did not result in a significant decrease in the rate and extent of fusion, suggesting that TBE virus fusion is a facile process with a low activation energy, possibly due to the flat orientation of the E glycoprotein on the viral surface facilitating the establishment of direct intermembrane contact. The fusion characteristics of TBE virus and RSPs were similar, indicating that RSPs provide a reliable and convenient model for further study of the membrane fusion properties of TBE virus.

References 


Articles referenced by this article (60)


Show 10 more references (10 of 60)

Citations & impact 


Impact metrics

Jump to Citations

Citations of article over time

Alternative metrics

Altmetric item for https://www.altmetric.com/details/119737370
Altmetric
Discover the attention surrounding your research
https://www.altmetric.com/details/119737370

Article citations


Go to all (81) article citations

Funding 


Funders who supported this work.

NHLBI NIH HHS (1)