Europe PMC

This website requires cookies, and the limited processing of your personal data in order to function. By using the site you are agreeing to this as outlined in our privacy notice and cookie policy.

Abstract 


Recent studies in Saccharomyces cerevisiae have provided new insights in our understanding of the molecular mechanisms of meiotic recombination. Meiosis-specific DNA double-strand breaks have been detected and have been shown to be the lesions that initiate recombination events. These are located mostly in promoter regions where the chromatin is in an open configuration, and cluster in domains along the chromosome. They are likely to be made by a topoisomerase II-like protein encoded by the SPO11 gene. Several DNA intermediates in the meiotic double strand-break repair pathway have been characterised and several multi-protein complexes have been identified and shown to be involved at different steps in the repair pathway. The conservation of these protein complexes in higher eukaryotes suggests that the meiotic recombination mechanism could be conserved. With the application of the well characterised genetical, molecular, cytological and biochemical techniques and the recently developed technology for genomic studies (biochips), we can expect a rapid increase in our comprehension of the meiotic recombination process.

Data