Europe PMC

This website requires cookies, and the limited processing of your personal data in order to function. By using the site you are agreeing to this as outlined in our privacy notice and cookie policy.

Abstract 


E-cadherins are well characterized cell surface molecules expressed in epithelial cells, which play a major role in cell adhesion through the establishment of calcium-dependent homophilic interactions at sites of cell-cell contacts. They are also integral components of morphogenetic programs controlling the maintenance of the structural and functional integrity of epithelia. Accumulated evidence indicates that the E-cadherin-mediated cell adhesion system is highly regulated from inside the cells by a number of intracellular signaling pathways. Recently available information suggests that E-cadherins may also play a role in the transduction of signals from the outside of the cell to the cytoplasm. However, the nature of the biochemical routes regulated by E-cadherins is still largely unknown. In this study, we set out to explore the possibility that E-cadherins may regulate the activity of MAPK, a key signaling pathway involved in cell fate decisions, upon the formation of cell-cell contacts among neighboring cells. By using an immortalized non-tumorigenic keratinocyte cell line, HaCat, as a model system, we provide evidence that the assembly of calcium-dependent adherens junctions leads to a rapid and remarkable increase in the state of activation of MAPK and that this event is mediated by E-cadherins. Furthermore, we found that E-cadherins stimulate the MAPK pathway through the ligand-independent activation of epidermal growth factor receptors and the consequent activation of a biochemical route leading to the stimulation of MAPKs. These findings suggest that E-cadherins can initiate outside-in signal transducing pathways through the engagement of tyrosine kinase receptors for epidermal growth factor, thus providing a novel molecular mechanism whereby these cell adhesion molecules may ultimately control the fate of normal and transformed epithelial cells.

Citations & impact 


Impact metrics

Jump to Citations

Citations of article over time

Alternative metrics

Altmetric item for https://www.altmetric.com/details/6578213
Altmetric
Discover the attention surrounding your research
https://www.altmetric.com/details/6578213

Article citations


Go to all (217) article citations