Europe PMC

This website requires cookies, and the limited processing of your personal data in order to function. By using the site you are agreeing to this as outlined in our privacy notice and cookie policy.

Abstract 


A stable clone of rat mesangial cells expressing antisense GLUT-1 (i.e., MCGT1AS cells) was developed to protect them from high glucose exposure. GLUT-1 protein was reduced 50%, and the 2-deoxy-[(3)H]glucose uptake rate was reduced 33% in MCGT1AS. MCLacZ control cells and MCGT1 GLUT-1-overexpressing cells were used for comparisons. In MCLacZ, 20 mM D-glucose increased GLUT-1 transcription 90% vs. no increase in MCGT1AS. Glucose (8 mM) and 12 mM xylitol [a hexose monophosphate (HMP) shunt substrate] did not stimulate GLUT-1 transcription. An 87% replacement of the standard 8 mM D-glucose with 3-O-methylglucose reduced GLUT-1 transcription 80%. D-Glucose (20 mM) increased fibronectin mRNA and protein by 47 and 100%, respectively, in MCLacZ vs. no increases in MCGT1AS. Fibronectin synthesis was elevated 48% in MCGT1 and reduced 44% in MCGT1AS. We conclude that 1) transcription of GLUT-1 in response to D-glucose depends on glucose metabolism, although not through the HMP shunt, and 2) antisense GLUT-1 treatment of mesangial cells blocks D-glucose-induced GLUT-1 and fibronectin expression, thereby demonstrating a protective effect that could be beneficial in the setting of diabetes.

References 


Articles referenced by this article (35)


Show 10 more references (10 of 35)

Citations & impact 


Impact metrics

Jump to Citations

Citations of article over time

Article citations


Go to all (27) article citations

Funding 


Funders who supported this work.

NIDDK NIH HHS (3)