Europe PMC

This website requires cookies, and the limited processing of your personal data in order to function. By using the site you are agreeing to this as outlined in our privacy notice and cookie policy.

Abstract 


Stathmin is a microtubule-destabilizing phosphoprotein that plays a critical role in the regulation of mitosis. The microtubule-depolymerizing activity of stathmin is lost upon phosphorylation in mitosis. Although the role of phosphorylation of stathmin by p34(cdc2) kinase in the assembly of the mitotic spindle is well established, the role of dephosphorylation of stathmin in mitosis is unknown. In this study, we tested the hypothesis that dephosphorylation of stathmin may be critically important for the depolymerization of the mitotic spindle and the exit from mitosis. We compared the effects of okadaic acid, a specific inhibitor of serine/threonine protein phosphatases, on different parameters of mitotic progression in the presence or absence of stathmin deficiency. Because okadaic acid prevents dephosphorylation of stathmin and results in accumulation of the inactive phosphorylated form, exposure to okadaic acid would be expected to have a more profound effect on mitosis in the presence of relative stathmin deficiency. We found that inhibition of stathmin expression results in increased sensitivity to the antimitotic effects of okadaic acid. This was reflected by increased growth inhibition associated with mitotic arrest. A vast majority of the stathmin-inhibited cells were found to be arrested in late metaphase/anaphase and had severe mitotic spindle abnormalities. Exposure to okadaic acid also resulted in a bigger ratio of polymerized/unpolymerized tubulin in stathmin-inhibited cells relative to control cells. Because the only difference between the control and the stathmin-inhibited cells is the deficiency of stathmin in the latter, the increased susceptibility of the stathmin-inhibited cells to okadaic acid-induced mitotic arrest implies a role for stathmin in the later stages of mitosis.

Citations & impact 


Impact metrics

Jump to Citations

Citations of article over time

Smart citations by scite.ai
Smart citations by scite.ai include citation statements extracted from the full text of the citing article. The number of the statements may be higher than the number of citations provided by EuropePMC if one paper cites another multiple times or lower if scite has not yet processed some of the citing articles.
Explore citation contexts and check if this article has been supported or disputed.
https://scite.ai/reports/10.1074/jbc.m011654200

Supporting
Mentioning
Contrasting
4
43
0

Article citations


Go to all (27) article citations

Funding 


Funders who supported this work.

NHLBI NIH HHS (1)