Europe PMC

This website requires cookies, and the limited processing of your personal data in order to function. By using the site you are agreeing to this as outlined in our privacy notice and cookie policy.

Abstract 


The precise molecular events involved in the development of drug resistance (DR) remain largely unknown. Raf is an intermediate in the signal transduction cascades initiated by growth factors. The hypothesis behind the following studies is that deregulated Raf-1 expression plays a role in the development of drug resistance. A positive correlation was observed between increased Raf-1 activity and increased values for IC50 for doxorubicin in established cell lines. The National Cancer Institute/Adriamycin Resistant (NCI/ADR-RES) cell line exhibited both the highest Raf-1 activity and the highest IC50 values for doxorubicin (Adriamycin). In contrast, the MCF-7 cell line exhibited both lower Raf activity and lower IC50 values for doxorubicin. While MCF-7 cells transfected with either constitutively active DeltaRaf-1 or conditionally active DeltaRaf-1:AR demonstrated increased IC50 values for doxorubicin and a reduced capacity to undergo apoptosis after doxorubicin treatment as compared with parental cell lines. Moreover, growth curves performed show that both the constitutively and conditionally active forms of Raf-1 do not increase growth as compared with the parental MCF-7 cell line. This is important because it implies that higher cell counts between Raf transfectants and the parental MCF-7 cell line are attributable to differences in DR, not growth rates. These observations suggest a role for the Raf-1 protooncogene in the regulation of DR.

Citations & impact 


Impact metrics

Jump to Citations

Citations of article over time

Article citations


Go to all (42) article citations

Funding 


Funders who supported this work.

NCI NIH HHS (1)