Europe PMC

This website requires cookies, and the limited processing of your personal data in order to function. By using the site you are agreeing to this as outlined in our privacy notice and cookie policy.

Abstract 


In the proliferative zone of the developing cerebral cortex, multipotential progenitors predominate early in development and divide to increase the progenitor pool. As corticogenesis progresses, proportionately fewer progenitors are produced and, instead, cell divisions yield higher numbers of postmitotic neurones or glial cells. As the switch from the generation of progenitors to that of differentiated cells occurs, the orientation of cell division alters from predominantly symmetrical to predominantly asymmetrical. It has been hypothesised that symmetrical divisions expand the progenitor pool, whereas asymmetrical divisions generate postmitotic cells, although this remains to be proved. The molecular mechanisms regulating these processes are poorly understood. The transcription factor Pax6 is highly expressed in the cortical proliferative zone and there are morphological defects in the Pax6(Sey/Sey) (Pax6 null) cortex, but little is known about the principal cellular functions of Pax6 in this region. We have analysed the cell-cycle kinetics, the progenitor cleavage orientation and the onset of expression of differentiation markers in Pax6(Sey/Sey) cortical cells in vivo and in vitro. We showed that, early in corticogenesis at embryonic day (E) 12.5, the absence of Pax6 accelerated cortical development in vivo, shortening the cell cycle and the time taken for the onset of expression of neural-specific markers. This also occurred in dissociated culture of isolated cortical cells, indicating that the changes were intrinsic to the cortical cells. From E12.5 to E15.5, proportions of asymmetrical divisions increased more rapidly in mutant than in wild-type embryos. By E15.5, interkinetic nuclear migration during the cell cycle was disrupted and the length of the cell cycle was significantly longer than normal in the Pax6(Sey/Sey) cortex, with a lengthening of S phase. Together, these results show that Pax6 is required in developing cortical progenitors to control the cell-cycle duration, the rate of progression from symmetrical to asymmetrical division and the onset of expression of neural-specific markers.

Citations & impact 


Impact metrics

Jump to Citations
Jump to Data

Citations of article over time

Alternative metrics

Altmetric item for https://www.altmetric.com/details/9775513
Altmetric
Discover the attention surrounding your research
https://www.altmetric.com/details/9775513

Article citations


Go to all (147) article citations

Data 


Funding 


Funders who supported this work.

Medical Research Council (1)