Europe PMC

This website requires cookies, and the limited processing of your personal data in order to function. By using the site you are agreeing to this as outlined in our privacy notice and cookie policy.

Abstract 


P/Q-type presynaptic calcium currents (IpCa) undergo activity-dependent facilitation during repetitive activation at the calyx of the Held synapse. We investigated whether neuronal calcium sensor 1 (NCS-1) may underlie this phenomenon. Direct loading of NCS-1 into the nerve terminal mimicked activity-dependent IpCa facilitation by accelerating the activation time of IpCa in a Ca2+-dependent manner. A presynaptically loaded carboxyl-terminal peptide of NCS-1 abolished IpCa facilitation. These results suggest that residual Ca2+ activates endogenous NCS-1, thereby facilitating IpCa. Because both P/Q-type Ca2+ channels and NCS-1 are widely expressed in mammalian nerve terminals, NCS-1 may contribute to the activity-dependent synaptic facilitation at many synapses.

Citations & impact 


Impact metrics

Jump to Citations
Jump to Data

Citations of article over time

Article citations


Go to all (154) article citations

Data