Europe PMC

This website requires cookies, and the limited processing of your personal data in order to function. By using the site you are agreeing to this as outlined in our privacy notice and cookie policy.

Abstract 


1. The ionic currents in the lateral pyloric (LP) cell of the stomatogastric ganglion (STG) described in the preceding paper of the rock crab Cancer borealis were fit with a set of differential equations that describe their voltage, time, and Ca2+ dependence. The voltage-dependent currents modeled are a delayed rectifier-like current, id; a Ca(2+)-activated outward current, io(Ca); a transient A-like current, iA; a Ca2+ current, iCa; an inwardly rectifying current, ih; and a fast tetrodotoxin (TTX)-sensitive Na+ current, iNa. 2. A single-compartment, isopotential model of the LP cell was constructed from the six voltage-dependent currents, a voltage-independent leak current il, a Ca2+ buffering system, and the membrane capacitance. 3. The behavior of the model LP neuron was compared with that of the biological neuron by simulating physiological experiments carried out in both voltage-clamp and current-clamp modes. The model and biological neurons show similar action-potential shapes, durations, steady-state current-voltage (I-V) curves, and respond to injected current in a comparable way.

Citations & impact 


Impact metrics

Jump to Citations

Citations of article over time

Article citations


Go to all (51) article citations

Funding 


Funders who supported this work.

NIMH NIH HHS (1)