Europe PMC

This website requires cookies, and the limited processing of your personal data in order to function. By using the site you are agreeing to this as outlined in our privacy notice and cookie policy.

Abstract 


A novel signaling mechanism is described through which extracellular signals and intracellular signaling pathways regulate proliferation, growth, differentiation, and other functions of cells in the nervous system. Upon cell stimulation, fibroblast growth factor receptor-1 (FGFR1), a typically plasma membrane-associated protein, is released from ER membranes into the cytosol and translocates to the cell nucleus by an importin-beta-mediated transport pathway along with its ligand, FGF-2. The nuclear accumulation of FGFR1 is activated by changes in cell contacts and by stimulation of cells with growth factors, neurotransmitters and hormones as well as by a variety of different second messengers and thus was named integrative nuclear FGFR1 signaling (INFS). In the nucleus, FGFR1 localizes specifically within nuclear matrix-attached speckle-domains, which are known to be sites for RNA Pol II-mediated transcription and co-transcriptional pre-mRNA processing. In these domains, nuclear FGFR1 colocalizes with RNA transcription sites, splicing factors, modified histones, phosphorylated RNA Pol II, and signaling kinases. Within the nucleus, FGFR1 serves as a general transcriptional regulator, as indicated by its association with the majority of active nuclear centers of RNA synthesis and processing, by the ability of nuclear FGFR1 to activate structurally distinct genes located on different chromosomes and by its stimulation of multi-gene programs for cell growth and differentiation. We propose that FGFR1 is part of a universal "feed-forward-and-gate" signaling module in which classical signaling cascades initiated by specific membrane receptors transmit signals to sequence specific transcription factors (ssTFs), while INFS elicited by the same stimuli feeds the signal forward to the common coactivator, CREB-binding protein (CBP). Activation of CBP by INFS, along with the activation of ssTFs by classical signaling cascades brings about coordinated responses from structurally different genes located at different genomic loci.

References 


Articles referenced by this article (104)


Show 10 more references (10 of 104)

Citations & impact 


Impact metrics

Jump to Citations
Jump to Data

Citations of article over time

Article citations


Go to all (96) article citations

Data 


Funding 


Funders who supported this work.

NHLBI NIH HHS (1)

NIGMS NIH HHS (1)

NINDS NIH HHS (1)