Europe PMC

This website requires cookies, and the limited processing of your personal data in order to function. By using the site you are agreeing to this as outlined in our privacy notice and cookie policy.

Abstract 


Oxygen consumption at the targeted site has a significant effect on dosimetry in photodynamic therapy (PDT). However, oxygen consumption in PDT using a pulsed laser as a light source has not been clarified. We therefore investigated the dependence of cytotoxicity on the oxygen consumption and the photosensitizer photobleaching of PDT using a pulsed laser by comparing with that using a continuous wave (CW) laser. Mouse renal carcinoma cells (Renca) were incubated with a second-generation photosensitizer, PAD-S31. The cells were then irradiated with either a 670-nm nanosecond pulsed light from the 3rd harmonics of a Nd:YAG laser-pumped optical parametric oscillator with a peak fluence rate of approximately 1 MW/cm(2) at 30 Hz or a 670-nm CW diode laser with a total light dose of 40 J/cm(2). Regardless of laser source, cytotoxic effects exhibited cumulative dose responses to the photosensitizer ranging from 12 to 96 microg/ml. However, cytotoxic effect of PDT using the pulsed light was significantly less than that using the CW light with the photosensitizer concentrations of 24 and 48 microg/ml under identical fluence rates. During PDT, the cells exposed to the pulsed light consumed oxygen more slowly, resulting in a lower amount of oxygen consumption when compared with PDT using CW light. In accordance with oxygen consumption, the pulsed light induced significantly less photobleaching of the photosensitizer than the CW light did. These results indicate that the efficiency of PDT using pulsed light is less when compared with CW light, probably being related to suppressed oxygen consumption during the pulsed light irradiation.

References 


Articles referenced by this article (19)


Show 9 more references (10 of 19)

Citations & impact 


Impact metrics

Jump to Citations

Citations of article over time

Article citations


Go to all (18) article citations