Europe PMC

This website requires cookies, and the limited processing of your personal data in order to function. By using the site you are agreeing to this as outlined in our privacy notice and cookie policy.

Abstract 


We previously reported that suppression of the MEK/ERK pathway increases drug resistance of SiHa cells. In this study, we further characterized the underlying mechanism of this phenomenon. Pretreatment of SiHa cells with MEK/ERK inhibitor enhanced cisplatin-induced NF-kappaB activation. However, results of immunoblotting analysis showed that neither cisplatin nor MEK/ERK inhibitors induced marked IkappaBalpha degradation, suggesting that suppression of the MEK/ERK signaling pathway may enhance cisplatin-induced NF-kappaB activation via mechanisms other than the conventional pathway. Previous findings that protein phosphatase 4 (PP4), a nuclear serine/threonine phosphatase, directly interacts with and activates NF-kappaB led us to examine the phosphorylation status of NF-kappaB p65. Coincident with activation of NF-kappaB, cisplatin induced Ser phosphorylation but decreased Thr phosphorylation of NF-kappaB p65. Suppression of the MEK/ERK pathway further enhanced cisplatin-induced Thr dephosphorylation but did not affect cisplatin-induced Ser phosphorylation of NF-kappaB p65. Further, in parallel with Thr dephosphorylation, the protein level of nuclear PP4 was increased in cisplatin-treated cells and was further increased by suppression of the MEK/ERK pathway. SiHa cells were then transfected by a sense or an antisense PP4 gene. PP4-overexpressing cells showed a decrease in Thr phosphorylation of NF-kappaB p65 to nearly undetectable levels, and both basal and cisplatin-induced NF-kappaB activities were higher than those in parental cells. By contrast, cisplatin, either alone or with MEK/ERK inhibitors, induced little NF-kappaB activation in antisense PP4-transfected cells. Coprecipitated complex kinase assay revealed a fragment of NF-kappaB p65 (amino acids 279-444) to contain potential phosphorylation sites that directly interact with PP4. Further studies by site-directed mutagenesis suggested that Thr(435) was the major phosphorylation site.

References 


Articles referenced by this article (36)


Show 10 more references (10 of 36)

Citations & impact 


Impact metrics

Jump to Citations
Jump to Data

Citations of article over time

Alternative metrics

Altmetric item for https://www.altmetric.com/details/3505273
Altmetric
Discover the attention surrounding your research
https://www.altmetric.com/details/3505273

Smart citations by scite.ai
Smart citations by scite.ai include citation statements extracted from the full text of the citing article. The number of the statements may be higher than the number of citations provided by EuropePMC if one paper cites another multiple times or lower if scite has not yet processed some of the citing articles.
Explore citation contexts and check if this article has been supported or disputed.
https://scite.ai/reports/10.1074/jbc.m402362200

Supporting
Mentioning
Contrasting
3
67
0

Article citations


Go to all (77) article citations

Other citations

Data