Europe PMC

This website requires cookies, and the limited processing of your personal data in order to function. By using the site you are agreeing to this as outlined in our privacy notice and cookie policy.

Abstract 


Glucocorticoid receptors (GRs) are transcription factors that, upon activation by glucocorticoids, translocate to the cell nucleus, and bind to specific response elements (GREs) in the promoter region of target genes. We analysed stress- and circadian-induced changes in nuclear translocation and GRE binding of GRs in the hippocampus and the prefrontal cortex of the rat brain. Nuclear translocation and binding to GRE were measured in nuclear extracts by Western blot and gel shift, respectively. When glucocorticoid levels were low, as during the light period of the circadian cycle, nuclear GRs and GRE binding were almost undetectable. However, the increase in glucocorticoid levels observed during the dark phase of the circadian cycle or after stress induced a massive nuclear translocation of GRs and GRE binding. These effects were corticosterone-dependent because they were suppressed by adrenalectomy and restored by the injection of corticosterone. Furthermore, GR translocation and GRE binding were of higher amplitude or lasted longer in the hippocampus than in the prefrontal cortex. By contrast, extracellular levels of glucocorticoids, measured by microdialysis in freely moving animals, were identical in the two structures. These results suggest that specific intracellular regulations of GR activity contribute to differentiate the effects of glucocorticoids in different regions of the brain.

References 


Articles referenced by this article (49)


Show 10 more references (10 of 49)

Citations & impact 


Impact metrics

Jump to Citations

Citations of article over time

Article citations


Go to all (67) article citations