Europe PMC

This website requires cookies, and the limited processing of your personal data in order to function. By using the site you are agreeing to this as outlined in our privacy notice and cookie policy.

Abstract 


Malignant hyperthermia (MH) is an inherited pharmacogenetic disorder caused by mutations in the skeletal muscle ryanodine receptor (RyR1) and the dihydropyridine receptor (DHPR) alpha(1S)-subunit. We characterized the effects of an MH mutation in the DHPR cytoplasmic III-IV loop of alpha(1S) (R1086H) on DHPR-RyR1 coupling after reconstitution in dysgenic (alpha(1S) null) myotubes. Compared with wild-type alpha(1S), caffeine-activated Ca(2+) release occurred at approximately fivefold lower concentrations in nonexpressing and R1086H-expressing myotubes. Although maximal voltage-gated Ca(2+) release was similar in alpha(1S)- and R1086H-expressing myotubes, the voltage dependence of Ca(2+) release was shifted approximately 5 mV to more negative potentials in R1086H-expressing myotubes. Our results demonstrate that alpha(1S) functions as a negative allosteric modulator of release channel activation by caffeine/voltage and that the R1086H MH mutation in the intracellular III-IV linker disrupts this negative regulatory influence. Moreover, a low caffeine concentration (2 mM) caused a similar shift in voltage dependence of Ca(2+) release in alpha(1S)- and R1086H-expressing myotubes. Compared with alpha(1S)-expressing myotubes, maximal L channel conductance (G(max)) was reduced in R1086H-expressing myotubes (alpha(1S) 130 +/- 10.2, R1086H 88 +/- 6.8 nS/nF; P < 0.05). The decrease in G(max) did not result from a change in retrograde coupling with RyR1 as maximal conductance-charge movement ratio (G(max)/Q(max)) was similar in alpha(1S)- and R1086H-expressing myotubes and a similar decrease in G(max) was observed for an analogous mutation engineered into the cardiac L channel (R1217H). In addition, both R1086H and R1217H DHPRs targeted normally and colocalized with RyR1 in sarcoplasmic reticulum (SR)-sarcolemmal junctions. These results indicate that the R1086H MH mutation in alpha(1S) enhances RyR1 sensitivity to activation by both endogenous (voltage sensor) and exogenous (caffeine) activators.

References 


Articles referenced by this article (48)


Show 10 more references (10 of 48)

Citations & impact 


Impact metrics

Jump to Citations
Jump to Data

Citations of article over time

Alternative metrics

Altmetric item for https://www.altmetric.com/details/3231861
Altmetric
Discover the attention surrounding your research
https://www.altmetric.com/details/3231861

Smart citations by scite.ai
Smart citations by scite.ai include citation statements extracted from the full text of the citing article. The number of the statements may be higher than the number of citations provided by EuropePMC if one paper cites another multiple times or lower if scite has not yet processed some of the citing articles.
Explore citation contexts and check if this article has been supported or disputed.
https://scite.ai/reports/10.1152/ajpcell.00173.2004

Supporting
Mentioning
Contrasting
9
74
1

Article citations


Go to all (75) article citations

Other citations

Data 


Funding 


Funders who supported this work.

NIAMS NIH HHS (3)