Europe PMC

This website requires cookies, and the limited processing of your personal data in order to function. By using the site you are agreeing to this as outlined in our privacy notice and cookie policy.

Abstract 


Chronic, low-level elevation of circulating interleukin (IL)-6 is observed in disease states as well as in many outwardly healthy elderly individuals. Increased plasma IL-6 is also observed after intense, prolonged exercise. In the context of skeletal muscle, IL-6 has variously been reported to regulate carbohydrate and lipid metabolism, increase satellite cell proliferation, or cause muscle wasting. In the present study, we used a rodent local infusion model to deliver modest levels of IL-6, comparable to that present after exercise or with chronic low-level inflammation in the elderly, directly into a single target muscle in vivo. The aim of this study was to examine the direct effects of IL-6 on skeletal muscle in the absence of systemic changes in this cytokine. Data included cellular and molecular markers of cytokine and growth factor signaling (phosphorylation and mRNA content) as well as measurements to detect muscle atrophy. IL-6 infusion resulted in muscle atrophy characterized by a preferential loss of myofibrillar protein (-17%). IL-6 induced a decrease in the phosphorylation of ribosomal S6 kinase (-60%) and STAT5 (-33%), whereas that of STAT3 was increased approximately twofold. The changes seen in the IL-6-infused muscles suggest alterations in the balance of growth factor-related signaling in favor of a more catabolic profile. This suggests that downregulation of growth factor-mediated intracellular signaling may be a mechanism contributing to the development of muscle atrophy induced by elevated IL-6.

References 


Articles referenced by this article (57)


Show 10 more references (10 of 57)

Citations & impact 


Impact metrics

Jump to Citations

Citations of article over time

Alternative metrics

Altmetric item for https://www.altmetric.com/details/129964632
Altmetric
Discover the attention surrounding your research
https://www.altmetric.com/details/129964632

Smart citations by scite.ai
Smart citations by scite.ai include citation statements extracted from the full text of the citing article. The number of the statements may be higher than the number of citations provided by EuropePMC if one paper cites another multiple times or lower if scite has not yet processed some of the citing articles.
Explore citation contexts and check if this article has been supported or disputed.
https://scite.ai/reports/10.1152/japplphysiol.01026.2004

Supporting
Mentioning
Contrasting
14
415
1

Article citations


Go to all (372) article citations

Funding 


Funders who supported this work.

NIAMS NIH HHS (1)