Europe PMC

This website requires cookies, and the limited processing of your personal data in order to function. By using the site you are agreeing to this as outlined in our privacy notice and cookie policy.

Abstract 


Purpose

To evaluate a combined cellular and humoral immunotherapy regimen in a mouse model of disseminated human neuroblastoma. We tested combinations of clinical-grade, isolated human gammadelta T cells with the humanized anti-GD2 antibody hu14.18 and a novel fusion cytokine, Fc-IL7.

Experimental design

gammadelta T cells were large-scale enriched from leukapheresis product obtained from granulocyte colony-stimulating factor-mobilized donors. gammadelta T cell cytotoxicity was tested in a europium-TDA release assay. The effect of Fc-IL7 on gammadelta T-cell survival in vitro was assessed by flow cytometry. NOD.CB17-Prkdc(scid)/J mice received 1 x 10(6) NB-1691 neuroblastoma cells via the tail vein 5 to 6 days before therapy began. Treatment, for five consecutive weeks, consisted of injections of 1 x 10(6) gammadelta T cells weekly, 1 x 10(6) gammadelta T cells weekly, and 20 microg hu14.18 antibody four times per week, or 1 x 10(6) gammadelta T cells weekly with 20 microg hu14.18 antibody four times per week, and 20 mug Fc-IL7 once weekly.

Results

The natural cytotoxicity of gammadelta T cells to NB-1691 cells in vitro was dramatically enhanced by hu14.18 antibody. Fc-IL7 effectively kept cultured gammadelta T cells viable. Combination therapy with gammadelta T cells and hu14.18 antibody significantly enhanced survival (P = 0.001), as did treatment with gammadelta T cells, hu14.18 antibody, and Fc-IL7 (P = 0.005). Inclusion of Fc-IL7 offered an additional survival benefit (P=0.04).

Conclusions

We have shown a new and promising immunotherapy regimen for neuroblastoma that requires clinical evaluation. Our approach might also serve as a therapeutic model for other malignancies.

Citations & impact 


Impact metrics

Jump to Citations

Citations of article over time

Smart citations by scite.ai
Smart citations by scite.ai include citation statements extracted from the full text of the citing article. The number of the statements may be higher than the number of citations provided by EuropePMC if one paper cites another multiple times or lower if scite has not yet processed some of the citing articles.
Explore citation contexts and check if this article has been supported or disputed.
https://scite.ai/reports/10.1158/1078-0432.ccr-05-1184

Supporting
Mentioning
Contrasting
0
25
0

Article citations


Go to all (31) article citations

Funding 


Funders who supported this work.

NCI NIH HHS (1)