Europe PMC

This website requires cookies, and the limited processing of your personal data in order to function. By using the site you are agreeing to this as outlined in our privacy notice and cookie policy.

Abstract 


Myasthenia gravis (MG) and experimental autoimmune MG (EAMG) are T cell-dependent antibody-mediated autoimmune disorders, in which the nicotinic acetylcholine receptor (AChR) is the major autoantigen. DNA microarray analysis revealed increased levels of several phosphodiesterase (PDE) subtypes in lymph node cells (LNC) and muscles of EAMG rats compared with healthy controls. Quantitative real-time PCR analysis indicated that EAMG is characterized by an increase of PDE subtypes 1, 3, 4, and 7 in LNC and of PDE subtypes 2, 3, 4, and 7 in muscles. Pentoxifylline (PTX), a general PDE inhibitor, inhibited the progression of EAMG when treatment started at either the acute or chronic stages of disease. This suppression was associated with down-regulation of humoral and cellular AChR-specific responses, as well as down-regulation of PDE4, TNF-alpha, IL-18, IL-12, and IL-10 in LNC and of PDEs 1, 4, 7, and TNF-alpha in muscles. The expression of Foxp3, a transcription factor essential for CD4+CD25+ regulatory T cell function, was increased in splenocytes although the number of these cells remained unchanged. PTX also reduced the expression of the endopeptidase cathepsin-l, a marker of muscle damage, in EAMG muscles. This study demonstrates the involvement of PDE regulation in EAMG pathogenesis and suggests that PDE inhibitors may be considered for immunotherapy of MG.

Citations & impact 


Impact metrics

Jump to Citations
Jump to Data

Citations of article over time

Article citations


Go to all (23) article citations

Data