Europe PMC

This website requires cookies, and the limited processing of your personal data in order to function. By using the site you are agreeing to this as outlined in our privacy notice and cookie policy.

Abstract 


HLA-G is a nonclassical major histocompatibility complex class I (MHCI) molecule, which is expressed in trophoblasts and confers immunological tolerance in the maternal-fetal interface by binding to leukocyte Ig-like receptors (LILRs, also called as LIR/ILT/CD85) and CD8. HLA-G is expressed in disulfide-linked dimer form both in solution and at the cell surface. Interestingly, MHCI dimer formations have been involved in pathogenesis and T cell activation. The structure and receptor binding characteristics of MHCI dimers have never been evaluated. Here we performed binding studies showing that the HLA-G dimer exhibited higher overall affinity to LILRB1/2 than the monomer by significant avidity effects. Furthermore, the cell reporter assay demonstrated that the dimer formation remarkably enhanced the LILRB1-mediated signaling at the cellular level. We further determined the crystal structure of the wild-type dimer of HLA-G with the intermolecular Cys(42)-Cys(42) disulfide bond. This dimer structure showed the oblique configuration to expose two LILR/CD8-binding sites upward from the membrane easily accessible for receptors, providing plausible 1:2 (HLA-G dimer:receptors) complex models. These results indicated that the HLA-G dimer conferred increased avidity in a proper structural orientation to induce efficient LILR signaling, resulting in the dominant immunosuppressive effects. Moreover, structural and functional implications for other MHCI dimers observed in activated T cells and the pathogenic allele, HLA-B27, are discussed.

Citations & impact 


Impact metrics

Jump to Citations
Jump to Data

Citations of article over time

Alternative metrics

Altmetric item for https://www.altmetric.com/details/35387689
Altmetric
Discover the attention surrounding your research
https://www.altmetric.com/details/35387689

Article citations


Go to all (137) article citations

Data 


Protocols & materials