Europe PMC

This website requires cookies, and the limited processing of your personal data in order to function. By using the site you are agreeing to this as outlined in our privacy notice and cookie policy.

Abstract 


Whether TCR engagement leads to activation or tolerance is determined by the concomitant delivery of multiple accessory signals, cytokines, and environmental cues. In this study, we demonstrate that the mammalian target of rapamycin (mTOR) integrates these signals and determines the outcome of TCR engagement with regard to activation or anergy. In vitro, Ag recognition in the setting of mTOR activation leads to full immune responses, whereas recognition in the setting of mTOR inhibition results in anergy. Full T cell activation is associated with an increase in the phosphorylation of the downstream mTOR target S6 kinase 1 at Thr(421)/Ser(424) and an increase in the mTOR-dependent cell surface expression of transferrin receptor (CD71). Alternatively, the induction of anergy results in markedly less S6 kinase 1 Thr(421)/Ser(424) phosphorylation and CD71 surface expression. Likewise, the reversal of anergy is associated not with proliferation, but rather the specific activation of mTOR. Importantly, T cells engineered to express a rapamycin-resistant mTOR construct are resistant to anergy induction caused by rapamycin. In vivo, mTOR inhibition promotes T cell anergy under conditions that would normally induce priming. Furthermore, by examining CD71 surface expression, we are able to distinguish and differentially isolate anergic and activated T cells in vivo. Overall, our data suggest that by integrating environmental cues, mTOR plays a central role in determining the outcome of Ag recognition.

References 


Articles referenced by this article (37)


Show 10 more references (10 of 37)

Citations & impact 


Impact metrics

Jump to Citations

Citations of article over time

Alternative metrics

Altmetric item for https://www.altmetric.com/details/18175153
Altmetric
Discover the attention surrounding your research
https://www.altmetric.com/details/18175153

Smart citations by scite.ai
Smart citations by scite.ai include citation statements extracted from the full text of the citing article. The number of the statements may be higher than the number of citations provided by EuropePMC if one paper cites another multiple times or lower if scite has not yet processed some of the citing articles.
Explore citation contexts and check if this article has been supported or disputed.
https://scite.ai/reports/10.4049/jimmunol.178.4.2163

Supporting
Mentioning
Contrasting
5
243
0

Article citations


Go to all (174) article citations

Funding 


Funders who supported this work.

NCI NIH HHS (1)

NIAID NIH HHS (1)