Europe PMC

This website requires cookies, and the limited processing of your personal data in order to function. By using the site you are agreeing to this as outlined in our privacy notice and cookie policy.

Abstract 


The covalent modification of histone tails has emerged as a crucial step in controlling the eucaryotic genomes. Eucaryotic cells must possess mechanisms for condensing and decondensing chromatin. Moreover, chromatin condensation is particularly evident during mitosis and apoptotic cell death, whereas chromatin relaxation is necessary for replication, repair, recombination and transcription. The post-translational modifications of histone tails such as reversible acetylation, phosphorylation and methylation play a critical role in dynamic condensation/relaxation that occurs during the cell cycle. Histone phosphorylation is believed to play a direct role in mitosis, cell death, repair, replication and recombination. In this review, we discuss recent progress in studies of histone phosphorylation.

Citations & impact 


Impact metrics

Jump to Citations

Citations of article over time

Smart citations by scite.ai
Smart citations by scite.ai include citation statements extracted from the full text of the citing article. The number of the statements may be higher than the number of citations provided by EuropePMC if one paper cites another multiple times or lower if scite has not yet processed some of the citing articles.
Explore citation contexts and check if this article has been supported or disputed.
https://scite.ai/reports/10.1093/jb/mvm091

Supporting
Mentioning
Contrasting
2
81
1

Article citations


Go to all (68) article citations

Similar Articles 


To arrive at the top five similar articles we use a word-weighted algorithm to compare words from the Title and Abstract of each citation.