Europe PMC

This website requires cookies, and the limited processing of your personal data in order to function. By using the site you are agreeing to this as outlined in our privacy notice and cookie policy.

Abstract 


Methionine synthase reductase (MTRR) is the locus of the cblE class of inborn errors of cobalamin metabolism that is characterized by megaloblastic anemia and homocystinuria. Two highly prevalent SNPs, c.66A>G (p.Ile22Met) and c.524C>T (p.Ser175Leu), are found in the MTRR gene. On the basis of the allele frequency of these amino acids and sequence comparison with members of the same family of proteins, the p.Ile22/p.Ser175 sequence is designated as wild type. While characterizing a pathogenic methionine synthase reductase (MSR) mutation, c.166G>A (p.Val56Met), we discovered an interaction between the mutation and one of the polymorphic sites. Thus, when the p.Val56Met mutant was initially expressed in the p.Ile22/p.Ser175 background, we were surprised to find that kinetically, it was virtually indistinguishable from wild-type protein. To determine if the polymorphisms interacted with the p.Val56Met mutation, it was expressed in all four possible genetic backgrounds. We found that in the p.Ile22Met background, the p.Val56Met mutation impacted the kinetics of MSR and an approximately three- to 10-fold higher concentration of the p.Ile22Met/p.Val56Met mutant was required for maximal activation of methionine synthase vs. the range seen with wild-type MSR variants. A comparable (three- to seven-fold) diminution in MSR activity was observed in extracts of fibroblast cells from patients carrying the p.Val56Met mutation on one MSR allele and a null mutation on the other. These results predicted that the patient allele encodes the p.Val56Met mutation and the p.Ile22Met variation, which was confirmed by sequence analysis. This study reveals how a genetic variation can modulate phenotypic expression of a disease-causing mutation.

References 


Articles referenced by this article (32)


Show 10 more references (10 of 32)

Citations & impact 


Impact metrics

Jump to Citations
Jump to Data

Citations of article over time

Smart citations by scite.ai
Smart citations by scite.ai include citation statements extracted from the full text of the citing article. The number of the statements may be higher than the number of citations provided by EuropePMC if one paper cites another multiple times or lower if scite has not yet processed some of the citing articles.
Explore citation contexts and check if this article has been supported or disputed.
https://scite.ai/reports/10.1002/humu.20563

Supporting
Mentioning
Contrasting
0
5
0

Article citations

Data 


Funding 


Funders who supported this work.

NIDDK NIH HHS (1)